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by
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Absiract. A metrizable space X is a MANR -space [3] if and only if all components of X are
MANR-spaces open in X. For two MANR -spaces having the same shape in the sense of Fox [4]
there exists one-to-one correspondence between components of these spaces such that correspond-
ing components have the same shape.

The notion of MANR -space introduced by the author in [5] and studied-in [6]
and {7] is a generalization of the notion of FANR-space introduced and studied
by K. Borsuk in [3]. In the case of compacta these notions coincide ([5], p. 62).
In [3] K. Borsuk proved that components of a FANR-space X are FANR-spaces
open in X. In this paper we obtain analogous result for components of
MANR -spaces. In [2] K. Borsuk has proved that for compacta having the same
shape there exists one-to-one correspondence between components of these com-
pacta such that corresponding components have the same shape. It is not known if
it is true for arbitrary metrizable spaces when we consider shape in the sense of
Fox [4]. In this paper we obtain the analogous result for MANR-spaces.

§ 1. Shape in the sense of Fox and connectivity. First, let us recall the basic no-
tions of Fox shape theory [4].

Let X be a closed subset of an ANR(U)-space P. The family U(X, P) of all
open neighborhoods of X in P is called the complete neighborhood system of X in P.

Consider two arbitrary complete neighborhood systems U(X, P) and V(Y, Q).
A nutation f: U(X, P) — V(Y, Q) is defined as a collection of maps f: U—> v,
where Ue U(X, P), Ve V(Y, Q) such that

(1.L) Xfefif: UV, U eUX,P),U'cU VeV eV(Y,Q,andf: U - ¥V’
is defined by f'(x) = f(x) for xe U’, then f'€f;
(1.2)  Every neighborhood Ve P(¥, Q) is the range of a map fef;
(L.3) Iffy,foefand fi,f,: U=V, then there exists U’ e U(X, P) such that
U'cU and f{|U'=f,|U".
It is easy to see that the condition (1.3) may be replaced by the following con-
dition
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(1.3) X f,fref and fi: Uy~ V; for i = 1,2 then there exists U’ e U(X, P)
such that U'cU; n U, and fi|U'~f,|U" in VU V,.

Consider two mutations f: U(X, P) - ¥ (Y, Q) and g: V(Y, Q) > W(Z, R).
The composition gf: U(X,P) — W(Z, R) of the mutations f and g is the collec-
tion of all compositions gf such that fef, g e g, and gf is defined.

For any complete neighborhood system U(X, P) the collection u of all inclusions
u: U' - U, where U, U'e U(X,P) and U’'<U, is a mutation from U(X,P) to
itself. It is called the identity mutation for the system U(X, P), because uf = f and
gu = g whenever the compositions uf and gu are defined.

Two mutations f, g: U(X, P) — ¥ (¥, Q) are homotopic (notation f~g) if

(1.4)  For every fef and g eg such that f,g: U ¥ there exists U’ e U(X, P)
such that U'cU and f|U’'~g|U".

By the Kuratowski-Wojdystawski theorem ([11, p. 78) any metrizable spacé X
may be considered as a closed subset of an ANR (I)-space P,

Two metrizable spaces X and Y are said to be of the same shape in the sense
of Fox (notation ShX = Sh ¥) if there exist two mutations f: UX,P)— V(Y, Q)
and g: V(¥, O) - U(X, P) such that

(L.5) Sg~v and gfe~u, -

where # and v are identity mutations for the systems U(X, P) and V(¥, Q), respect-
ively. By Theorem (3.2) of [4] the choice of ANR (?)-spaces P, O and the manner
of imbedding of X and ¥in P ana Q, respectively, is immaterial. If the mutations f
and g satisfy the first of conditions (1.5) then we say that the shape of X (in the sense
of Fox) dominates the shape of ¥ (notation ShX>Sh Y).

Let us prove the following

(1.6) THEOREM. If X is a connected metrizable space and ShX=8hY, then Y is
connected, i.e. connectivity is a hereditary shape invariant.

Proof. By the hypothesis there exist two mutations [ UX,P)-»V(Y, Q)
and g: ¥(Y, Q) — U(X, P) such that fg=vv. Let us observe that

(L.7)  For every neighborhood Ue U(X, P) there exists a connected neighborhood
U'e U(X, P) contained in U.

Indeed, by the theorem of Hanner ([1], p. 96) Ue ANR(M) and hence it is
locally com-mcted. Therefore for every x e X there exists a connected neighborhood U,
of x contained in U. Setting U’ = {J U, we get the required neighborhood.

xeX

Suppose, to the contrary, that ¥ is not connected. Then ¥ = Y, 1 U Y, where Y,
a,nd‘ Y, are non-empty, disjoint sets, closed in' ¥, and hence closed in Q. By the nor-
mality of Q there exist disjoint neighborhoods Vyand ¥V, of ¥, and 'Y,, respectively.
Let us set ¥V = ¥; U ¥,. Obviously Ve V(Y, Q). By (1.2) there exists fef such
that f: U ~ ¥. By (1.1) and (1.7) We can assume that the neighborhood U is con-
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nected. By (1.2) there exists g € g such that g: ¥’ — U, and by (1.1) we can assume
that ¥'<V. Consider the inclusion v: ¥’ — ¥, vev. Since fg=v, then by (1.4)
for sufficiently small neighborhood ¥’ we have fg~v: V' — V. So, we have

YiuY,=YcV'eV=V,u¥V, and YV, for i=1,2.

Let us set

Vi=V'nV, for i=1,2.

Consider the maps f: U — ¥V, UV, and g: V; U V] = U. Since U is connected
and ¥V, and ¥, are disjoint neighborhoods, then f(U)<¥; or f(U)<¥,. Suppose
f(U)<V,. Then fg(V{ v V3)cV,. Since vefg, then v(Viu V)<V, but it is
not possible because v(¥3)< V..

Thus, the proof is finished.

(1.8) CoroLLARY. If X is a connected metrizable space and ShX = Sh Y, then ¥
is connected, i.e. connectivity is shape invariant.

§ 2. MAR and MANR-spaces. Let us recall some notions introduced in [5]
and studied in [6] and [7].

Let X be a closed subset of a metrizable space X considered as a closed subset
of an ANR (M)-space P. A mutation r: U'(X’, P) — U(X, P)is called a mutational
retraction ([5], p. 52) if r(x) = x for every r er and every x € X. A closed subset X
of a metrizable space X is called a mutational retract ([5], p. 53) of X if there exists
a mutational retraction r: U'(X’, P) » U(X, P). A metrizable space X is called '
a mutational absolute retract (shortly MAR, [5], p. 57) if for every metrizable space X’
containing X as a closed subset, the set X is a mutational retract of X”. A closed sub~
set X of a metrizable space X’ is called a mutational neighborhood retract (I5], p. 56)
of X" if there exists a closed neighborhood W of X in X such that X is a mutational
retract of W. A metrizable space X is said to be a mutational absolute neighborhood

_retract (shortly MANR, [5], p. 57) if for every metrizable space X containing X as

a closed subset, the set X is a mutational neighborhood retract of X'. By the trivial
shape we mean the shape of a space consisting of one point.

In [6] (Theorem (3.5), p. 90) we have proved the following

(2.1) THEOREM. A metrizable space X is a MAR-~space if and only if the shape
ShX is trivial.

From Corollary (1.8) and Theorem (2.1) we obtain the following

(2.2) COROLLARY. MAR -spaces are connected.

§ 3. Some properties of components of MANR -spaces. The notions of MAR.
and MANR-space are generalizations of the notions of FAR and FANR-space,
respectively, introduced by K. Borsuk [3]. In the case of compacta these notions
coincide ([5], (4.2), (4.4), (5.8), pp. 57, 62). K. Borsuk has proved ([2], p. 193) that
components of a FANR-space X are FANR -spaces open in X. So, it is natural to
consider the following
1°


GUEST


4 S. Godlewski

(3.1) QuesTion. Is it true that cvery component of a MANR-space X is
a MANR-space open in X?

We are going to get a positive answer for Question (3.1). First let us prove
the following

(3.2) TueoreM. If X is a mutational retract of an ANR (M)-space P, then cvery
component of X is a mutational refract of a component of P.

Proof. Take an arbitrary component X, of X. Let P, be a component of £
containing the component Xy: By the hybothesis there exists a mutational retraction
r: W(P,P)— U(X,P). Since Pe ANR(M), then P, is open in P and hence
Py, € ANR(M). Since the set X is closed in.P, then X' N Py is closed in P,. So, we can
copsider complete neighborhood systems Wo(Pg, Py) and Uy(X n Py, Py). Let us
construct a mutational retraction ry: Wo(Py, Po) — Up(X N Py, Py).

Take an arbitraryrer,ri P — U, Ue U(X, P). Then U n Py e Uy(X N Py, Py).
Let us show that r(Po)<U n Py. Since r(Poycr(P)c U, it suffices to show that
r(Po) <Py, and since P, is a component of 2 and r(P,) is connected, if suffices to
show that r(Pg) N P, # @. Take an arbitrary point x e X,. Then x e Py, and
x =r(x)er(Py). Hence x&Py nr(Py). Thus, we have r(Po)cUn Py. Let us
define a map ry: Py — Un Py by the formula ro(x) = r(x) for every x e Py,

So, to every » € r we have assigned a map r,. Let us denote by r, the collection
of all maps 7, which can be obtained in such a way. Let us show that ry: Wo(Py, Py)
— Uy(X ~ Py, Py) is a mutational retraction.

For an arbitrary point x € X n Py we have ro(x) = r(x) = x,. because rer.
It remains to show that r, is a mutation. We are going to werify the conditions
(1.1)-(1.3).

Take an arbitrary ryery, ro: Py = Uy. Take Uje Uy(X 0 Py, Py) such that
U,=U, and consider the map rq: Py — Uy defined by ro(x) = rg(x) for x € Py,
We must show that rg € rg.

By the definition of r, there exists rer such that r: P — U, Un Py = U,
and ro(x) = r(x) for x e Pg. Then U n Py Ug. Let U’ = U u (P\P,). The set U’
is open in P and it contains the set. X. Hence U’ € U(X, P). Moreover Uc U’. Let
us define a map r": P — U’ by the formula r'(x) = r(x) for x e P. Since r is a mu-
tation, r’er. Let us observe that U’ n P, = U, and for arbitrary x € P, we have
ro(X) = ro(x) = r(x) = r'(x). Therefore r§ e r,. Thus, the condition (1.1) is verified.

Let us verify the condition (1.2). Take an arbitrary neighborhood
Up € Up(X n Py, Py). Letusset U = Uy U (PNP,). Obviously U e U(X, P). Since r is
a mutation, there exists » € ¥ such that r: P — U. By the definition of r, there exists
ro€rg such that ry: Py — Un Py But Un Py = Uy, hence ry: Py — Uy, Thus,
the condition (1.2) is satisfied.

Let us verify the condition (1.3). Take two arbitrary maps rq, r§ €, such that
Yo, ¥t Po—. U, We must show that 7o~ rg. By the definition of rg there exist maps
r,r'ersuchthati: P — Upr: P—>US U, U e UX, P),UNPy = U' APy = Uy,
and ro(x) = r(x), ro(x) = r'(x) for x € P,. Since r is a mutation, then rar! in U U U,
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Therefore, there exists a homotopy H: Px<0,1> - U u U’ such that
H(x,0) =r(x)  and HE,1)=r'(x) for xeP.

We are going to show that H(Pyx{0,1))cU,. First, let us show that
H(Py %<0, 1) =P,. Since H (Pyx<0,1)) is a connected set lying in P and P, is
a component of P, it suffices to show that H(P, %<0, 1>) N P, # &. Take an arbi-
trary point x € X,. Then H(x,0) = r(x) = xe X, <P, and

H(x,0)e H(X, X<0, D)= H(Pyx<0, 1)) .
Hence H(x,0)e H(P;x<0, 1) n P,. Therefore H(P, %<0, 1))<=P,. Thus
HPyx0, )Py n(UuU)=FPenU)uPonU)=U,.
Let us define a map Hy: Pyx{0,1) — U, by the formula
Hy(x,t) = H(x,t) for xeP,, 0<t<]1.
For every x € P, we have

Hy(x,0) = H(x,0) = r(x) = ro(x) and Hy(x, 1) = H(x, 1) = r'(x) = r§(x).

Therefore H, is a homotopy joining r, and rg, thus ro=rj, and the condition (1.3)
is verified.

Thus, r, is 2 mutational retraction, and the set X n P, is a mutational retract
of Py. Hence, by Corollary (3.13) of [5] (p. 55) ShPy,>ShX n P, Hence, by
Theorem (1.6) the set X n P, is connected. Let us observe that Xo=X N Py X,
Therefore, the set X n P, is a connected set lying in X and containing the com-
ponent Xy of X. Hence X n P, = X,,.

Thus, X, is a mutational retract of P, and the proof is ﬁmshcd

In [5] (p. 59, Theorem (4.11)) we have proved the following

(3.3) THEOREM. MANR-spaces are the same as mutational retracts of
ANR (M) -spaces.

From Theorems (3.2) and (3.3) we obtain the following

(3.4) CorOLLARY. Every component of @ MANR -spaces is a MANR-space.

Proof. Take an arbitrary MANR-space X and let X, be a component of X.
By (3.3) X is a mutational retract of an ANR (M)-space P. By (3.2) X, is a muta-
tional retract of a component !, of P, and since P, e ANR(M), then by (3.3)
Xo € MANR.

(3.5) ToeOREM. Components of MANR-space X are open in X.

Proof. Let X, be a component of a MANR-space X. By Theorem (3.3) there
exists an ANR (I)-space P such that X is a mutational retract of P. By Theorem (3.2)
the component X, is a mutational retract of a component Py of P. Then P, N X= Xy,
Since P, is open in P, then X, is open in X. ’

(3.6) CoroLLARY. Every component of a MANR-space X is a retract of X.
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Dr J. Oledzki and Mr W. Matuszewski independently obtained the following

(3.7) Turorem. If X is a mutational retract of X' and X € MANR then every
component of X is a mutational retract of a component of X'.

Proof. Take an arbitrary component X, of X. By (3.6) X, is a retract of X
and since X is a mutational retract of X, then X, is a mutational retract of X',
and hence X, is a mutational retract of X3, where Xj is a component of X contain-
ing X,.-

(3.8) ProBLEM. Does Theorem (3.7) remain true without the hypothesis
X e MANR?

In [5] (Theorem (4.13), p. 59) we have proved the following

(3.9) TueoreM. If X, are MANR-spaces for every teT, then @ X, is

teT
a MANR-space.

The converse is also frue, because X, is a retract of @ X, if and hence
teT

@ X,e MANR then by Theorem. (4.12) of [5] (p. 59) we have X, e MANR. There-

taT
fore, we get the following

(3.10) CorOLLARY. @ X, is a MANR -space if and only if X, is a MANR -space
teT :
for every teT.
From Theorem (3.5) and Corollary (3.10) we obtain the following
(3.11) COROLLARY. A metrizable space X is a MANR -space if and only if all
components of X are MANR-spaces open in X.

§ 4. Components of MANR-spaces having comparable shapes. Following
K. Borsuk ([2], p- 17) let us denote by [1(X) the set of all components of a space X.

K. Borsuk has proved ([2], pp. 215, 216) that

4.1) If X and Y are metric compacta of the same shape then there exists one-
to-one corespondence A: [1(X) — [1(Y) such that for every component X, € [1(X)
we have ShA(X,) = ShX,.

(42) If X and Y are metric compacta such that ShX>ShY then there exist
Junctions A: C1(X) - 1(Y) and A': I(Y) » O(X) such that the composition AA’
is the identity function on (1(Y) and then for every component Y, e [1(Y) we have
ShA'(Y,)>Sh ¥,.

(4.3) ProBLEM. Do the results (4.1) and (4.2) remain true for arbitrary metri-
zable spaces X and ¥, where Sh denote the shape in the sense of Fox?

We are going to show that for MANR -spaces the answer for Problem (4.3)
is “yes”.

Let us observe that

(4.4) For every MANR -space X there exists an ANR (I)-space P such that X
is a mutational retract of P and every component of P contains exactly one com-
ponent of X.
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Indeed, by Theorem (4.11) of [5] (p. 59) there exists an ANR (M)-space @ such
that X is a mutational retract of Q. The set P being the union of all components
of Q intersecting X satisfies the required conditions.

Suppose Xo,cX<P; XocoPocP; Yoc¥YcQ; YocQ,cQ; P, Q,P,, Qo
€ ANR(); X and X, are closed in P; ¥ and Y, are closed in Q. Consider two
mutations f: U(X,P) = V(Y, Q) and fy: U,(Xy, Po) = Vo(¥,, Op). We say
that f, is a submutation of f if for every f, e f, there exists f' f such that the domain
of fo is a subset of the domain of f, the range of f; is an intersection of the range
of f with @, and f,(x) = f (x) for every x belonging to the domain of .

(4.5) LemMA. Suppose P, Q e ANR(R), X and Y are closed subsets of P and Q,
respectively, and every component of P (of Q) contains exactly one component of X
(of Y). Let f: U(X, P) - V(¥, Q) be a mutation. Then there exists exactly one func-
tion Ag: [1(X) — (YY) such that for every component Xy e X there exists a sub-
mutation fy: Uy(Xy, Po) = Vy(dsy(Xo), Qo). where P, and Qy are components
of P and Q containing X, and Ag(X,), respectively.

Proof. Take an arbitrary component X, € [1(X) and arbitrary f e f. Then there
exists exactly one component Q, € [1(Q) such that f(Xp)=Q,. Since f is a mu-
tation, then by (1.1) and (1.3) the choice of O, does not depend of the choice of f.
By the hypothesis the component Q, contains exactly one component ¥, & Ij(Y).
Let us set 47(X;) = ¥,. So, we have defined the function A,: [1(X) - O(¥).

Let us define a mutation fo: Uy(Xo, Po) ~ Fo(A(Xo), Qo). Take an arbitrary
fef, f: U= V. Then

FWUAP)=V N Qy, UnPoeUp(Xo,Po), Vi QoeVo(A;Xo), Qo)
Let us define a map f,: Un Py, = V'~ Qp by the formula
' Jo(x) = f()
Let us denote by f; the collection of all maps f, which can be obtained in such a way.
Let us show that fo: Uy(Xy, Po), Vo(As(Xo), Qo) is a mutation.

Let us verify the condition (1.1). Take an atbitrary f, €f,, fo: Uy = Vo. Let
Us € U(X,y, Po), Ug=Us, Vi & Vo(A5(Xo), Qo) Vo= V. Let us define f§: Up — V3
by f5(*) = fo(x) for x € Uj. By the definition of f, there exists f € fsuch that f: U ~ ¥,
where UnPy =Ty, Vv Qo =V, Let us set U = Uju (Un(P\Py)) and
V' = V5 U V. Let us define a map f': U’ — V' by the formula f'(x) = f () for
xe U'. Since f is a mutation, then f” €f. Let us observe that U’ n P, = U, and
V' 0 Qg = ¥,. Applying the definition of f, to the map f’ we get the map f;. There-
fore, f; €fp and the condition (1.1) is satisfied.

Let us verify the condition (1.2). Take an arbitrary ¥, € V,(44(Xo), Qo). Let
us set V=V, U (O\Q,). Then Ve F(Y, Q). Since f is a mutation, there exists
fef such that f: U— V. Let us set Uy=UnUP, and let us observe that
V' 1 Qg = Vy. Consider the map fy: U, = V, defined by f,(x) = f(x) for x e U,.
By the definition of f, we have f, € f,. Therefore, the condition (1.2) is satisfied.

Let us verify the condition (1.3). Take arbitrary two maps fo;,fos €fp such

for every xe Un Py.
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that fo1,/foz: Up = Vo. Then there exist Uy, U,e U(X,P), Vi, VoeV(Y, Q)
such that Uy " Py = Uy, n Py = Uy, Vi1 Qg = Vo Qg =V, and there exist
maps fi, /2 €f, i1 Ui = V; for i = 1,2, such that fy,(x) = fi(x) for x € U,. Since f
is a mutation, then by (1.3") there exists U’ e U(X, P) such that U'cU; n U, and
filU'=f|U" in Vy UV, Let us set Uy = U’ nP,. Then U e Uy(X,, Py) and
Jo1lUs=foa|Ug in V,. Therefore, the condition (1.3) is satisfied.
Thus, fo: Us(Xo, Po) = Vo(Ap(Xo), Qo) is a mutation. It is evident that £, is
a submutation of f.
It is obvious that the function A,: [1(X) — [CI(Y) satisfying the required con-
dition is unique. Thus, the proof is finished.
It is easy to see that under the hypotheses of Lemma (4.5) the following con-
ditions are satisfied.
4.6) If f~g: UX,P)=> V(Y,Q), then Ay =A,;: (X)) =0O(Y) and for
every component X, € [1X the submutations f, and g, are homotopic.
@D If UX,PY->V(Y, Q) and g: V(Y, Q) > W(Z, R), then Agy = A, 4.
_(4.8) If u is the identity mutation for the system U(X, P) then 4,: T1(X) —» O(X)
is the identity function.
(4.9) TreoreM. If X e MANR and ShX>ShY, then there exist functions
A: X)) —» (Y) and A': [O(Y) = O(X) such that the composition AA' is the
identity function on [1(Y) and ShA'(Y,)=Sh Y, for évery component Y, e [(Y).
Proof. Since X € MANR and ShX>Sh Y then by Theorem (4.5) of [6] (p. 92)
we have Y& MANR. By (4.4) there exist ANR(®?)-spaces P and Q containing X
and 7Y, respectively, and satisfying the hypotheses of Lemma (4.5). Since ShX>Sh ¥,
then there exist mutations f: U(X,P) —»-F(Y, Q) and g: V(Y, @) — U(X,P)
such that fy=~v. By Lemma (4.5) there exist functions Ay: [J(X) — [J(Y) and
Ag: O(Y) —» O(X) sytisfying the thesis of Lemma (4.5). Let us set 4 = Ay and
A" = A,. It follows by (4.6)-(4.8) that the functions A and A’ satisfy the required
conditions. Thus, the proof is finished.
Analogously we can prove the following

(4.10) THEOREM. If ¥ € MANR and ShX = ShY, then there exists one-to-one
Junction A: [0(X) — [O(Y) such that ShX, = ShA(X,) for every component
Xo e O(X).
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