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A class of spaces whose Cartesian product
with every hereditarily Lindelof space is
Lindelof -

by

K. Alster (Warszawa)

Abstract, We prove that if X'is a Lindelof space such that each closed subspace F of X con-
tains a compact subset with non-empty interior (with respect to F), then the product X¥°x ¥ is
Lindeldf for every hereditarily Lindelof space Y.

Introduction. A general question is to characterize the class % of all spaces
whose Cartesian product with every hereditarily Lindelof space is Lindeldf ®.
1t is well known that & is closed with respect to continuous images, perfect pre-
images and contains all separable metric spaces (see [E], Th. 3.8.6, Th. 3.8.8 and
Problem 4.5.16.d), in particular, as was noticed by Z. Frolik [F], &£ contains
Lindelsf spaces, complete in the sense of Cech, because they are perfect preimages
of separable metric spaces.

BE. Michael asked whether % is closed with respect to countable Cartesian
products ?

The main result of this paper is to prove that if X is a Lindeldf space such that
each closed subspace F of X contains a compact subset with non-empty interior
{with respect to F), then the product ¥'x X* is Lindelof for every hereditarily
Lindelsf space ¥ (?). This result exhibits a rather wide subclass of %, closed under
countable products, including, as was noticed in [AP], a class of function spaces A).

Methods applied in this paper are related to [A].

() From an example obtained by B, Michael (IM1, Bx. 1.2), for some details see Remark 1,
it follows that it is not reasonable to ask a similar question for the class of all Lindelsf spaces .
whose product with every Lindeldf space is Lindeldf.

® R. Telgarsky noticed that X belongs to & [T1.

(%) In [AP] it was proved thatif X'is a compact subspace of the Z-product of m copies of the
1eal line, for a cardinal ™ and R is the real line then the fanction space C(K, R).endowed with™
the pointwise topology is a continuous image of a closed subspace of X¥o, where X is a Lindel8f
space having only one non-isolated point, .
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Terminology and notation. Our topological terminology follows [E].
Let us recall that X is a P-space if every Gj-subset of X is open.

We say that U is a basic open set in P Xj, ifit is of the following form
t=1

U= PU,x P X;, where U, is open in X;.

= i=n+1

ilfl% is ;’;amily of subsets of X then #* denotes the family of all finite unions of
elements of %.

We write U<¥" if % refines ¥

Put X = X = X Denote by X® (X)) the set of all non-isolated points
of X (of all points of X at which X is not locally compact)(*). Put
X9 = () {XP: p<a} (XP = (V{XP: p<a}),ifa is a limit ordinal number and
XD = (xEy® petd) - x@ 1) (of [S]). One can prove by means of some stan-
dard reasoning, that X*is a scattered space (*) (each closed subspace F of X contains
a compact subset with non-empty interior, with respect to F) if and only if there
exists o such that X = @ (X = @) (see [S]).

The symbol L(x,) stands for a space of cardinality 8, and having only one non
isolated point p such that pe UcL(s,) is open, if |L(xI\U|<8, ().

Auxiliary constructions. If X is a zero-dimensional space such that each closed
subspace F of X contains a compact subset with non-empty interior (with respect
to F) then a(x) denotes the ordinal number and U, an open and closed neigbourhood

. of x such that x € XEPNXEOD and F, = U, n X is compact. Notice that
if X is a Lindeldf space and U is a meighbourhood of F, then

(0) there are x,,x,,...€ X such that a(x,)<a(x) and
UNU{U,:n=1,2,.}cU.
Indeed, we can assume that U is open and closed so there are
Xgs Xy eres Ky oo € XX .

such that UNU<= U {U,,: n = 1,2,..}.
Fix for any such U a countable set A4,(U) consisting of points Xgy eony Xy oo
satisfying (0). By the definition of 4,(U) we have

(6Y) a()>a(a) for every a e A(U).
Main results

THeOREM 1. If X is' @ Lindeldf space such that each closed subspace F of X contains
@ compact subset with non-empty interior (with respect to F) and Y is such that
Yx(L(8)") is Lindelsf then YxX® is Lindelof.

TEEOREM 2. If X is a Lindeldf space such that each closed subspace F of X con-

" (9 Xis locally compact at x € X if them is a compact neighbourhood of x in X.
() Xis a scattered space if every closed subspace of X has an isolated point.
(*) The symbol |4| stands for the cardinality of A. g
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tains @ compact subset with non-empty interior (with respect to F) then the product
Y x X is Lindelof for every hereditarily Lindeldf space Y. :

The proof of Theorem 1 consists of two steps. In the first step we assign to an
arbitrary open cover % of ¥YxX® a scattered Lindelsf P-space Z of weight not
greater than &, in such a way that if ¥'xZ" is a Lindelsf space then % has a coun-
table refinement. In the second step we show that every Lindeldf, scattered, P-space Z
of weight not greater than §, can be embedded in L(x,)* as a closed subset.

We prove Theorem 2 by showing that ¥x (L (x,)*°) is Lindelsf for every heredi-
tarily Lindelsf space Y and applying Theorem 1 to the product ¥'x X®e,

Notice that without loss of generality we can regard X as a subset of the prod-
uct I™, where I is the unit interval and m a cardinal number. Let us take a con-
tinuous mapping f: D™ — I™ such that f(D™) = I", where D™ is a Cantor cube.
Put X’ = f~1X). It is easy to see that X" satisfies assumptions of the theorems,
is zero-dimensional and the product is ¥x X"* is Lindeldf if and only if ¥x X*°
is Lindeldf.
® In the sequel Y stands for a space such that ¥'x{L(x))*) is Lindeldf, X for
a zero-dimensional space satisfying the assumptions of the theorems and % for an
open cover of ¥x X%,

Step 1.

Lemma 1. If F = {F,: n=1,2,..} is a family of compact subsets of X then
there is a countable family ¥ consisting of basic open sets in Yx X* and r‘eﬁmng &d
such that if ()i is a sequence of natural mumbers and y € Y then there exists Ve ¥

o0

satigfying {y}x PF, V.
i=1

Proof. If {F,:n=1,2, ...} is a discrete family in X then the lemma holds .
because of the following facts: Y N¥o (7) is Lindelsf as a closed subs.et ’of
Y% (L(%,)"), a product of perfect mappings () is perfect and a perfect preimage

f a Lindelof space is Lindeldf. . )
° I 27? = {FP n=1,2,..} is not discrete in X then put X’ = XxN and

1 i "= {Flin=1,2,..}1Is discrete in X' so
F' = F. % {n}, for ne N. Notice that & {F, =1 n
t};‘ere is"s. Eugtable family ¥ for X’ and #'. Nov.v it is enough to t:fe V= n(;;)
= {n(V'): V' ey}, where n is a patural mapping from ¥'x(X")* onto ¥x.X™.

Lena 2. There dre a subset Aof X of cardinality not greater than s, and a cover v
of YxX* consisting of basic open sets such that »
(2) there is a countable subset Ay of A such that ) {Uy: x¢€ Ao} =X,

@) ¥ refines U* and VIS
() Jor every (a)y €A™ and y€ Y ther: are ¥V,
and VeV such that {y}x PFa= IZV,, and U {4, (V)i n=1,2,..}c4
=1 =

cY, V,cX, forn=1,2,..,

(see, Auxiliary constructions).

t of natural numbers. .
8 Z ::r;t;?nl:;.ﬂ;ie Yois perfect if it is closed and J/~%(») is compact, for y€ Y.
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Proof. For a<wy, we shall define 4, X and an open family of basic sets ¥7,
in ¥xX® such that
() U{Us: xed,} =X and |4,]<8,
(6) ¥, is defined as Lemma 1 says, for & = {F,: ac 4,},

(7) if a>0 then

A= U {4,: B<a}, if o is a limit ordinal number,
AU U {4 H): He#Hy,, xc g} if = f+1,

o0
where #y. = {H: Anz13V = PV,e ¥, and H = V,oF,}.
i=0

If « = 0 then there exists a countable set 4, in X such that J {U,: xe 4o} = X.
Let 77, be a family defined as (6) says. .
From (6) and (7) it follows how to define 4, and ¥, for a>0.

Notice that

o 0
® if {p}x PF,c PV,=Ve?¥,, where a;ed,, for i=1,2,.., then
i=1 i=0 .
FoucGuy = (UNU{U,: zeU {4, (H): He# )V, for i = 1,2, ...

Put 4 = {) {4,: a<w,}.
We shall show that

(® for every x e X there is y e 4 such that x () {Gy: ye4,}.

Suppose that (9) does not hold. There exists y, € 4, such that x e v,.If
Y15 -y ¥y are defined in such a way that {y,, ..., »,} =4, xe ) {Uyi=1,2,..,n}
" and a(y;)>a(y,)>...>a(,), then by the assumption %here is « such that Py € Ay,
x$G,,, and xe U, , so there exists y,4; € U {4, (H): He #,,} and xe U,...-
BY (7) Yns1 € Apsq and by (1) a(py41)<a(,). This way we would obtain an infinite
decreasing sequence of ordinals, a contradiction.

Put ¥ = |) {#,: a<w,}. Notice that (4) follows from (7) and (6). We shall
" finish the proof of Lemma 2 by showing that ¥ covers ¥ x X*°. Let (Vs X1, Xg, )
be an arbitrary point of Yx X™. By (9) there are Pis es Vus . €A such that

(10) X, €V {Gyy,: Yy} =G, .
Notice that {4,: <@} is an increasing family so there are y and Ve ¥ , such
0
that {»y, ..., %y, .-} =4, and {p}x PF, < V. By (8) and (10)
r=1
o0 [}
SR Xy ) € {3} X PG, e{y}x PG, =V,
n=1 n=1
LemMA 3. There is a scattered, Lindeldf, P-space Z of weight not greater than s,

such that if Yx2Z* is a Lindeldf space then ¥, see Lemma 2, has a countable re-
. finement, :

icm°®
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Proof. Let us order 4, see Lemma 2, in the type of w, and put
Z={(Py,..» B €N, By € A, (see(2)) and a(ap)>afag,, ), fori=1,2, ..., n-1}.
The base at the point z = (B, ..., B,) €Z consists of the sets of the form

(1) By@) = {01, s ) €2Z: m2n,y; = By, for i=1,2,..,m, and y,,,>7h
for y<w;.

Notice that |Z|<x; so by (11) we infer that the weight of Z is not greater
than R,.

If S=Z then z = (7, ..., ¥m) € S, with minimal «(a, ), is an isolated point
in S, therefore Z is a scattered space.

Z is a P-space by (11).

- Let us notice-that B,(z) is an open and closed subset of Z, for z€Z and y< ;.

If z=(py,..,7,) and a(a,) =0 then By(z) = {z}. Assume that By(z) is
a Lindelof space for every z = (3, ..., 7,) such that «(a,,)<f>0 and suppose that
a(a,) = p. If y is an arbitrary countable ordinal then By(z\B,(2) = U {By(z)):
where z; = (Y1, ., V45 B} for i=1,2, ... By the definition of Z a(ap) <a(a,) =
fori=1,2,..,so from the inductive assumption it follows that U {By(z9: i = 1,2, ...}
is Lindeldf and we conclude that By(z) is Lindeldf. Notice that Z = | {By(2): z € 4o}
therefore it is Lindeldf.

In order to finish the proof of the lemma it is enough to show that there exists
an open cover # of Y xZ* such that if 5 has a countable refinement than ¥
has also. ) )

T (Y, g5 s Ty o) = P E YXZ®, where z; = (¥, oo Py for i=1,2,..

then by (4) there is ¥ (p) = PV, (p)e¥ such that {J)}X.IZF‘TL lc:V(_p). Put
. n=0 i=

. Z, if Vip) = X,
(12) HV(p)) =1{Vo, ifi=0, - :
B,(z)), where y = sup{f: a5 eA,,1:" .(V‘( p))}+1, otherwise,

H(V(p) =x§oH‘(V(p)) aﬁd # = {H(V(p): pe Y=2*}. Notice that H(V(p))

is an open neighbourhood of p so # covers Y zre, .
Let us attach to x € X an element (B;(x), ., Pacy(¥)) = 2(x) € Z in such a way
that 8, (x) is the first number of 4, such that xeU, e If B1(X), ..., Bi(x) are defined

then B, ;(x) is the first ordinal number such that xelU,, . ., and tit(ap,m(x))<_“(%,\('x))»

We continue the induction as long as it is possible.
We shall show that .

13 I (Bu3)s o Bin() € V(7)) for pe Yx2Z%-and i1 then xe Vi(p)
where V(p) =.P V,(p) i '
n*0- :
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X. If H(V(p)) =
Zy = (V'I,

If H(V(p)) = Z then ¥i(p) = B,(z;), where

D= (¥sZ15 0ees Zny )y ’ 7::,.)

and y = sup{f: 4, ‘—:Aay; l(Vi(!7))}"‘ 1 then

Vip)=Uay ‘\U {U.: ze An,gm(Ve(P))}
(14) SUsy \U {U,,: B<y, where a(ag)<a(a,)}.

From (11) and (13) it follows that n(x)=m,, y:,., = B X)s0x € U, ey and

that 71(x) = m; ot y< By 41 (). By the definition of (B1(x), ) Buy(¥)) We infer that
x¢{U,,: B<y, where a(ag)<u(ay )} and finally we obtain x & V).
From (13) it follows that if U {H(V(p)): i=1,2,..} = YxZ* then
U{r): i=1,2,..} = YxX™.

Step 2.

Lemma 4. If Z is a scattered, Lindeldf, P-space such that weight of Z is not
greater than %, then Z can be embedded in L(x,)* as a closed subset.

Proof. If Z") = & then the lcmma is trivial. Let us assume that the lemma holds
for every f<o such that Z# =

Suppose that Z® = @. If ¢ is a a limit number then Z = U{Z:n=1,2,.}
where Z4,Z,, ... are pairwise disjoint open and closed subsets of Z such that
Z# = g and B,<o, for n = 1,2, .. From the inductive assumption it follows that
forn=1,2, .. thereisan embeddmg h, of Z, onto a closed subset of {rn} x (L (#,)*°).
Put h(z) = h,,(z), if zeZ,. Then h is a desired embedding.

Let us identify the set of all isolated points of L(%,) with the set of countable
ordinal numbers and let p be the unique non-isolated point of L(y).

Now let us consider the case & = f--1. Then Z® = {z,: n = 1,2, ...} and there
is a family {Z,: n = 1,2, ...} consisting of pairwise disjoint, open and closed sets
covering Z and such that Z, n Z® = {z,}. Let {V,,: y<w,} be a decreasing open
and closed base at z,. Put Z,, = Z\V,o and Z,, = (V,\NVay41) 0 Z,, for ne N
and y<wo;. By the inductive assumption, for n& N and y<w,, there is an embed-
ding h,, of Z,, onto a closed subset {n} x {y} X Y%, where Y, = {x e L(x)): x =p

or x>y} Put
_|@,p,.,p,.), ifz=1z,,
M”‘{m@y if 762,

It is easy to see that h is an embedding of Z in (L(,))*. Let
¥ = 15 s Vur ) €L(%))"NA(X) .
Put
ify,é{mn=1,2.1},
ify, =7y,

ni_ l(yl)v
U1 =T 1(7)\hn7(zny)»
fy,=pandy =y,

n ) n ";1(Y7+1)»

icm
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where 7, is the projection of L(x,)* onto the ith coordinate. U, is an open neigh-
bourhood of y disjoint with 2(X) so A(X) is a closed subset of L(s)".

Proof of Theorem 1. Theorem 1 follows from Lemmas 1, 2, 3 and 4.

The next lemma, which will complete the proof of Theorem 2; was proved
in [AP]. We give a sketch of the proof of it for the sake of completeness.

Lemma 5. If Y is a hereditarily Lindeldf space then the product ¥x (L(s)*) is
a Lindeléf space.

Proof. Put X, = L(,), for n = 1,2, ... Let p, be the projection of ¥x P X;
=1

onto Y'x PX, and p, the projection of ¥ >< P X, onto Y.
=1
The weight of P X, is not greater than &, ¥ is a hereditarily Lindelof space,
n=1
©
so every open cover of ¥x P X, has a refinement of cardinality not greater than .

n=1
In order to finish the proof of the lemma it is enough to show that every uncountable
]

subset 4 of ¥x P X, has a point of condensation (°).
n=1

Case 1. There is y € ¥ such that |py () n A|>8,. Then there exists a point
of condensation, by a Noble’s result [N], which says that a countable Cartesian
product of Lindelsf, P-spaces is a Lindelof space.

Case 2. Let us assume that for every y e ¥ |pg *(¥) n A|<8,. Without loss of
generality we can assume that ‘

(15) 4d={@y,a)yeYand aePX,)} and a #a,ify#y.
n=1

For every neN and (x(1), ...,

16) W= X if i>n or x@) =p,
* 7 U{x(@)} otherwise,

x(m) =xe Iu’Xi put
=1

W, =PWwW,

i=1

and
an A, ={yeY: a,eW, and r, e ¥x PX- is a condensation point
‘ of p.(A)}

‘(" A point x of X is called a condensation point of a set A < Xif wery ne:ahbom'hood of x
<ontains uncountably many points of 4.
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Notice, that

n m
(18) - if isn<m, xe PX;, ¥ e PX;, A, n Ay # @ and x(i) # p # x'(f) then
i=1 i=1
x(@) = x'(),
as in the opposite case we would have W, n W, = @.

We shall prove that

L)
(19) if T<Y is uncountable and n €N, then there exists x € P X; such that
LES
A, nT+# 9.

Let H={afn: teT}c PX;, where a = (a(1),a(2),.) and gln
i=1"

= (1), .., am). I H is a countable set then there is xe P X, such
i=1
that S = {teT: 4| n = x} is uncountable. Without loss of generality we can

assume that S is locally uncountable (*°), Notice, that S’ 4,. If H is unconntable
. n
then there is x € _I: X which is a point of condensation of H. X is a P-space and the

weight of it is not greater than Ry 50 there is an uncountable subset H' of H such
that for every neighbourhood U of x |H'\U|<®,, We can assume that
{#: 4] ne H'}<T is locally uncountable. It is easy to see that ScA,.

» . )
By (19) we infer, that for n e N, | Y\U {4,: % € P X;}| <#,. Yis an uncountable
i=1
i
set so there is ye ¥ and x;€ PX;, for i =1, 2, ..., such that
=1 '

(20) yeN{d,: i=1,2,.}.
From (18) it follows that there exist cl‘, 3, ... such that for ne N

Q1) if i<n then x,() ='c; or x,3i) = p.

0 g kel
The space C given by C=11"1 {p,¢;} is a compact subset of PX,. Put
- im1

X)) = x,(), ?f ignhand X,(i) = p for i>n. Notice that X, € C, for n e N, so there is
an accumulatl?n point ¢ of (%,)7=1. We shall show that (3, ¢) is a point of conden-
» [

sation of A. Indeed, if U= Uy x P U;x P X, is a neighbourhood of (7, ¢) then
h :

. , . Co i=1 i =n +
'there exists #>n such that %, € U. From %’ = x,,, (20) and the definition of 4,_,
it follows that 4 n U is an uncountable set. )

X . . . . ) N
.o“m(:;)h is locally uncountable if for every x€ X an arbitrary neighbourhood of x ‘is un-

A class of spaces whose Cartesian prodiict

Remark 1. E. Michael proved ({M], Ex. 1.2), that, under Continuum Hypothesis,.
there is an uncountable subset K of the real line containing the set Q of rational num-
bers such that Ky (') is Lindeldf but Koyx P (*?) is not, so it is not enough to assume,
in Theorem 2, that Y is only a Lindeléf space.

Notice that the set of non-isolated points of K, is equal to Q, so it is:
metric and countable.

Remark 2. If Z is an element of & and A its Lindelif subset then A does not
have to belong to £. Indeed, it is enough to observe that K, can be embedded in
L{x)". :

Remark 3. Let € be a minimal class of spaces satisfying the following conditions:

(a) if X ts Lindeldf and satisfies the assumptions of theorems then X e €.

®) if Xy, X,5,...€€ then X, and P X, belong to €.
n=1 n=1

() Xe¥€ and F is a closed subset of X then Fe 6.
(d) Y &% then every perfect preimage and continuous image of Y belongs to 6.
One can prove that ¥ contains €.

Added in proof. Recently I have proved that under the assumption of an existence of an
uncountable coanalytic set of reals without uncountable compact subsets (in Gdodel’s con~
structible universum such a set exists, K. Gédel and P. S. Novikov) there exists a separable
metric space M and a Lindeldf space X such that for every hereditarily Lindel6f space Y and
every patural number n the products ¥x X" and X¥ are Lindelof but Mx X® is not Lin-
deldf.
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() If A < X then X stands for the space such that every point of X\A is isolated and the

base at x€ .4 in Xy is the same as in X. L )
() P stands for the set of irrational numbers which is topologi

to the product N&o,

cally equal, as it i3 known,
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