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Ultraproducts of L,-predual spaces
« ) by

S. Heinrich (Berlin)

Abstract. It is shown that certain classes of Banach spaces whose duals are L,-spaces behave
well with respect to Banach ultraproducts and ultrapowers. In particular, a problem of Henson
is solved: If some ultrapower of a Banach space Eis a C(K%&space, then Eitself is a C(K)-space.
Combining the results with facts from model theory of Banach spaces, we get that some classes
of L,-preduals admit characterizations by elementary formulas,

Introduction. Ultraproducts turned out to be a useful tool in the local theory of

" Banach spaces. A central question arising in this framework is whether given classes

of Banach spaces are closed under ultraproducts (or at least under ultrapowers).
In connection with the further development of model-theoretic methods in Banach
space theory, a converse question became significant, too: If an ultrapower of
a Banach space belongs to a given class, does then the space itself belong to this class?
It follows from results of Henson, Moore [6], Krivine [8], and Stern [19] that the
class of L,-spaces (1<p<co) as well as the class of all Li-preduals satisfy both
conditions.

In this paper we examine the main special classes of L,-preduals [12] from this
point of view. While the (affirmative) answer to the first question is in most cases
easily obtained, the converse question turns out to be more difficult and the situ-
ation looks more mixed. We prove that the converse question has a positive answer
for the classes of C(K)-spaces (solving a problem posed by Henson [5]), Cs(K)-,
C,(K)- and G-spaces. Furthermore, we give an example which shows that for
A(S)- and 4,(S)-spaces the answer is negative. -

Our results have some consequences of model-theoretic type such as the existence
of a characterizing set of elementary formulas (i. e. norm-inequalities involving a finite
number of elements) for C(K)-, C,(K)- and G-spaces. Questions like this were
previously considered by Dacunha—Castelle, Krivine [1], [8], and Stern [19], who
gave explicit characterizations by formulas of L,-spaces and related structures. We
also obtain that for the classes of C(K)-, Cy(K)-, C,(K)- and G-spaces a theorem
of Lowenheim-Skolem type is valid. . !

Section 1 has *preliminary character. We give there a brief exposition of the
motivating facts from model theory of Banach spaces, due to Henson [5]. In Sec-
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tion 2, which contains the main results, we use geometrical methods. We carry out
an analysis of the extreme point structure in ultraproducts and apply characterizations
of L;-preduals due to Lindenstrauss and Wulbert [13], [14].

1. Preliminaries. Model-theoretic aspects. Throughout the paper we consider
real Banach spaces only. When speaking of a class of Banach spaces we always mean
a class which is closed under isometries. The unit ball of a Banach space E is denoted
by By, the dual space of £ by E’. A Banach space E is called an L;~predual space
if E' is isometric to some L, (). We shall consider the following classes of L, -preduals
whose definition we recall from [12]:

C(K)-spaces: The spaces of continuous functions on compact Hausdorff
spaces K.

Co(K)-spaces: The spaces of continuous functions on compact Hausdorff
spaces K which vanish at a given point of K or, equivalently, the spaces of con-
tinuous functions on locally compact spaces which vanish at infinity.

C,(K)-spaces: The spaces ofpall continuous functions x (¢) on compact Hausdorff
spaces K which satisfy x(ot) = —x(t) for all e K, where 0: K— K is a homeo-
morphism with ¢? = identity.

C3(K)-spaces: Those C,(K)-spaces for which the homeomorphism is fixed
point free.

M-spaces: The spaces which are isometric to closed sublattices of C(K).

G-spaces: The spaces E for which there is a compact Hausdorff space K and a set
of triples (s,, 2z, Axes With s,, 2, € K, A, € R, such that E is isometric to the space
of all continuous functions x(z) on K which satisfy x(s,) = A,x(t,) (x € A).

A(S)-spaces: The spaces of affine continuous functions on compact Choquet
simplexes S. N

Ay(S)-spaces: The spaces of affine continuous functions on compact Choquet
simplexes S which vanish at a given extreme point of S, or, equivalently, the simplex
spaces [10].

All the function spaces are equipped with the supremum norm. A detailed treat-
ment of these classes can be found in [12] and [14].

Let (E));er be a family of Banach spaces and let 2 be an ultrafilter on 7, Let
I.(I, E;) be the spaces of all bounded families (x,), x;€ Ey (fel), equipped with the
supremum norm. Then the wultraproduct (E;), is defined to be the quotient
Io(I, E})[Ny, where Ny is the subspace of all those families (x;), for which
HT llxdl = 0. The element of (E,)y which is represented by the family (x;) is denoted

by (x;)y. When all the spaces E| are identical with a certain E, we speak of an ultra-
power. For information on the structure of Banach space ultraproducts we refer
to [1], [4], [20] and to the survey [3].

Model theory for Banach spaces has been developed by Krivine [8], Henson [5]
and Stern [19]. We will follow the approach of [S]: The first-order language £
consists of a binary function symbol +, a unary function symbol r* for each rational
number r, and two predicate symbols P and Q. A Banach space E can be regarded
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as an 8-structure by interpreting + as the vector addition, r- as the multiplication
by the scalar r, P as {x € E: ||x||<1} and Q as {x e E: ||x”>1}. A positive bounded
sentence is (up to equivalence with respect to the elementary theory of the class of
all Banach spaces) an expression of the form

Qi’xJl Q,',’x,,[(g1 Ace AV ooV @y 1 A e A Omy)] -

where ¢; is an atomic formula, i.e. either P(¢), Q(t), or ¢, = 0, t; is a term
Py Xq+ ot Py X, and Q7 x, stands for one of the restricted quantifiers (Vx)(Px)—..)
and (Ax)(P(x)A...). Thus, a positive bounded sentence symbolizes a system of
norm estimates involving a finite number of variables whose domain is the unit ball.
Given a positive bounded sentence o as above and a rational & with 0<e<1, the
e-approximation ¢° is defined by replacing (for all i) P(t), O(t) and £, = 0 by
P((1—e)t), Q((1+8)1;) and P((1/2)t;) respectively. A Banach space E satisfies o
approximately (denoted by E F,c) if E F ¢* for all rational £ (0, 1). Two Banach
spaces E and F are said to be finitely equivalent (E = ,F) if, for each positive bounded
sentence o, EF,o if and only if Fk, 0. The following results from [5] show the
connection between model-theoretic properties of a class of Banach spaces and its
behaviour with respect to ultraproducts, which we shall investigate below.

THEOREM 1.1. Let B be a class of Banach spaces. The following statements are
equivalent:

(i) B is closed under finite equivalence.

(ii) For each Banach space E and each ultrafilter W, E € B if and only if (E)y € B.

TrEOREM 1.2, (Lowenheim, Skolem) Let B be a class of Banach spaces which is
closed under finite equivalence, let E € B and » be an infinite cardinal. Then for each
subspace F< E of density character x there is a subspace G of the same density charac-
ter x such that FeGcE, GeB, and G = ,F.

THEOREM 1.3. Let B be a class of Banach spaces. The following statements are
equivalent:

(i) B is closed under ultraproducts, and for each Banach space E and each ultra-
Silter W, (E)ye®B implies EcB.

(ii) There is a set of positive bounded sentences X which characterizes B approxi-
mately within the class of all Banach spaces, i.e. a Banach space E belongs to B if

“and only if EF,0 for all ceZ.

In a sense, statement (ii) of Theorem 1.3 says that B admits a “local” charac-
terization. Note also that (ii) implies the existence of a set of positive bounded for-
mulas Z; which (strictly) characterizes B, that means E€ B if and only if EF o
for all o eZ;. Obviously, X, = {0": 0 €Z, ¢ rational, 0<e<1} is such a set.

2. The geometry of ultraproducts of L,-preduals. We begin with a result which
shows that most of the classes of L,-preduals behave stably under ultraproducts.
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PropoOSITION 2.1. The following classes are closed under ultraproducts:
C(K)-spaces, Co(K)-spaces, C,K)-spaces, M-spaces, G-spaces, A(S)-spaces,
Ao(S)-spaces, Ly-predual spaces.

Proof. Many statements are known or easy consequences of known results:
It was shown in [1] that the ultraproduct of Banach lattices is, in a natural way,
a Banach lattice. This implies the result for C(K)- and M -spaces, as observed
in [1], [6], [19]. The case of L;-preduals (contained in Th. 2.2 of [6] and Th. 7.5
of [19]) follows from the case of C(K)-spaces and the fact that a Banach space is
an L;-predual if and only if it is an 2, ,-space for all A>1 [11].

If a class B is closed under ultraproducts, then the same is true for the class
n(B), i.e. the class of all spaces E which are isometric to norm-one-complemented
subspaces of members of 8. We therefore get the desired result for the classes
Co(K) = n(C(K)) and G = n(M) (cf. [14]). The relation Co(K) = C(K) n M ([14])
shows that the class Cy(K) is closed under ultraproducts, as well.

Let now (E);¢; be a family of simplex spaces. Then E; can be endowed with
a partial order, generated by a cone C;, such that C, is 1-normal, (E;, C)) has the
decomposition property, and the open unit ball By, is directed upwards (cf. [10],
§ 19). We will show that ((E})y, C) has the same order properties, where C = (C))y
= {(x)y: x;€C,, ielI}. First of all, C is a cone. Obviously, C+C<C and AC=C
(1>0). Assume that xe Cn (—C), and let x = Dy = E, x,€ Gy, %€ (~C)
(fe1). Then X;—x,<x,<x;— %, and, since C,is 1-normal, this implies el < %~ %))
Consequently, lim||x,| = 0, thus x = 0,

u

Next we prove that C is closed. Let {x"}%., be a sequence in C which satisfies
[lx"—x"*Y] <27" for all n. We choose inductively representations x" = (x7)y with
xi € Cpand |ixf—x*Y[<27" (ie L, n =1, 2, ...} By definition, x* has a represen-
tation x' = (x{)y, x' e C, (i €1). Assume that x" = (x}), has already been found
and let x"* % = (Z7* 1)y with £+ e C; (fe I). Now set x!*1 = gr+1 if [lxr—grt 1|
<277 X}t = x¥ otherwise. This yields the desired representations, and the result
follows, since the C;s are closed. )

To verify the decomposition property, let x, ¥, y? € C, x<pt + »2. Take rep-
resen.tz?tions x =y, ¥ = (31 ¥ = 3By with X1, 31,37€C, (iel). By the
definition of C, there exist z; € E; with li;rn llzidl = 0 and x,< y{ +37 +2z,. Since BY, is

df'rected upwards, we may assume z;30. Now the decomposition property of (£, )
yields the result. Finally, it is easy to see that the open unit ball of (E,)y is directed
upwards and that C is 1-normal. Thus, (E)y is a simplex space.

If each (E;, C)) has a strong order unit e, then (e;)y is a strong order unit of

gf‘);’) C). This implies the result for A(S)-spaces (cf. [10], §2, Th. 6 and §19,

Remark. Later on we prove that the class of Cy(K)-spaces is closed under
ultrapowers, but we do not know whether this is true for ultraproducts.
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We now turn to the main subject of this section, the question whether (E), € B
implies EeB. This is the case for the full class of L;-preduals, as the following
result shows. :

ProPOSITION 2.2. If an ultrapower (E)y of a Banach space E is an L,-predual,
then E is an Ly-predual.

Proof. Using standard ultrapower-techniques (or Th. 2.2 of [6], Th. 7.5 of [197),
it can be seen that Eis an 8, ;-space for all 1> 1. As already mentioned, this implies
that E is an Ls-predual [11].

For special classes of L-preduals the question becomes more complicated since
we cannot use additional structures as e.g. lattice orderings. (It is not even known
whether, if (E)y is a lattice, there is any lattice structure on E, cf. [5], p. 131). We
intend to apply characterizations of L;-preduals by the extreme point structure of
the spaces and their duals ([13], [14]). Yet, in general, an element of an ultrapower
which is generated by a family of extreme points is not necessarily an extreme point
itself. Conversely, an extreme point of an ultrapower needs not to be generated by
a family of extreme points. To overcome this difficulty, we introduce an auxiliary
notion which at the same time approximates and uniformizes the behaviour of
extreme points (compare the definition of local uniform rotundity [2], VIL, §2),

DermviTioN 2.3. Let E be a Banach space and let §>0, ¢>0 be reals. An
element x € By is called a (8, £)-exposed point of By if, for each pair y,zeBg,
lx—%(y+2)||<d implies [|y—z||<e.

In what follows we undertake a study of these points, which will be crucial for
the proofs of the main results. The next lemma shows that in certain spaces
(6, &)-exposed points are close to extreme points.

LEMMA 2.4. Let E be a C(K)-space or an Ly-space. Then the following hold:

() If x eextBg, then x is (3¢, )-exposed for all £>0.

(i) If e<} and x e By is (5, e)-exposed, then there exists an Xy € extBy with
{Ixo—x|} <%e. :

Proof. Assume first that E = C(K). A function x(¢) is an extreme point of
C(K) if and only if |x()] = 1 for all ¢ € K. Using this, it is elementary to verify (i).
To check (ii), suppose x = x(t) € C(K) is (5, &)-exposed. It clearly suffices to show
that |x(#)I>1—%e (t € K). Assume that this is not the case and let #, € X be such
that |x(fo)| <1—%e. Urysohn’s lemma implies that there exists a function # & C(K)
with ||kl = +e, h(te) = %e and k() =0 for all those reK which satisfy
(1=%8)|x(t)|>1—+e. Setting :

y=(1-3x+h z=(1-18x—h,

we obtain a contradiction to the assumption that x is (6, 8)-exposed.
Now let E = L;(Q, %, ). The extreme points of By are exactly the elements
of the form x = +u(4)"'yx,, where 4 is an atom of the measure algebra
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(.e. A, €Y and A <A imply p(d;) =0 or p(AN\4;) = 0), and y, denotes the
characteristic function. The extreme points of the dual E' = L,(u), in turn, are the
functions f(w) with [f(w)| =1 almost everywhere. Therefore, if x e extBy,
feextBg, then [{x,f>| = 1. Given y,ze By with ||x—%(y+2)ll<¥e we get

[E(r+2),/o1>1—%e
and, as an elementary consequence,
Ky—z,fl<e

for all feextB. Therefore [|y—z||<eg, which proves (i).

Assume that x € By is (3, £)-exposed. Let x, denote the restriction of the func-
tion x to a set 4 € %, that means x,(w) = y (W) x(w) (e Q). We first show that
for all Ae ¥, ’

M izl then  [r—xdllxl] <.

Indeed, we set y = x,/||x,||, z = 2x—y. Then
llzll = [[2x—xuflbeall]| = [211xall = 1[+2l1xa\all <1

and (1) follows from the fact that x is (8, £)-exposed. We get from (1) that
e [x—xafllxalll] = 1= lxall+lxanll =2l xall -

This shows that also the following holds:

2 if

Now define

IxdlZlxaull,  then |lx l=|lxll—%e.

Wp = {AeW: {lx ll>|x]-%e} .
Given Ay, 4; € A,, we have
‘ ‘ ¥ anaall = 121+ %0l = 1% 4,000 =] e
Since e<3 and (obviously) ||x||>1—%e, this implies
%4y dall 2 1~ 82 %> ||X0y04s )] -

Applying (2), we get 4, N A, € %, This allows to find a sequence A;2A4,2...
with 4,€ %, (n=1,2,..) and

lim [Jxg [| = inf{{lx]: 4 e A} .
n-+aw

We §e§ne B = () 4)\Qq, where Qy = {w e Q: x(w) = 0}. By continuity, Be ,,
and it is easy to see that B is an atom. Finally, we have [lxpll 2 ||xa\sl . Therefore,

setting x5 = xg/||x5ll, it follows from (1) that ||x—xo||<%e. This concludes the
proof.
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Remark. Lemma 2.4 (i) holds for arbitrary (real) L,-preduals. In this case E
can be embedded isometrically into some C(K) in such a way, that a given extreme
point of By is mapped onto the function identically equal to 1 (cf. [13], the proof
of Th. 6.1). Part (i) fails for general L,-preduals, as shows Example 2.14 below.

The following lemma clarifies the behaviour of (8, ¢)-exposed points under
ultraproducts.

LEMMA 2.5. Let (E);er be a family of Banach spaces, let x be an element of the
unit ball of (E;)y, and let x = (x))y be a representation with x, € By, (i € I). Then the
Sollowing hold:

(i) If each x, (i) is a (5, e)-exposed point of By, , then x is a (5, e+n)-exposed
point of By for each n>0.

(i) If x is a (3, &)-exposed point of Biryy, then for each n>0 there exists a set
Iy e X such rthat, for iely, x; is a (5—n, €)-exposed point of Bg,.

Proof. (i) Let y, z e By and assume that ||[x—%(p +2)|| < 4. Choose represen-
tations y = (y)y and z = (z))y with y;, z;€ By, (i €I). Then there is a set [ye W
such that ||x;—%(y;+z)]|<é for all iel,. The hypothesis implies ||y;—zl<e
(ie Ip), from which the result follows.

(ii) Assume that the statement is false for a certain 1#>0. Then the set

I, = {i: x; is not (§—n, &)-exposed}

belongs to . For each i el there exist elements y,, z; € By, with

%= (itz)li<d—n, llyi—zllze.
Setting » = (¥)u, z = (z)y, We obtain
llx=3(y+2N<s, lly—zllze,

which is a contradiction.

The above two lemmas enable us to give a partial description of the extreme
points in the dual (E)), when the E; are L,-preduals. Recall that the product of the
duals (E})y can be identified isometrically with a subspace of (Ey, though not
necessarily (and in the case of L;-preduals E; definitely not) with the whole space
(cf. [3], Section 7).

PROPOSITION 2.6. Let (E)er be a family of Ly-preduals, and let fe (EDu
<(E)y. Then f is an extreme point of the unit ball of (E)y if and only if f possesses
a representation f = (f)y with fieextBy (iel).

Proof. Assume that f has a representation f = (fi, f; € ext By (iel). Then,
by Lemma 2.4, each f; is (3¢, 8)-exposed for all &>0. Lemma 2.5, in turn, show's
that fis an (¢, 26)-exposed point of the unit ball of (E])y- Wewill prove that f is
also exposed with respect to the ball of the whole dual space (E)y.- By the local duah?y
of ultraproducts (cf. [20], [9], or Th. 7.6 of [3]) there is an ultrafilter B (on a certain
index set) and an isometry from (E)y into ((E/)u)p such that the restriction of the
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isometry to (E;) coincides with the canonical embedding of (E,)y into its ultrapower
{(E))e- Thus, fis mapped onto (f)g, Which is, by the above and Lemma 2.5,
an (}s, 3e)-exposed point of the ball of ((E/)y)s, and therefore also of the ball of
(E)y. Obviously, this implies that f is an extreme point.

To prove the converse direction, assume that f is an extreme point of Be,f.
Then [ is also an extreme point of the ball of (E;)y. The latter space is an L,-space.
Therefore Lemma 2.4 yields that f is (fe, 8)-exposed for all ¢>0. Let f = ( T
be a representation with f; € By,. For each i eI define

& = inf{e>0: f; is (Y&, ¢)-exposed) .

By Lemma 2.5, we have

lime; = 0.
u

Now we define the desired representation f == (fiu- If 0<eg;<}, then we can use
Lemma 2.4 to find an extreme point f; € By, such that || fi—Ffil|<e;. If & = 0, then
we set f; = f;, since in this case f; is an extreme point itself. For &;>% (which happens
only outside a certain set J, € ) we take f; to be an arbitrary extreme point of By.
This concludes the proof.

We are now ready to pass on to the main results of the paper.

THEOREM 2.7. Let E be a Banach space and let W be an ultrafilter. If the ultra-
power (E)y is a’ G-space, then E itself is a G-space.
Proof. We shall show that, given x, y € E, there exists a ze E with

$2,f> = max{<{x, £3,{», />, 0} +min{<{x, £>,{», 1, 0}

for all feextBy. By Theorem 2 of [14], this property characterizes the G-spaces.
By assumption, (E)y is a G-space, therefore we can find an element (z)y € (E)y
with
M @D (> = max @, (Fad, <G> (), 0} +

+mmin <&, (s <> (Fud, 0}

for each family () with fieextBy (by Lemma 2.6 such a family gencrates an
extreme point of the ball of (E)y). This yields, in particular,

@ hf:n Ginf = max{<x, £, <y, £, O}+min{<x, £, {3, £, 0}

for all f'e ext B,. We show next that the convergence in (2) is uniform on the set of
all feextBg . Indeed, if this were not the case, we could find an &>0 such that
the set

{i: there exists an Ji€ext B, with

bift>'_max{<xsfi>: <ysfi>’ 0}—min{<xafi>9 <y=fl>x O}I>8}
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belongs to W. But this clearly contradicts (1). The uniform convergence in (2) implies
that for each >0 there is a set J,e U such that

lzi—zll<e  (i,jel).

This means that the filter of subset of E which is generated by the family
({z;: j€J}say is a Cavchy filter with respect to the norm topology. Since E is com-
plete, this filter converges. In other words, there is a z e E with

lim{lz;—z|] = 0.
u

Clearly, (2) implies that z is the element we were looking for.

THEOREM 2.8. Let E be a Banach space and let W be an ultrafilter. If (E)y is
a C,(K)-space, then E is a C,K)-space. If (E)y is a Cy(K)-space, then E is
a Cy(K)-space.

Proof. Assume that (E)y is a Cy(K)-space. Then, by Proposition 2.2, E is
a predual of L;. The set of extreme points of the ball of (E)y is w*-compact, and it
suffices to show that the same holds for extBy, ([14], Th. 1). Let f, be an element
of the w*-closure of extBy. and set f = (fo)y. Let X%, ..., x* be elements of (E)y
with representations x* = (xf), (k =1, ..., n), and let #>0. Then we can find for
each iel an f, € ext.Bg with ’

. I<xf)fo>"‘<x§3ﬁ>|<n
Setting f = (f})y, we get-
l(xk,f0>‘“<xk3f>|<71 (k = 1’ (%) n) .

Since, by Proposition 2.6, f is an extreme point of By, it follows that f© belongs
to the w*-closure of ext By . Thus, S% = (fou is an extreme point of By
Lemmas 2.4 and 2.5 show that f, is (3¢, &)-exposed for each £>0, consequently

foeextBg..
If (E)y is a C,(K)-space, then the w*-closure of extB,y is contained in

extBip s U {0}. The considerations presented above yield that the corresponding
statement holds for extBy., and the result follows from the corollary on p. 218
of [10].

Using a similar argument, we now complement the results of Proposition 2.1.

ProrositioN 2.9. The class of Cy(K)-spaces is closed under ultrapowers.

Proof. If Eis a Cy(K)-space, then, by Proposition 2.1, (E)y is a C,(K)-space.
Now assume that zero belongs to the w*-closure of extBp. The set of all elements
(fu with f; € ext Bg, (ie I) is norming for (E)y and therefore w*-dense in ext Bz ¢
(cf. [2], V § I). It follows that, given xy, ..., x, € E, >0, we can find f; sextBy
(ieI) such that

k=1,..n).

K, (fdwl<n (k=1,..,n).

§ — Fundamenta Mathematicae CXHI/3
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Consequently, there exists a set J, e X with )
Kxp, fil<n  (e=1,..,n, icly).

This shows that the element 0 belongs to the w*-closure of ext By, contradicting the
assumption that E is a Cy(X)-space.

Our next result answers a question posed by Henson ([5], p. 130, question ).

TrEorEM 2.10. Let E be a Banach space and W be an ultrafilter. Jf (E)y is
a C(K)-space, then E is a C(K)-space.

Proof. If (E)y is a C(K)-space, then E is a predual of L, and the set ext By,
is w*-closed (Theorem 2.8). By Theorem 6.6 of [13] it remains to show that By has

an extreme point. We construct inductively a sequence {x,}%; =By, with the following’

properties: For each n,

(M x,is a 7%, 270Dy exposed point of By (k = 1,2, ..., n)
() =gl <2700,

The construction starts as follows: By, has an extreme point, say z' = (z1),
zi € By (ieI). By Lemma 2.5, there exists an index ie 7 such that z} is Tas B
exposed. We define x; = z; . Now assume that Xy5 .5 X, have already been found.,
Lemma 2.5 shows that the element x” = (x,), is a (2“("*'3),2_")-cxposcd point
of Bg,,. Using Lemma 2.4, we can find an extreme point z'*! of By, with

”xn__zn+1”<2—'(n+l) .

Take a representation z"** = (2] *1),, 2/** e By. It follows that there is a set Lel
with

’

”xn__zri-»H”<2—(»+1) (iEIO) .

On the other hand, Lemma 2.5 implies the existence of sets I, 1,

such that zJ** is 7%+ 2=*+1y_exnosed for each iel,.
nt1

ie() ], and set x,,; = z;™!. This completes the induction.
k=0

A simple geometric argument shows that the limit of a sequence of (8, &)-exposed
points is (8, &-+)-exposed for each 430. Therefore x = lim x, is a (2= k3 p-my.

n~oo

exposed point of By for all n>1. Hence x is an extreme point.

Remark. Theorem 2.10 remains valid for complex C(K)-spaces. In this case
one has to use the analogous characterization for complex C(K)-spaces, due to
Hirsberg and Lazar ([7], Cor. 3.4). It is easy to see that Lemma 2.4 holds Tor complex
spaces if we replace in part (i) the phrase “(Je, £)-exposed” by “(1—(1 ~4e%)!2, g)-
exposed”, Now those considerations which were necessary for the proof of 2,10
can be carried over to the complex case without difficulty.

We are now in the position to apply the model-theoretic results of Section 1,

CoRrOLLARY 2.11. The classes of C(K)-, Cy(K)-, C,(K)- and G-spaces are closed

under finite equivalence. Consequently, they satisfly the Léwenheim—Skolem the-
orem (1.2).

(IF) Iu+1 el
Now pick an index
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For the class of C(K)-spaces this result was obtained by Henson ([5], Th. 3.9)
using lattice arguments. A construction closely related to ultrapowers is the non-
standard hull E of a Banach space E. For the definition we refer to [17], [15], or [5].
(As in [5] we shall assume that the nonstandard hull is constructed with respect to
an K;-saturated extension IMM* of a set-theoretical structure 0n.)

COROLLARY 2.12. If the nonstandard hull E of @ Banach space E is a C(K)-space
(Cy(K)-, Cy(K)-, G-space, respectively), then E is a C(K)-space (Cy(K)-, C(K)-,
G-space, resp.).

Proof. By Corollary 2.11 and the fact that £ is finitely equivalent to E ([5],
Cor. 1.11).

Finally, we obtain the desired existence of characterizing sets of sentences:

COROLLARY 2.13. The. classes of C(K)-, Co(K)- and G-spaces can be characterized
approximately (and also strictly) by sets of positive bounded sentences.

Remark. Let B be one of the classes C(K), CAK) or G, and let X be the set of
all positive bounded sentences which are satisfied by each member of 8. Then it
follows from Corollary 2.13 that ¥ characterizes B. We do not know a characterizing
set of sentences for B which admits a more explicit description. For the class of all
L,-predual spaces such a set was given by Stern ([19], Th. 7.5) involving sentences
of a slightly different type.

We conclude by giving a counterexample simultaneously for the classes of
Ay(S)- and A(S)-spaces.

EXAMPLE 2.14. There exists a separable Lq-predual E with the Sfollowing two
properties:

(i) For each ¢>0 there is a (te, &)-exposed point in Bg.

(i) Bg has no extreme points. .

Consequently, E is not an Ay(S)-space, but has an ultrapower (E)y which is an
A(S)-space.

Proof. We use the method of matrix representations (cf. [16], [12]). Define

. . <i
a triangular matrix 4 = {g, 1515} by

if nis odd and i ==,
Ay = (_])H-l 2-I0+3)21 otherwise

where [y] denotes the largest integer not exceeding y. Thus, the matrix 4 looks like
this:

1. 2. 3. 4. ... 2n—1D)-th 2nth . column
0" 1/4 14 14 .. 1/4 1/4
~1/4 —1/4 =14 .. =14 —1/4
0 1/8 .. 1/8 1/8
—-1/8 ... -=1/8 —~1/8
0 1/2m+r
—1j2mtt |

ar
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0
The L,-predual space E defined by this matrix is the completion of ) E,, where
n=1

E,cE,c..., each E, is isometric to [f,, and the embedding J, of E, into E,,., is
defined by

Jolin = Cini1F U nasrrs  (1SI<n)

with {e; ,}1<;<, being the canonical basis of E,. Given x € E,, let x(/) denote the
ith coordinate of x with respect to the basis {¢; ,}. Obviously, x(i) does not depend on
the choice of n.

We first show that E satisfies condition (i). Fix n>1 and choose x € E,, with
x(i) = (=1)*1 {1<i<2n). It can be read immediately from the definition of 4
that for i>2n, the sequence of coordinates x(i) stabilizes, namely

x(@) = 1-27"  (i>2n).

Thus, x is (27", 4-27")-exposed in each E,, and therefore (27", 5-27")-exposed
in E. It is elementary to show that a (J, &)-exposed point is also (19, As)-cxposed
for each A>1, which proves (i). '

The idea in the proof of (ii) is to show that the signs of the coordinates “C(I) of
a point x € |) E, must be alternating on an arbitrary given interval, provided only
that x is well enough exposed. On the other hand, for each x e | E,, the sequence
of coordinates stabilizes. Therefore there cannot be an “accumulation” of well-
exposed points in {) E, like it would necessarily be in a neighbourhood of an ex-
treme point of Bz. We now give the details.

Assume that Bg has an extreme pomt y. By the remark followin g Lemma 2.4, y is
(3¢, £)-exposed for all 6> 0. Let {x,} be a sequence with x, € B;_ and hm ly—x,| =
Choose nx1 111 such a way that
o lon—xnll <3 (m>2n).

Since {x,} converges to y, it follows immediately that there is an index m>2n+2
such that x,, is a (270*+#, 2=+ 2. exposed point of By. Fix this m. Lemma 2.4 yields
o) @] >1-270FD =12,

Taking, if necessary, —y instead of y, we may assume x,(1)>0. We now prove
that

3) signx,(i) = signa; ppvn  (1IiL20+2),

Assume that there is an index j, 1</<2n+2, with signx,(j) % Signay ap4n . By
definition,

Xp(m+1) = ;i @y, mX(D) N

= >

sign Xm(i) =sign at,m

il @~ T lagul i@ -

sign Xm(i) #sign atm
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]

Therefore
XA DK =1yl (D] = 1=2"BE g (7)1 270+
On the other hand, since signx, (1) = signa, ,,
X+ 1)3 1yl 0D~ 1251 = —F.
Summarizing both inequalities, we get
| (m+1)| 1 —2" 0+
which contradicts (2). This proves (3). Inequalities (1)~(3) yield
[Xon(D)[ >0,  signxy,() = signd; 24, (1<i<20+2).
But a look at A4 shows that
X5,(20+1) = x,,(2n+2) .

We have reached a contradiction which proves (ii).
Next we verify that a space E which satisfies (i) and (ii) cannot be an 4,(S)-space.
Assume the contrary. Then, by Theorem 5.3 of [12], E has a representing matrix

o

). Let E = |J E, be the corresponding rep-
n=1

resentation. For each n, let x,€E, be such that x,(i) = 1 (1<i<n). Since, for

each y € Bg,, |y(@)I<x,() ( = 1,2,..) we derive from condition (i) that

lim (mfx,,(z)) =1.

n—+oo ieN

(bs,,) with b, ,>0 (1<i<n,n=1,2,..

This shows that the sequence {x,} converges to an extreme point x € Bg, a con-
tradiction to (ii).

To conclude the proof of 2.14, let I be a non-trivial ultrafilter on the set of
natural numbers, and let x, be a (27", 5-27")-exposed point of Bg. Then x, is also
(27% 5-27%)-exposed for 1<k<n. Finally, the family (xy,x,,..) generates an
extreme point (x,)y of (E)u, by Lemwma 2.5. Therefore (E)y is an 4(S)-space
(cf. [18]).

Remark. We do not know whether (E)y € # implies E € % when 4 is the class
of M-spaces or the class of Cy(K)-spaces.

The following table summarizes the results of this paper as well as the open
questions:

| ) | Cx(®) | €KY | oKD | G | AES) | 4LS) |E'=1

Closed under ultrapowers + + + +

|
+ o+ |+ |+ |+
Closed under ultraproducts + |7 + + + + + + -+
If (E)y€DB, then EeB + + + ? ? + - - +
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Local expansions on graphs
by
J. J. Charatonik and S. Miklos (Wroclaw)

Abstract. A necessary and sufficient condition is proved under which a linear graph admits
a local expansion.

§ 1. Introduction. This paper is motivated by a short note of Rosenholtz [11]
who studied local expansions on metric continua and proved that every open local
expansion on a metric continuum onto itself has a fixed point. Showing that openess
of the mapping is essential in the result, he has constructed a fixed point free local
expansion on the union of three circles ([11], p. 3 and 4). On the other hand it is
easy to point some particular examples of metric continua which do not admit any
local expansions onto themselves at all. Such is e.g. the unit segment of reals.
Therefore it is very natural to ask about a criterion under which there exists a local
expansion of a given metric continuum onto itself:

ProBLEM. Characterize metric continua X which admit a local expansion of
X onto itself.

This paper does not answer the problem, however, it is a contribution to the
attempt to find such a criterion for some special continua. Namely a partial answer
is given by showing a necessary and sufficient condition of the existence of local
expansions on linear graphs (i.e. one-dimensional connected polytopes) equipped
with a convex metric. .

§ 2. Definitions and preliminaries. Let ¢ be a metric on a metric space X. The
statement that the mapping f* X — X is a local expansion means that f'is continuous
and that for each point x € X, there is an open set U containing x and a real number
M>1 so that if y and z belong to U, then

&) e(f (). f(@)=Me(y.2)

(see [11], p. 1). We say that a metric space X admits a local expansion if there exist
a metric g that is equivalent to the original one given on X, and a surjection f: X — X
satisfying the conditions of the above definition. )
Let a metric space X with a metric ¢ be given. Let x, y, ze X. The point z is
said to lie between the points x and y provided that g(x,y) = o(x, 2)+e(z, )
(cf. [3], p. 317). The point z is said to be a center of the pair x, y provided that ¢ (x, z)
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