

A class of spaces whose Cartesian product with every hereditarily Lindelöf space is Lindelöf ·

by

K. Alster (Warszawa)

Abstract. We prove that if X is a Lindelöf space such that each closed subspace F of X contains a compact subset with non-empty interior (with respect to F), then the product $X^{\aleph_0} \times Y$ is Lindelöf for every hereditarily Lindelöf space Y.

Introduction. A general question is to characterize the class $\mathcal L$ of all spaces whose Cartesian product with every hereditarily Lindelöf space is Lindelöf (1). It is well known that $\mathcal L$ is closed with respect to continuous images, perfect preimages and contains all separable metric spaces (see [E], Th. 3.8.6, Th. 3.8.8 and Problem 4.5.16.d), in particular, as was noticed by Z. Frolik [F], $\mathcal L$ contains Lindelöf spaces, complete in the sense of Čech, because they are perfect preimages of separable metric spaces.

E. Michael asked whether ${\mathscr L}$ is closed with respect to countable Cartesian products?

The main result of this paper is to prove that if X is a Lindelöf space such that each closed subspace F of X contains a compact subset with non-empty interior (with respect to F), then the product $Y \times X^{\aleph_0}$ is Lindelöf for every hereditarily Lindelöf space $Y(^2)$. This result exhibits a rather wide subclass of \mathcal{L} , closed under countable products, including, as was noticed in [AP], a class of function spaces (3).

Methods applied in this paper are related to [A].

⁽⁴⁾ From an example obtained by E. Michael ([M], Ex. 1.2), for some details see Remark 1. it follows that it is not reasonable to ask a similar question for the class of all Lindelöf spaces whose product with every Lindelöf space is Lindelöf.

⁽³⁾ R. Telgársky noticed that X belongs to \mathcal{L} [T].

⁽³⁾ In [AP] it was proved that if K is a compact subspace of the Σ -product of $\mathfrak m$ copies of the real line, for a cardinal m and R is the real line then the function space C(K, R) endowed with the pointwise topology is a continuous image of a closed subspace of X^{NO} , where X is a Lindelöf space having only one non-isolated point.

^{1 —} Fundamenta Mathematicae CXIV/3

Terminology and notation. Our topological terminology follows [E]. Let us recall that X is a P-space if every G_{λ} -subset of X is open.

We say that U is a basic open set in \tilde{P} X_i , if it is of the following form

$$U = \overset{\infty}{P} U_i \times \overset{\infty}{P} X_i$$
, where U_i is open in X_i .

If \mathcal{U} is a family of subsets of X then \mathcal{U}^* denotes the family of all finite unions of elements of \U.

We write $\mathcal{U} \prec \mathcal{V}$ if \mathcal{U} refines \mathcal{V} .

Put $X^{(0)} = X_c^{(0)} = X$. Denote by $X^{(1)}(X_c^{(1)})$ the set of all non-isolated points of X (of all points of X at which X is not locally compact) (4). Put $X^{(\alpha)} = \bigcap \{X^{(\beta)}: \beta < \alpha\} \ (X_c^{(\alpha)} = \bigcap \{X_c^{(\beta)}: \beta < \alpha\}), \text{ if } \alpha \text{ is a limit ordinal number and}$ $X^{(\alpha+1)} = (X^{(\alpha)})^{(1)} (X_c^{(\alpha+1)} = (X_c^{(\alpha)})^{(1)})$ (cf. [S]). One can prove by means of some standard reasoning, that X is a scattered space (5) (each closed subspace F of X contains a compact subset with non-empty interior, with respect to F) if and only if there exists α such that $X^{(\alpha)} = \emptyset$ ($X_{\alpha}^{(\alpha)} = \emptyset$) (see [S]).

The symbol $L(x_1)$ stands for a space of cardinality x_1 and having only one non isolated point p such that $p \in U \subset L(\aleph_1)$ is open, if $|L(\aleph_1) \setminus U| \leq \aleph_0$ (6).

Auxiliary constructions. If X is a zero-dimensional space such that each closed subspace F of X contains a compact subset with non-empty interior (with respect to F) then $\alpha(x)$ denotes the ordinal number and U_x an open and closed neighbourhood of x such that $x \in X_c^{(\alpha(x))} \setminus X_c^{(\alpha(x)+1)}$ and $F_x = U_x \cap X_c^{(\alpha(x))}$ is compact. Notice that if X is a Lindelöf space and U is a neighbourhood of F_r then

there are $x_1, x_2, ... \in X$ such that $\alpha(x_n) < \alpha(x)$ and

$$U_x \setminus \bigcup \{U_{x_n}: n = 1, 2, ...\} \subset U.$$

Indeed, we can assume that U is open and closed so there are

$$x_1, x_2, ..., x_n, ... \in X \setminus X^{(a(x))}$$

such that $U_x \setminus U \subset \bigcup \{U_{x_n}: n = 1, 2, ...\}$.

Fix for any such U a countable set $A_x(U)$ consisting of points $x_1, ..., x_n, ...$ satisfying (0). By the definition of $A_{r}(U)$ we have

(1)
$$\alpha(x) > \alpha(a)$$
 for every $a \in A_{+}(U)$.

Main results

THEOREM 1. If X is a Lindelöf space such that each closed subspace F of X contains a compact subset with non-empty interior (with respect to F) and Y is such that $Y \times (L(\aleph_1)^{\aleph_0})$ is Lindelöf then $Y \times X^{\aleph_0}$ is Lindelöf.

THEOREM 2. If X is a Lindelöf space such that each closed subspace F of X con-

tains a compact subset with non-empty interior (with respect to F) then the product $Y \times X^{\aleph_0}$ is Lindelöf for every hereditarily Lindelöf space Y.

The proof of Theorem 1 consists of two steps. In the first step we assign to an arbitrary open cover \mathscr{U} of $Y \times X^{\aleph_0}$ a scattered Lindelöf P-space Z of weight not greater than \aleph_1 in such a way that if $Y \times Z^{\aleph_0}$ is a Lindelöf space then $\mathscr U$ has a countable refinement. In the second step we show that every Lindelöf, scattered, P-space Z of weight not greater than \aleph_1 can be embedded in $L(\aleph_1)^{\aleph_0}$ as a closed subset.

We prove Theorem 2 by showing that $Y \times (L(\aleph_1)^{\aleph_0})$ is Lindelöf for every hereditarily Lindelöf space Y and applying Theorem 1 to the product $Y \times X^{\aleph_0}$.

Notice that without loss of generality we can regard X as a subset of the product I^m , where I is the unit interval and m a cardinal number. Let us take a continuous mapping $f: D^{\mathfrak{m}} \to I^{\mathfrak{m}}$ such that $f(D^{\mathfrak{m}}) = I^{\mathfrak{m}}$, where $D^{\mathfrak{m}}$ is a Cantor cube. Put $X' = f^{-1}(X)$. It is easy to see that X' satisfies assumptions of the theorems. is zero-dimensional and the product is $Y \times X'^{\aleph_0}$ is Lindelöf if and only if $Y \times X^{\aleph_0}$ is Lindelöf.

In the sequel Y stands for a space such that $Y \times (L(\aleph_1)^{\aleph_0})$ is Lindelöf, X for a zero-dimensional space satisfying the assumptions of the theorems and $\mathcal U$ for an open cover of $Y \times X^{80}$.

Step 1.

LEMMA 1. If $\mathscr{F} = \{F_n: n = 1, 2, ...\}$ is a family of compact subsets of X then there is a countable family $\mathscr V$ consisting of basic open sets in $Y\times X^{\aleph 0}$ and refining $\mathscr U^*$ such that if $(n_i)_{i=1}^{\infty}$ is a sequence of natural numbers and $y \in Y$ then there exists $V \in \mathscr{V}$ satisfying $\{y\} \times \tilde{P} F_{n_i} \subset V$.

Proof. If $\{F_n: n=1,2,...\}$ is a discrete family in X then the lemma holds because of the following facts: $Y \times N^{\aleph_0}$ (7) is Lindelöf as a closed subset of $Y \times (L(\aleph_1)^{\aleph_0})$, a product of perfect mappings (8) is perfect and a perfect preimage of a Lindelöf space is Lindelöf.

If $\mathscr{F} = \{F_n: n = 1, 2, ...\}$ is not discrete in X then put $X' = X \times N$ and $F'_n = F_n \times \{n\}$, for $n \in \mathbb{N}$. Notice that $\mathscr{F}' = \{F'_n : n = 1, 2, ...\}$ is discrete in X' so there is a suitable family \mathscr{V}' for X' and \mathscr{F}' . Now it is enough to take $\mathscr{V}=n(\mathscr{V}')$ = $\{n(V'): V' \in \mathscr{V}'\}$, where n is a natural mapping from $Y \times (X')^{\aleph_0}$ onto $Y \times X^{\aleph_0}$.

LEMMA 2. There are a subset A of X of cardinality not greater than \mathbf{n}_1 and a cover $\mathscr V$ of Y×X' consisting of basic open sets such that

- there is a countable subset A_0 of A such that $\bigcup \{U_x \colon x \in A_0\} = X$,
- \mathscr{V} refines \mathscr{U}^* and $|\mathscr{V}| \leqslant \aleph_1$.

1*

for every $(a_n)_{n=1}^{\infty} \in A^{\aleph_0}$ and $y \in Y$ there are $V_0 \subset Y$, $V_n \subset X$, for n = 1, 2, ..., and $V \in \mathscr{V}$ such that $\{y\} \times \overset{\infty}{\underset{n=1}{P}} F_{a_n} \subset \overset{\infty}{\underset{n=0}{P}} V_n$ and $\bigcup \{A_{a_n}(V_n): n=1,2,...\} \subset A$ (see, Auxiliary constructions).

⁽⁴⁾ X is locally compact at $x \in X$ if there is a compact neighbourhood of x in X.

⁽⁵⁾ X is a scattered space if every closed subspace of X has an isolated point. (*) The symbol |A| stands for the cardinality of A.

⁽⁷⁾ N stands for the set of natural numbers.

^(*) A mapping $f: X \to Y$ is perfect if it is closed and $f^{-1}(y)$ is compact, for $y \in Y$.

Proof. For $\alpha < \omega_1$, we shall define $A_x \subset X$ and an open family of basic sets \mathscr{V}_a in $Y \times X^{\aleph_0}$ such that

- (5) $\bigcup \{U_x : x \in A_\alpha\} = X \text{ and } |A_\alpha| \leq \aleph_0$
- (6) \mathscr{V}_{α} is defined as Lemma 1 says, for $\mathscr{F} = \{F_a : a \in A_{\alpha}\},\$
- (7) if $\alpha > 0$ then

$$A_{\alpha} = \begin{cases} \bigcup \{A_{\beta} \colon \beta < \alpha\}, & \text{if } \alpha \text{ is a limit ordinal number,} \\ A_{\beta} \cup \bigcup \{A_{\alpha}(H) \colon H \in \mathscr{H}_{\beta \times}, x \in A_{\beta}\} & \text{if } \alpha = \beta + 1, \end{cases}$$

where
$$\mathscr{H}_{\beta x} = \{H: \exists n \geqslant 1 \exists V = \overset{\circ}{P}_{i=0} V_{i} \in \mathscr{V}_{\beta} \text{ and } H = V_{n} \supset F_{x} \}.$$

If $\alpha = 0$ then there exists a countable set A_0 in X such that $\bigcup \{U_x \colon x \in A_0\} = X$. Let \mathscr{V}_0 be a family defined as (6) says.

From (6) and (7) it follows how to define A_{α} and \mathscr{V}_{α} for $\alpha > 0$. Notice that

- (8) if $\{y\} \times \sum_{i=1}^{\infty} F_{a_i} \subset \sum_{i=0}^{\infty} V_i = V \in \mathscr{V}_{\alpha}$, where $a_i \in A_{\alpha}$, for i = 1, 2, ..., then $F_{a_i} \subset G_{\alpha a_i} = (U_{a_i} \setminus \bigcup \{U_z : z \in \bigcup \{A_{a_i}(H) : H \in \mathscr{H}_{\alpha a_i}\}\} \subset V_i$ for i = 1, 2, ...Put $A = \bigcup \{A_{\alpha} : \alpha < \omega_1\}$.

 We shall show that
- (9) for every $x \in X$ there is $y \in A$ such that $x \in \bigcap \{G_{\alpha y} : y \in A_{\alpha}\}$.

Suppose that (9) does not hold. There exists $y_1 \in A_0$ such that $x \in U_{y_1}$. If $y_1, ..., y_n$ are defined in such a way that $\{y_1, ..., y_n\} \subset A$, $x \in \cap \{U_{y_i}: i = 1, 2, ..., n\}$ and $\alpha(y_1) > \alpha(y_2) > ... > \alpha(y_n)$, then by the assumption there is α such that $y_n \in A_{\alpha}$, $x \notin G_{\alpha y_n}$ and $x \in U_{y_n}$, so there exists $y_{n+1} \in \bigcup \{A_{y_n}(H): H \in \mathscr{H}_{\alpha y_n}\}$ and $x \in U_{y_{n+1}}$. By (7) $y_{n+1} \in A_{\alpha+1}$ and by (1) $\alpha(y_{n+1}) < \alpha(y_n)$. This way we would obtain an infinite decreasing sequence of ordinals, a contradiction.

Put $\mathscr{V} = \bigcup \{\mathscr{V}_{\alpha}: \alpha < \omega_1\}$. Notice that (4) follows from (7) and (6). We shall finish the proof of Lemma 2 by showing that \mathscr{V} covers $Y \times X^{k_0}$. Let $(y, x_1, x_2, ...)$ be an arbitrary point of $Y \times X^{k_0}$. By (9) there are $y_1, ..., y_n, ... \in A$ such that

$$(10) x_n \in \bigcap \{G_{\alpha y_n}: y_n \in A_\alpha\} = G_{y_n}.$$

Notice that $\{A_x: \alpha < \omega_1\}$ is an increasing family so there are γ and $V \in \mathscr{V}_{\gamma}$ such that $\{y_1, ..., y_n, ...\} \subset A_{\gamma}$ and $\{y\} \times \overset{\infty}{P} F_{y_n} \subset V$. By (8) and (10)

$$(y, x_1, ..., x_n, ...) \in \{y\} \times \prod_{n=1}^{\infty} G_{y_n} \subset \{y\} \times \prod_{n=1}^{\infty} G_{y_n} \subset V.$$

LEMMA 3. There is a scattered, Lindelöf, P-space Z of weight not greater than \aleph_1 such that if $Y \times Z^{\aleph_0}$ is a Lindelöf space then $\mathscr V$, see Lemma 2, has a countable refinement.

Proof. Let us order A, see Lemma 2, in the type of ω_1 and put $Z = \{(\beta_1, ..., \beta_n) : n \in \mathbb{N}, \beta_1 \in A_0 \text{ (see (2)) and } \alpha(a_{\beta_i}) > \alpha(a_{\beta_{i+1}}), \text{ for } i = 1, 2, ..., n-1\}.$ The base at the point $z = (\beta_1, ..., \beta_n) \in Z$ consists of the sets of the form

(11) $B_{\gamma}(z) = \{(\gamma_1, ..., \gamma_m) \in \mathbb{Z}: m \geqslant n, \gamma_i = \beta_i, \text{ for } i = 1, 2, ..., n, \text{ and } \gamma_{n+1} \geqslant \gamma\},$ for $\gamma < \omega_1$.

Notice that $|Z| \leq \aleph_1$ so by (11) we infer that the weight of Z is not greater than \aleph_1 .

If $S \subset Z$ then $z = (\gamma_1, ..., \gamma_m) \in S$, with minimal $\alpha(a_{\gamma_m})$, is an isolated point in S, therefore Z is a scattered space.

Z is a P-space by (11).

Let us notice that $B_{\gamma}(z)$ is an open and closed subset of Z, for $z \in Z$ and $\gamma < \omega_1$. If $z = (\gamma_1, ..., \gamma_n)$ and $\alpha(a_{\gamma_n}) = 0$ then $B_0(z) = \{z\}$. Assume that $B_0(z)$ is a Lindelöf space for every $z = (\gamma_1, ..., \gamma_n)$ such that $\alpha(a_{\gamma_n}) < \beta > 0$ and suppose that $\alpha(a_{\gamma_n}) = \beta$. If γ is an arbitrary countable ordinal then $B_0(z) \setminus B_{\gamma}(z) = \bigcup \{B_0(z_i): \text{ where } z_i = (\gamma_1, ..., \gamma_n, \beta_i)\}$ for i = 1, 2, ... By the definition of Z $\alpha(a_{\beta_n}) < \alpha(a_{\gamma_n}) = \beta$ for i = 1, 2, ... so from the inductive assumption it follows that $\bigcup \{B_0(z_i): i = 1, 2, ...\}$ is Lindelöf and we conclude that $B_0(z)$ is Lindelöf. Notice that $Z = \bigcup \{B_0(z): z \in A_0\}$ therefore it is Lindelöf.

In order to finish the proof of the lemma it is enough to show that there exists an open cover \mathcal{H} of $Y \times Z^{\aleph_0}$ such that if \mathcal{H} has a countable refinement than \mathcal{V} has also.

If $(y, z_1, ..., z_n, ...) = p \in Y \times Z^{80}$, where $z_i = (y_1^i, ..., y_{m_i}^i)$, for i = 1, 2, ... then by (4) there is $V(p) = \underset{n=0}{\overset{\infty}{P}} V_n(p) \in \mathscr{V}$ such that $\{y\} \times \underset{i=1}{\overset{\infty}{P}} F_{a_{\gamma_{m_i}^i}} \subset V(p)$. Put

(12)
$$H_i(V(p)) = \begin{cases} Z, & \text{if } V_i(p) = X, \\ V_0, & \text{if } i = 0, \\ B_{\gamma}(z_i), & \text{where } \gamma = \sup\{\beta \colon a_{\beta} \in A_{a_{\gamma_{m_i}^i}}(V_i(p))\} + 1, \text{ otherwise,} \end{cases}$$

 $H(V(p)) = \prod_{i=0}^{\infty} H_i(V(p))$ and $\mathcal{H} = \{H(V(p)): p \in Y \times Z^{No}\}$. Notice that H(V(p)) is an open neighbourhood of p so \mathcal{H} covers $Y \times Z^{No}$.

Let us attach to $x \in X$ an element $(\beta_1(x), ..., \beta_{n(x)}(x)) = z(x) \in Z$ in such a way that $\beta_1(x)$ is the first number of A_0 such that $x \in U_{a\beta_1(x)}$. If $\beta_1(x), ..., \beta_n(x)$ are defined then $\beta_{n+1}(x)$ is the first ordinal number such that $x \in U_{a\beta_{n+1}(x)}$ and $\alpha(a_{\beta_{n+1}(x)}) < \alpha(a_{\beta_n(x)})$. We continue the induction as long as it is possible.

We shall show that

(13) if $(\beta_1(x), ..., \beta_{n(x)}(x)) \in H_i(V(p))$ for $p \in Y \times Z^{N_0}$ and $i \ge 1$ then $x \in V_i(p)$, where $V(p) = \sum_{n=0}^{\infty} V_n(p)$.

If
$$H_i(V(p)) = Z$$
 then $V_i(p) = X$. If $H_i(V(p)) = B_p(z_i)$, where

$$p = (y, z_1, ..., z_n, ...), z_n = (y_1^n, ..., y_{m_n}^n)$$

and $\gamma = \sup\{\beta \colon a_{\beta} \in A_{a_{\gamma_{m_i}^i}}(V_i(p))\} + 1$ then

$$(14) V_{i}(p) \supset U_{a_{\gamma_{m_{i}}^{i}}} \bigcup \left\{ U_{x} : z \in A_{a_{\gamma_{m_{i}}^{i}}}(V_{i}(p)) \right\}$$

$$\supset U_{a_{\gamma_{m_{i}}^{i}}} \bigcup \left\{ U_{a_{\beta}} : \beta < \gamma , \text{ where } \alpha(a_{\beta}) < \alpha(a_{\gamma_{m_{i}}^{i}}) \right\}.$$

From (11) and (13) it follows that $n(x) \ge m_i$, $\gamma_{m_i}^i = \beta_{m_i}(x)$, so $x \in U_{a_{\gamma_{m_i}^i}}$ and that $n(x) = m_i$ or $\gamma \le \beta_{m_i+1}(x)$. By the definition of $(\beta_1(x), \dots, \beta_{n(x)}(x))$ we infer that $x \notin \{U_{a_x}: \beta < \gamma, \text{ where } \alpha(a_{\beta}) < \alpha(a_{\gamma_{m_i}^i})\}$ and finally we obtain $x \in V_i(p)$.

From (13) it follows that if $\bigcup \{H(V(p_i)): i = 1, 2, ...\} = Y \times Z^{\aleph_0}$ then $\bigcup \{V(p_i): i = 1, 2, ...\} = Y \times X^{\aleph_0}$.

Step 2.

LEMMA 4. If Z is a scattered, Lindelöf, P-space such that weight of Z is not greater than κ_1 then Z can be embedded in $L(\kappa_1)^{\kappa_0}$ as a closed subset.

Proof. If $Z^{(1)} = \emptyset$ then the lemma is trivial. Let us assume that the lemma holds for every $\beta < \alpha$ such that $Z^{(\beta)} = \emptyset$.

Suppose that $Z^{(\alpha)} = \emptyset$. If α is a limit number then $Z = \bigcup \{Z_n : n = 1, 2, ...\}$, where $Z_1, Z_2, ...$ are pairwise disjoint open and closed subsets of Z such that $Z_n^{(\beta_n)} = \emptyset$ and $\beta_n < \alpha$, for n = 1, 2, ... From the inductive assumption it follows that for n = 1, 2, ... there is an embedding h_n of Z_n onto a closed subset of $\{n\} \times (L(\kappa_1)^{\aleph_0})$. Put $h(z) = h_n(z)$, if $z \in Z_n$. Then h is a desired embedding.

Let us identify the set of all isolated points of $L(\kappa_1)$ with the set of countable ordinal numbers and let p be the unique non-isolated point of $L(\kappa_1)$.

Now let us consider the case $\alpha = \beta + 1$. Then $Z^{(\beta)} = \{z_n : n = 1, 2, ...\}$ and there is a family $\{Z_n : n = 1, 2, ...\}$ consisting of pairwise disjoint, open and closed sets covering Z and such that $Z_n \cap Z^{(\beta)} = \{z_n\}$. Let $\{V_{n\gamma} : \gamma < \omega_1\}$ be a decreasing open and closed base at z_n . Put $Z_{n0} = Z_n \setminus V_{n0}$ and $Z_{n\gamma} = (V_{n\gamma} \setminus V_{n\gamma+1}) \cap Z_n$, for $n \in N$ and $\gamma < \omega_1$. By the inductive assumption, for $n \in N$ and $\gamma < \omega_1$, there is an embedding $h_{n\gamma}$ of $Z_{n\gamma}$ onto a closed subset $\{n\} \times \{\gamma\} \times Y_{\gamma}^{\aleph_0}$, where $Y_{\gamma} = \{x \in L(\aleph_1) : x = p \text{ or } x \geqslant \gamma\}$. Put

$$h(z) = \begin{cases} (n, p, \dots, p, \dots), & \text{if } z = z_n, \\ h_{ny}(z), & \text{if } z \in Z_{ny}. \end{cases}$$

It is easy to see that h is an embedding of Z in $(L(\aleph_1))^{\aleph_0}$. Let

$$y = (y_1, ..., y_n, ...) \in L(\aleph_1)^{\aleph_0} \setminus h(X)$$
.

Put

$$U_{\gamma} = \begin{cases} \pi_{1}^{-1}(y_{1}), & \text{if } y_{1} \notin \{n: n = 1, 2, ...\}, \\ \pi_{2}^{-1}(\gamma) \setminus h_{n\gamma}(Z_{n\gamma}), & \text{if } y_{2} = \gamma, \\ \pi_{1}^{-1}(\gamma) \cap \pi_{2}^{-1}(Y_{\gamma+1}), & \text{if } y_{2} = p \text{ and } y_{i} = \gamma, \end{cases}$$

where π_i is the projection of $L(\kappa_1)^{\aleph_0}$ onto the *i*th coordinate. U_{γ} is an open neighbourhood of y disjoint with h(X) so h(X) is a closed subset of $L(\kappa_1)^{\aleph_0}$.

Proof of Theorem 1. Theorem 1 follows from Lemmas 1, 2, 3 and 4.

The next lemma, which will complete the proof of Theorem 2, was proved in [AP]. We give a sketch of the proof of it for the sake of completeness.

LEMMA 5. If Y is a hereditarily Lindelöf space then the product $Y \times (L(\aleph_1)^{\aleph_0})$ is a Lindelöf space.

Proof. Put $X_n = L(\aleph_1)$, for n = 1, 2, ... Let p_n be the projection of $Y \times \overset{\infty}{P} X_i$ onto $Y \times \overset{n}{P} X_i$ and p_0 the projection of $Y \times \overset{\infty}{P} X_n$ onto Y.

The weight of $\tilde{P}X_n$ is not greater than κ_1 , Y is a hereditarily Lindelöf space, so every open cover of $Y \times \tilde{P}X_n$ has a refinement of cardinality not greater than κ_1 . In order to finish the proof of the lemma it is enough to show that every uncountable subset A of $Y \times \tilde{P}X_n$ has a point of condensation (°).

Case 1. There is $y \in Y$ such that $|p_0^{-1}(y) \cap A| > \kappa_0$. Then there exists a point of condensation, by a Noble's result [N], which says that a countable Cartesian product of Lindelöf, P-spaces is a Lindelöf space.

Case 2. Let us assume that for every $y \in Y | p_0^{-1}(y) \cap A | \leq \kappa_0$. Without loss of generality we can assume that

(15)
$$A = \{(y, a_y): y \in Y \text{ and } a_y \in \overset{\boldsymbol{o}}{\underset{n=1}{\boldsymbol{v}}} X_n\} \quad \text{and} \quad a_y \neq a_{y'}, \text{ if } y \neq y'.$$

For every $n \in \mathbb{N}$ and $(x(1), ..., x(n)) = x \in \Pr^n X_i$ put

(16)
$$W_{\mathbf{x}}^{i} = \begin{cases} X & \text{if } i > n \text{ or } x(i) = p, \\ \{x(i)\} & \text{otherwise,} \end{cases}$$

$$W_{x} = \stackrel{\infty}{P} W_{x}^{i}$$

and

(17)
$$A_x = \{ y \in Y : a_y \in W_x \text{ and } (y, x) \in Y \times \overset{\stackrel{\circ}{P}}{\underset{i=1}{X_i}} X_i \text{ is a condensation point } of p_n(A) \}.$$

^(*) A point x of X is called a condensation point of a set $A \subset X$ if every neighbourhood of x contains uncountably many points of A.

Notice, that

(18) if $i \le n \le m$, $x \in \stackrel{n}{P} X_i$, $x' \in \stackrel{m}{P} X_i$, $A_x \cap A_{x'} \neq \emptyset$ and $x(i) \neq p \neq x'(i)$ then x(i) = x'(i)

as in the opposite case we would have $W_x \cap W_{x'} = \emptyset$. We shall prove that

(19) if $T \subset Y$ is uncountable and $n \in N$, then there exists $x \in \mathbf{P}_{X_i}$ such that $A_r \cap T \neq \emptyset$.

Let $H = \{a_t | n: t \in T\} \subset \Pr^n X_t$, where $a_t = (a_t(1), a_t(2), ...)$ and $a_t | n$ = $(a_i(1), ..., a_i(n))$. If H is a countable set then there is $x \in \stackrel{\infty}{P} X_i$ such that $S = \{t \in T: a_t | n = x\}$ is uncountable. Without loss of generality we can assume that S is locally uncountable (10), Notice, that $S \subset A_x$. If H is uncountable then there is $x \in \mathbf{P}[X_i]$ which is a point of condensation of H. X is a P-space and the weight of it is not greater than R, so there is an uncountable subset H' of H such that for every neighbourhood U of $x |H' \setminus U| \leq \aleph_0$. We can assume that $\{t: a_t | n \in H'\} \subset T$ is locally uncountable. It is easy to see that $S \subset A_x$.

By (19) we infer, that for $n \in \mathbb{N}$, $|Y \cup \{A_x: x \in \mathbf{P} \setminus X_i\}| \leq \kappa_0$. Y is an uncountable set so there is $y \in Y$ and $x_i \in \dot{P}(X_i)$, for i = 1, 2, ..., such that

(20)
$$y \in \bigcap \{A_{x_i}: i = 1, 2, ...\}.$$

From (18) it follows that there exist c_1, c_2, \dots such that for $n \in N$

(21) if $i \le n$ then $x_n(i) = c_i$ or $x_n(i) = p$.

The space C given by $C = \stackrel{\infty}{P} \{p, c_i\}$ is a compact subset of $\stackrel{\infty}{P} X_i$. Put $\bar{x}_n(i) = x_n(i)$, if $i \le n$ and $\bar{x}_n(i) = p$ for i > n. Notice that $\bar{x}_n \in C$, for $n \in N$, so there is • an accumulation point c of $(\bar{x}_n)_{n=1}^{\infty}$. We shall show that (y, c) is a point of condensation of A. Indeed, if $U = U_0 \times \stackrel{n}{P} U_i \times \stackrel{\infty}{P} X_i$ is a neighbourhood of (y, c) then there exists $n' \ge n$ such that $\bar{x}_{n'} \in U$. From $\bar{x}_{n'}|n' = x_{n'}$, (20) and the definition of $A_{n_{n'}}$ it follows that $A \cap U$ is an uncountable set.

Remark 1. E. Michael proved ([M], Ex. 1.2), that, under Continuum Hypothesis. there is an uncountable subset K of the real line containing the set Q of rational numbers such that K_0 (11) is Lindelöf but $K_0 \times P$ (12) is not, so it is not enough to assume, in Theorem 2, that Y is only a Lindelöf space.

Notice that the set of non-isolated points of K_Q is equal to Q, so it is metric and countable.

Remark 2. If Z is an element of \mathcal{L} and A its Lindelöf subset then A does not have to belong to \mathcal{L} . Indeed, it is enough to observe that K_0 can be embedded in $L(\aleph_1)^{\aleph_0}$.

Remark 3. Let 6 be a minimal class of spaces satisfying the following conditions:

- (a) if X is Lindelöf and satisfies the assumptions of theorems then $X \in \mathscr{C}$.
- (b) if $X_1, X_2, ... \in \mathcal{C}$ then $\bigcup_{n=1}^{\infty} X_n$ and $\bigcap_{n=1}^{\infty} X_n$ belong to \mathcal{C} . (c) $X \in \mathcal{C}$ and F is a closed subset of X then $F \in \mathcal{C}$.
- (d) $Y \in \mathcal{C}$ then every perfect preimage and continuous image of Y belongs to \mathcal{C} . One can prove that L contains C.

Added in proof. Recently I have proved that under the assumption of an existence of an uncountable coanalytic set of reals without uncountable compact subsets (in Gödel's constructible universum such a set exists, K. Gödel and P. S. Novikov) there exists a senarable metric space M and a Lindelöf space X such that for every hereditarily Lindelöf space Y and every natural number n the products $Y \times X^n$ and X^{\aleph_0} are Lindelöf but $M \times X^{\aleph_0}$ is not Lindelöf.

References

- K. Alster, Some remarks on Eberlein compacts, Fund. Math. 104 (1979), pp. 43-46.
- [AP] and R. Pol, On function spaces of compact subspaces of Σ -products of the real line. Fund. Math. 107 (1980), pp. 135-143.
- R. Engelking, General Topology, Warszawa 1977.
- Z. Frolik, On the topological product of paracompact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), pp. 747-750.
- E. Michael, Paracompactness and the Lindelöf property in finite and countable Cartesian products, Comp. Math. 23 (1971), pp. 199-244.
- N. Noble, Products with closed projection II, Trans. Amer. Math. Soc. 160 (1971), pp. 169-183.
- A. H. Stone, Kernel constructions and Borel sets, Trans. Amer. Math. Soc. 107 (1963),
- R. Telgársky, C-scattered and paracompact spaces, Fund. Math. 73 (1971), pp. 59-74.

Accepté par la Rédaction le 16. 6. 1978

⁽¹⁰⁾ X is locally uncountable if for every $x \in X$ an arbitrary neighbourhood of x is uncountable.

⁽¹¹⁾ If $A \subset X$ then X_A stands for the space such that every point of $X \setminus A$ is isolated and the base at $x \in A$ in X_A is the same as in X.

⁽¹²⁾ P stands for the set of irrational numbers which is topologically equal, as it is known, to the product NRo.