A rest point free dynamical system on \mathbb{R}^3 with uniformly bounded trajectories

by

Krystyna Kuperberg and Coke Reed (Auburn)

Abstract. In this paper, we show that if $c > 0$, then there exists a C^c transformation G from \mathbb{R}^3 into \mathbb{R}^3 such that the unique solution Φ of the differential equation $\dot{y} = G(y)$ is a dynamical system (a continuous transformation from $\mathbb{R} \times \mathbb{R}^3$ into \mathbb{R}^3 such that $\Phi(t, p) = \Phi(t, \Phi(t, p)) = \Phi(t, p)$ and $\Phi(0, p) = G(p)$) with the following two properties: (1) For each point p in \mathbb{R}^3 and each number n, $\Phi(t, p)$ is in the n-neighborhood for p; and (2) for each integer $n \neq 0$, $\Phi(t, p) \neq p$. Notice that Scottish Book Problem number 110 of Ulam follows as a corollary where $f(p) = \Phi(1, p)$ and the manifold is \mathbb{R}^3.

Introduction. In 1935 S. Ulam raised the following question [7], Problem 110: "Let M be a given manifold. Does there exist a numerical constant K such that every continuous mapping f of the manifold M into itself which satisfies the condition $|f^n(x) - x| < K$ for $n = 1, 2, \ldots$ (where $f^n(x)$ denotes the nth iteration of the image $f(x)$) possesses a fixed point: $f^n(x) = x$? The same under more general assumptions about M (general continuum?)." In this paper, we solve this problem in the negative, where $M = \mathbb{R}^3$, f is a homeomorphism onto f, is C^c, and for each $x \in \mathbb{R}^3$ and each positive integer n, $f^n(x) \neq x$. Moreover, $f(x) = \Phi(1, x)$, where Φ is a C^c dynamical system on \mathbb{R}^3 with uniformly bounded trajectories.

By a dynamical system Φ on a metric space X we mean a continuous mapping $\Phi: R \times X \to X$ (where R is the set of real numbers) such that for each $t \in R$, $\Phi(t \times X) = X$, and such that if each of t_1 and t_2 is a number and $p \in X$ is a point, then $\Phi(t_1 + t_2, p) = \Phi(t_1, \Phi(t_2, p))$ and $\Phi(0, p) = p$. If G is a transformation from \mathbb{R}^3 into \mathbb{R}^3, then G is said to generate a dynamical system Φ provided that,

$$\lim_{t \to \infty} \Phi(t, p) = G(p).$$

The set of all points $\Phi(t, p)$ for a fixed p and $-\infty < t < +\infty$ is called a trajectory of the dynamical system. A point q is called an a-limit point of a trajectory $\Phi(t, p)$ if there exists a sequence $t_1, t_2, \ldots, t_n, \ldots \to +\infty$ such that $lim \Phi(t_n, p) = q$. A point q is called an a-limit point of a trajectory $\Phi(t, p)$ if there exists a sequence $t_1, t_2, \ldots, t_n, \ldots \to +\infty$ such that $lim \Phi(t_n, p) = q$.

A classical result which we will employ is the following: If G is a transformation from \mathbb{R}^3 into \mathbb{R}^3 satisfying globally a Lipschitz condition with constant L, then the differential equation $\dot{y} = G(y)$ has a unique solution for each initial condition and...
the dynamical system \(\Phi \) generated by \(G \) describes this solution set. See, for instance, [6] Chapter 1.

There are two examples in the literature of dynamical systems on \(R^3 \) with all trajectories bounded and no rest points. The first is due to Jones and Yorke [5]. The main idea of this example is to describe a monotonically increasing sequence of tori in \(R^3 \), whose union is \(R^3 \), and to define a dynamical system \(\Phi(t, p) \) such that for each fixed \(t \), \(\Phi(t, p) \) restricted to the surface of any of the tori is a rotation.

Therefore, it is not possible to obtain a uniform bound on the trajectories in this example. The second example was described by Brechner and Mauldin [4] and was based on the observation of Howard Cook that the acyclic Peano continuum without the fixed point property constructed by Borsuk [1], [3] can be used to define a dynamical system on \(R^3 \), with no rest points and all trajectories bounded. In this example, there is a neighborhood of the \(z \)-axis so that outside of this neighborhood, points follow circular trajectories parallel to the \(xy \)-plane with center on the \(z \)-axis. Therefore, the trajectories are not uniformly bounded.

The second part of the question of S. Ulam [7], Problem 110, has been answered in the negative by W. Kuperberg, who gave an example of a one dimensional metric continuum, which for every \(\varepsilon > 0 \) admits a fixed point free \(\varepsilon \)-involution. Subsequently, W. Kuperberg and P. Minic, using Borsuk's example described in [3] and Cook's idea, proved that the Cartesian product of the Hilbert cube \(Q \) and the circle \(S^1 \) has the property: for every \(\varepsilon > 0 \) there exists a dynamical system \(\Phi \) on \(Q \times S^1 \) such that for each \(p \in Q \times S^1 \) the trajectory \(\Phi(t, p) \) is of diameter less than \(\varepsilon \), and \(\Phi(n, p) \neq p \) for each nonzero integer \(n \).

The example. Suppose that \(\varepsilon > 0 \). We will construct a \(C^\infty \) transformation \(G \) from \(R^2 \) into \(R^3 \) satisfying globally a Lipschitz condition with constant \(L \) such that the dynamical system \(\Phi \) generated by \(G \) satisfies the following two properties:

1. If \(t \) is a number and \(p \) is a point, then \(\Phi(t, p) \) is in the \(\varepsilon \)-neighborhood of \(p \);
2. If \(n \) is an integer distinct from zero, then \(\Phi(n, p) \neq p \).

Set \(\delta = \varepsilon/400 \). \(G \) will first be defined on the closed solid cylinder \(C \) consisting of all points \((x, y, z)\) satisfying \(\sqrt{x^2 + y^2} \leq \delta \) and \(0 \leq z \leq 6 \). Now, set \(T = \{(x, y, z) : \delta < \sqrt{x^2 + y^2} \leq 2\delta \} \) and for each number \(b \) set \(T_b = \{(x, y, z) \in T : z = b\} \).

\(G \) will satisfy the following eight conditions:

1. For each point \(p \) in \(C \) the \(\varepsilon \)-neighborhood of \(p \) is connected;
2. If \(p \in C \) and \(\Phi(t, p) \in C \), then \(p \) and \(\Phi(t, p) \) are equidistant from the \(z \)-axis;
3. Each of the annuli \(T_b \) and \(T_{b + \varepsilon} \) is invariant under \(\Phi \), and \(\Phi \) is a rotation on \(T_{b + \varepsilon} \) and on \(T_b \) such that for each integer \(n \) distinct from zero \(\Phi(n, p) \neq p \); (4) if \(0 < \varepsilon < 2\delta \) and \(p \in T_b \), then there is a negative number \(t \) such that \(\Phi(t, p) \in T_0 \) and each \(\omega \)-limit point of the trajectory \(\Phi(t, p) \) is on \(T_0 \); (5) if \(2\delta - \varepsilon < 4\delta \) and \(p \in T_b \), then each \(\omega \)-limit point of the trajectory \(\Phi(t, p) \) is on \(T_{b + \varepsilon} \) and each \(\omega \)-limit point of the trajectory \(\Phi(t, p) \) is on \(T_{b + \varepsilon} \); (6) if \(\delta < \varepsilon < 2\delta \), and \(p \in T_b \), then there is a positive number \(t \) such that \(\Phi(t, p) \in T_{b + \varepsilon} \); (7) if \((x, y, z) \in T \), then \(\Phi(t, p) \in T \), and \(\Phi(t, (x, y, z)) = (u, v, w) \) for some \(t > 0 \), then \(w > z \); (8) if \((x, y, z) \in C \), then \(\Phi(t, p) \) is connected.

Let \(h \) denote a strictly increasing \(C^\infty \) function on \([0, \delta]\) such that \(h(0) = 0 \), \(h(\delta) = 1 \), and all of the derivatives of \(h \) at zero and one are zero. Now define the five real valued functions \(f, g, \alpha, \beta, \gamma \) as follows.

\[
\begin{align*}
f(t) &= \begin{cases} 1 & \text{if } 0 < r < 2\delta, \\
\frac{r}{2\delta - r} & \text{if } 2\delta - r < 2\delta, \\
0 & \text{if } 3\delta < r < 4\delta, \\
\end{cases} \\
g(t) &= \begin{cases} 0 & \text{if } 0 < z < \delta, \\
h(z - \delta) & \text{if } \delta < z < 2\delta, \\
h(2\delta - z) & \text{if } 2\delta < z < 3\delta, \\
0 & \text{if } 3\delta < z < 6\delta, \\
\end{cases} \\
\alpha(t) &= \begin{cases} 0 & \text{if } 0 < \alpha < \delta, \\
h(-\alpha) & \text{if } \delta < \alpha < 2\delta, \\
0 & \text{if } 2\delta < \alpha < 3\delta, \\
\end{cases} \\
\beta(t) &= 1 - \alpha(t), \\
\gamma(t) &= \begin{cases} -h(z) & \text{if } 0 < z < \delta, \\
h(z - \delta) & \text{if } \delta < z < 2\delta, \\
0 & \text{if } 3\delta < z < 6\delta. \\
\end{cases}
\end{align*}
\]
Now for each point \(p = (r \cos(\theta), r \sin(\theta), z) \) of \(C \), set
\[
G(p) = (-f(r)g(z)\sin(\theta), f(r)g(z)\cos(\theta), \alpha(r) + \beta(r)\gamma(z)).
\]

Notice that there is a uniform bound on all of the partial derivatives of \(G \) over \(C \) and therefore, \(G \) will satisfy a global Lipschitz condition over \(C \). \(G \) will be extended to all of \(\mathbb{R}^3 \) in such a way that \(G \) will satisfy a Lipschitz condition with the same constant everywhere and for each point \(p \in \mathbb{R}^3 \) of the \(\delta \)-neighborhood of the boundary of \(C \), \(G(p) = (0, 0, 1) \). Under these conditions, we will now observe that \(G \) and its generated dynamical system \(\Phi \) have the eight desired properties outlined above. \(G \) is defined so that properties (1), (3), and (7) are satisfied. Property (2) is satisfied because \((r \cos(\theta), r \sin(\theta), 0) \) and \((-f(r)g(z)\sin(\theta), f(r)g(z)\cos(\theta), 0) \) are orthogonal. Properties (4), (5), and (6) follow from properties (2), (3), and (7), and from the fact that \(y' = G(y) \) has a unique solution. Property (8) follows from the reversed symmetry of \(G \) in the upper and lower halves of \(C \) and from the uniqueness of the solution of \(y' = G(y) \).

Now extend \(G \) to the set of all points \((u, v, w) \) such that \(0 \leq w \leq 6\delta \) as follows. If there exists an integer pair \((i, j)\) and a point \((x, y, z) \in C \) such that \((u, v, w) = (x + 8i\delta, y + 8j\delta, z) \) then set \(G(u, v, w) = G(x, y, z) \); otherwise set \(G(u, v, w) = (0, 0, 1) \). Extend \(G \) to all of \(\mathbb{R}^3 \) as follows. If \((u, v, w) \) is a point of \(\mathbb{R}^3 \) such that \(w \) is not in \([0, (6 \times 64)\delta]\), let \(i \) denote the integer such that \((6 \times 64)\delta < w \leq (6 \times 64)(i + 1)\delta \).

Now set
\[
G(u, v, w) = G(u, v, w - (6 \times 64)i\delta). \]

This completes the description of the example.

For integers \(i, j, k, n, \) and \(k, 0 \leq k \leq 63, \) put
\[
A_{i,j,k} = \{(x, y) \in \mathbb{R}^2 : \delta \leq \| (x, y) - (a_i + (8i, 8j)) \| \leq 2\delta \}.
\]

Notice that the union of all annuli \(A_{i,j,k} \) is \(\mathbb{R}^2 \). Denote by \(B_{i,j,k,n} \) (where \(\lambda = (i, j, k, n, m) \)), \(i, j, k, n, \) and \(m \) are integers, \(0 \leq k \leq 63, \) and \(m = 2 \) or \(4 \) the annulus in \(\mathbb{R}^2 \),
\[
[(x, y) \in \mathbb{R}^2 : (x, y) \in A_{i,j,k} \text{ and } z = [(6 \times 64)n + 64k + m] \delta].
\]

Each of \(B_{i,j,k} \) is invariant under \(\Phi \), and if \(p \in B_{i,j,k} \)
\[
|\Phi(t, p) - p| \leq 4\delta + \varepsilon. \]

If \(p \) is not on one of these annuli then either: (1) There are two annuli \(B_{i,j,k} \) and \(B_{i,j,k,n} \), where \(A_1 = (i, j, k, n, 2) \) and \(A_2 = (i, j, k, n, 4) \) such that the trajectory \(\Phi(t, p) \) is "between" \(B_{i,j,k} \) and \(B_{i,j,k,n} \) with the \(a \)-limit points of the trajectory \(\Phi(t, p) \) on \(B_{i,j,k} \), and the \(a \)-limit points of the trajectory \(\Phi(t, p) \) on \(B_{i,j,k,n} \). Then
\[
|\Phi(t, p) - p| \leq (4 + 2\delta + \varepsilon);
\]
or (2) There is a number \(t_0 \) and an integer \(d \) such that if \(\Phi(t_0, p) \) is denoted by \((u, v, w) \) then \(w = 66\delta \). The line perpendicular to the \(xy \)-plane, and passing through \(\Phi(t_0, p) \) intersects two annuli \(B_{i,j,k} \) (below \(\Phi(t_0, p) \)), and \(B_{i,j,k,n} \) (above \(\Phi(t_0, p) \)) so that the \(a \)-limit points of the trajectory \(\Phi(t, p) \) are on \(B_{i,j,k} \) and the \(a \)-limit points of the trajectory \(\Phi(t, p) \) are on \(B_{i,j,k,n} \) (see Figure 2). The distance between \(B_{i,j,k} \) and \(B_{i,j,k,n} \) is less than \((64 \times 64)\delta \). The projection of the trajectory \(\Phi(t, p) \) on the \(xy \)-plane has diameter less than \(16\delta \), since the projection of \(\Phi(t, p) \), for any \(t \), on the \(xy \)-plane is in a distance less than \(6\delta \) from the projection of \(B_{i,j,k} \) on the \(xy \)-plane. Therefore,
\[
|\Phi(t, p) - p| \leq [(6 \times 64) + 16] \delta = 400\delta = \varepsilon.
\]

The only periodic trajectories are on the annuli \(B_{i,j,k} \). Hence, for no non-zero integer \(n, \Phi(n, p) = p \).

Remark. A similar dynamical system can be constructed on a closed manifold \(S^3 \times S^1 \times S^1 \), where \(S^1 \) denotes the one dimensional sphere.
Cardinal functions on compact F-spaces and on weakly countably complete Boolean algebras

by

Eric K. van Douwen (Athens, Ohio)

Abstract. We investigate limitations on the cardinals κ which occur as the value of cardinal functions on infinite compact F-spaces (or on weakly countably complete Boolean algebras). We find limitations of the form $\kappa^\aleph_0 = \kappa$, or else $\text{cf}(\kappa) = \omega$, or at least "$\kappa$ is not a strong limit with $\text{cf}(\kappa) = \omega$", and show that all infinite cardinals κ with $\kappa^\aleph_0 = \kappa$ do occur (for cardinality one needs the additional restriction $\kappa \leq 2^\omega$, as is well known).

Contents

1. Introduction .. 35
2. Original motivation 36
3. Convention and definitions 37
4. Cardinal functions 37
5. Combinatorial tools 39
6. Compact F-spaces and WCC-algebras 39
7. Cardinality .. 40
8. Character ... 42
9. Hereditarily Lindelöf degree 43
10. Spread .. 44
11. Density and cellularity in special compact F-spaces 45
12. Weight ... 47
13. Relations between cardinal functions on extremely disconnected compacta 47
14. Examples ... 48
15. Cardinalities of closed subsets of extremely disconnected compacta 52
16. Questions ... 53
17. Appendix: some special spaces and Boolean algebras 54

1. Introduction. This is a paper on the behavior of cardinal functions on compact F-spaces. The Boolean algebras which occur as the algebras of clopen (= closed and open) sets of a zero-dimensional compact F-space are the weakly countably complete Boolean algebras, or WCC algebras for short, see § 6 for the definition. This class includes the class of countably complete Boolean algebras and has the pleasant property of being closed under homomorphisms. (However, it is consistent

* Completed while supported by NSF-Grant MCS78-09444.