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Some additive properties of sets of real numbers
by

P. Erdds (Budapest), K. Kunen (Madison, Wis.), and
R. Daniel Mauldin (Denton, Texas)

Abstract. Some problems concerning the additive properties of subsets of R are investigated.
From a result of G. G. Lorentz in additive number theory, we show that if P is a nonempty perfect
subset of R, then there is a perfect set M with Lebesgue measure zero so that P+ M = R. In
contrast to this, it is shown that (1) if S is a subset of R is concentrated about a countable set C,
then A(S+R) = 0, for every closed set P with 2(P) = 0; (2) there are subsets G, and G, of R both
of which are subspaces of R over the field of rationals such that G, N G, = {0}, G;+G, = R and
MGy = A(Gy) = 0. Some other results are obtained under various set theoretical conditions.
If 280 = ¥, then there is an uncountable subset X of R concentrated about the rationals such that
if 2(G) = 0, then A(G+X) = 0;.if V = L, then X may be taken to be coanalytic.

P. Erdos and E. Straus conjectured and G.G. Lorentz proved that if
1<a;<a,<... is an infinite sequence of integers, then there always is an infinite
sequence of integers 1<<b, <b, <... of density zero so that all but finitely many positive
integers are of the form a;+b; [1]. In this note we investigate the measure theoretic
analogues of this result.

Throughout this paper, the real line will be denoted by R. If 4-and B are subsets
of R, then A+B = {a+b: ac4,be B}. .

THEOREM 1. Let P be a nonempty perfect subset of R. Then there is a perfect set M
with Lebesgue measure zero so that P+M = R.

Let us note that it suffices to prove the theorem under the additional assumption
that P[0, 1]. Let us also note that under this assumption it suffices to prove the
existence of a closed set M so that P+ M contains some closed interval. With this
in mind, for each n and i, set I(i, n) = [i/2", (i+1)/2"]. For each n, set -

A, = {i: int(I{i, n)) n P B}
and
= {IG,n):ied,}.
Clearly, P,2P,2 ..and P, = P.

We will prove the following lemma.

LeMMA 2. There is a sequence of positive mtegers my<my<ms<.. and a se-
quence {B,};.; of sets of nonnegative integers so that

1) for each p, B,c[l1, 2",
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2) for each n, Py, +M,>[1427™,2] where M, = ) {I(i,m,): ie B},
3) for each n, M, <(M,—1/2") U M U (M,+1/2™"),
4) for each n, A(M,)<27".
At this point, let us note that Theorem 1 follows immediately from Lemma 2.
In fact, setting
M = {x: 3(x,) ~ x and for each n, x,e M, and j,—+o},

we see that M is a closed set with Lebesgue measure zero and P+ Mo [141/2™, 2],
In order to prove Lemma 2, we will employ the following finite version of
Lorentz’s theorem. '

THEOREM L. There is a positive number ¢ so that for any positive integers n, m,
and k, if 4 is a set of integers, A<[m, m+k), with | 4| =1, there is a set B of integers,
Bc|n, n+2k) so that A+ B contains all integers in the interval (n+m-+k, n+m-+2k]
with |B|<cloglfl. )

Proof of Lemma 2. Choose m, so that 2clogl,/l; <1/2, where

Iy = card(4,, n[1,2™)).
So,
Ay, = 1<a<a, <...<ay< 2™,

By Lorentz’s theorem there is a subset B, = 1<b; <b, <. <b,, <2™* 50
that 4, + B, contains all integers in (2™,2™*1] and such that )

card(B,) = ¢, <02m‘+116g11/11 .
setM; = | {I(i, my): ie B}.

Then M, <[0,2], A(M;)<1/2 and P, +M,>[1+2"™, 2],
This completes stage 1.

Stage 2 will be indicated (all. higher stages are similar).
Now choese m, = m,+k;, k;>0 so that for each i, 1<i</y, we have

clog(l(i))<_2_"1
1 8L
where
1() = card(4,,, O [2a;, 2%(a,+ 1)) .

For each i, 1<i</y and j, 1<j<1t,, we are guaranteed by Lorentz’s theorem
that there is a subset B(7,/) of [24b,, 2%h, +2-2%) so that

(Any 0 [2a;, 2%(a,+ 1))+ B, /) > [2%, 2(a;+ b)) +2-24)
and

card(B(i, /)< c241ogl()IG) .
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Let B, = {J {B(@,/): 1< <y, 1<t} Let Ky (i, /)= U {I(p,m,):peB(z‘,j)}.
Then

A(Kz(i,j)) <27 ™2k clogl(i) = 2™ clogl(@)/1(i)<1/8l, ¢,
and

Prgt Ky(i, )2 [ayk by + /2, gi+-by+2/2™] .
Set K, = U {K5(i,): 1i</); and 1<j<t,}. Then
AK)<1/3-27% and K,cM, u (M, +1/2™).
Set M, = K, u (K,—1/2™). Then

AM) <272, Myc(My—1/2™) U M, U (M, +1/2™),

and
P,,+M,5[1+1/2™,2]. Q.E.D.
Let us remark that Theorem 1 has the following corollaries.
CoroLLARY (Talagrand [2]). Let 4 be an analytic subset of R such that if Xis

. a closed subset of R of measure zero, then A-+X has measure zero. Then A is countable:

Talagrand proved this result for arbitrary abelian locally compact groups. We
will show later in this paper that this result cannot be extended to coanalytic sets.

We give another corollary of Theorem 1 which implies a theorem of S. J. Tay-
lor [4].

COROLLARY. Let P be a perfect subset of R. There is a perfect subset M of R with
Lebesgue measure zero such that the linear measure of the planar set M » P is infinite.

Proof. Let M be a perfect subset of R so that M+P = R and such that
A(M) = 0. Consider the shear transformation T: R— R defined by T((x, )
= (x, x+J). Since, n,(T (M x P)), the projection of T (M x P) into the second coordi-
nate, is all of R and the Lebesgue measure of nz(T(M x P)) is no more than the linear
measure of T(M x P), T(M x P) has infinite linear measure. Noticing that if E< R?,
the linear measure of 7'(E) is no more than three times the linear measure of E, it
follows that the linear measure of M x P must be infinite. Q.E.D.

We note that our proof of the preceding corollary shows that if 4 is a subset
of R such that for every subset G of R with Lebesgue measure zero, 4 x G has
linear measure zero, then 4+ E has Lebesgue measure zero, for every set E with
Lebesgue measure -zero.

QUESTION. Is the converse of this result also true?

THEOREM 3. Let P be a nonempty perfect subset of R. There is a subset M of R with
0

Lebesgue measure 0 so that if P = ) X,, then there is some i so that X;+M = R.
=1

Proof. Let {p,},=1 be a countable dense subset of P. For each n and m, let
M(n, m) be a perfect subset of R with Lebesgue measure zero so that

(P o [p,—1m, p,+1/m)+M(n,m) = R.
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Let Gbea G; subset of R with Lebesgue measure 0 Which contains | ) M(n, m)
Suppose P = U X, and for each i, X;+G # R.
For each 1, let r;€ R—(X;+G). Thus,
Xin(G—r) =0
and

UXinN(G-r)=0
i=1 i=1

But by construction each G—r; is a dense G; set with respect to P. Q.E.D.

Let us remark that Theorem 3 contrasts with several results in the opposite
direction. The reminder of this paper is devoted to these contrasts.

Recall that a subset M of R is concentrated about a countable set C provided
every open set which includes C contains all but countably many points of M.

THEOREM 4. If S is a subset of R which is concentrated about a countable subset C,
then A(S+P) =0, for every closed set P with Lebesgue measure zero.

Proof. It is enough to prove this for compact closed sets P with A(P) = 0.
Let C = {x,: neN}. Let ¢>0 and let ¥ be an open set with A(V)<e and

V> U (P+x,).
n=1

Let T = {xeS: (P+x) " (R—V) s @}. It can be checked that T is closed
with respect to S. Thus, S—T is open with respect to .S and contains C. Therefore,
8§—T contains all but countably many points of S. This implies that A(S+P)<e.
Q.E.D.

One may think that if S is concentrated then A(S+P) = 0, for every set P of
measure zero. However, we have the following theorems.

THEOREM 5. There are subsets Gy and G, of R both of which are subspaces of R
over the field of rationals such that G, N G, = {0}, Gy +G, = R and both G, and G,
have Lebesgue measure zero.

The proof of this theorem will be based on the next lemma. Let us set some
notation first. Let K, be the set of all x which can be expressed in the form

= S ajet,

Y

where 0<a;<27, i=1,2,..
Let K, be the set of all x which can be expressed in the form

)

Za/(2l+1)'

where 0<a;<2i+1, i =1,2,...

icm®
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LemMa 6. Let H; be the subgroup of R generated by
H\+H, = R and A(H,) = L(H,) = 0.

Proof. Since every x in [0, 1] can be written in the form

K, i=1,2. Then

-
x =y afil,

=1
where, 0<a;<i, for i = 1,2, ..., it follows that H,+H, =R.
The subgroup H, can be expressed as

H= U (pK+..+pK),

(P15 P5)

where the union is taken over all finite sequences of integers. Thus, in order to show
that H; has measure zero, it suffices to fix (p;,..,p.) and show that

"L = p; K;+...4+p;K; has measure zero. If xeZ, then x can be written

% = (3. pic)ih)

with 0<al<2k, i=1,2,.., s; k=1,2, ... There is a positive integer m so that

)

=k§1 ol (2R,

where |¢|<m(2k), k =1,2,.. For each k ¢ = 4(2k)+d, where [t,]<m and
0<d,<2k. So, x can be expressed as

x =) bil,
i=1

where |by;_4|<m and 0<b,;<2i, for i = 1, 2, ... Let E(m) be the set of all such x.
It suffices to show that E(m) has measure zero. For each tuple (ay, ..., a,,) such
that |ay|, |as] s la,, | <m and 0<a,;<2i, let H(ay, ..., ay,) be the closed interval

with center Za,/z' and radius 4m/(2n—1)! For each n, Em)< {J H(ay, ..., ay,),

where the unlon is taken over all appropriate 2n- tuples But,

AU H@y,s oo a2)) < D AH@y s ooy 03)) < o Qm+ 1244 .. -20)

8m
-1
Since this last expression goes to zero as n increases, E(m) has measure zero.
A similar argument shows that H, also has measure zero.

Proof of Theorem 5. Let ¥; be the subspace of R over the rationals which is
generated by the additive subgroup H;, i = 1, 2. Thus,

Vi=U@EH+..+r,Hy),
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where the union is taken over all tuples of rationals. But,

n
. . 1
g—l—H,+...+ q—H1 = ( )( E q;Py - B; ..‘p,,H,>.
Py Px Dy e Py, ey

Therefore, each set ry Hy +...+r, H; has measure zero. Thus, ¥; and V., have measure
Zero.

Set Gy = V. The set G, will be constructed by transfinite recursion.

Well order R—Gi: xg, Xy, .oy Xy, .0, u<8. Express x, as Xp = g10+040,
where g0 € Gy and o€ Vy. Set Gy = {guy0: g€ Q). Then Gpoc Vas Gy is
a subspace of R over Q, the rationals, G0 N Gy = {0} and x, € G, + Gio-

Suppose 0<a <4 and for every B, 0<f<ua, subsets G,y of R have been deter-
mined so that G,5S V,, G,4is a subspace of R over 0, Gy Gy = {0}, Xp€ Gy+ Gy
and if OSx<t<q, then G,, =G,,. Let Tp, = | {Gyp: B<a}. If X, € Gy+ Ty,
set Gpp = Ty If X, ¢ Gy +T,,, write x, = J12+ Vo, Where g;,€ Gy and vy, V.
Set Gy, = {t+qv;,! 1€ Ty, and ge Q). In either case G, still satisfies the defining
conditions. Finally set G, = (J {G,,: a<8}. Q.E.D.

Next, we note that under some set theoretic assumption an even stronger
example along the lines of Theorem 5 can be given.

THEOREM 7. Suppose that the union of less than continuumly many meager subsets
of R is meager. There are subsets Gy and G, of R both of which are subspaces of R
over the field of rationals, both of which meet every meager set in a set of cardinality
less than 2%° and such that Gy NG, = {0} and G, +G, = R. (Of course, if every
subset of R with cardinality <2%° has measure zero, then G, and G, both have measure
zero. If CH holds, then Gy and G, are both Lusin sets.)

Proof. Let w, be the first ordinal with cardinality 2%°, Well-order the closed
nowhere dense subsets of R into type @.: Fy, Fy, ..., F,, ..., a<o,. Also, well-order
R—{0} into type o,: X03X1s ey Xgy ooy 0<®,. We denote the rational numbers
by Q and if S=R, then {S%, denotes the rational span of S.

It will be shown by transfinite recursion that there are elements s,, t,, <,
of R which have the following properties for each a<w, (Notation: for 1<w,,
Sy = {sp: <1} and T, = {t;: f<)).
L (ST, 1<a),

2. {830 N (T = {0},

3. if y<a, then

v

{Swg 0 (U {Fp: ﬂ<7})—c—<Sy>Q ’
and

{To 0 (U {Fp: BSyNS(Tg -

Let us note that once this construction has been carried out; then the con-
clusion of the theorem follows immediately upon setting Gy =<S,,>g and
G, = <{T, m,,->Q'
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Construct s, and ?, as follows. Set
B =(U{¢F: g Q and g#0Pu
VU {xo—qFs: g€ Q and ¢ % 0 u
v ({gvo: g€ O)).

Choose s, to be an element of the residual set R—B and set 7, = Xp—So.
Clearly,

{{soPo+<{to}>o={x0} ,
soddo n {{todde = {0},
{so>g 0 Fo = {0},
{taldg 0 Fo = {0}

Suppose 0<t<w, and elements s,, #,, <t have been determined so that if
a<t, then conditions 1, 2, and 3 all hold. )

Define s, and #, as follows. First, set S; = {s,: a<t} and T, = {t;: ec<-t}
and W, = | {F,: a<t}. If x, € (S.)q+(T,Yq, then sets, =1, = 0. Ifx,qé(S,)ﬁ-
"+<{Ts>g, then choose s, to be an element of R which is not in any of the following
meager sets:

U {{S>o—<(TDg+rx.: re @},
or

‘ U {gW.—p: g€ Q and pe{So}
or :
U {x,—qW,~v: ge Q and ve{Ti,} .
Finally, set t, = X,—S,. )

Setting S, = S; U {5} and T, = T, u {t.}, we have .

{Spet{To2{x,: a<1}.

Suppose we{(Sg N {T.yo. There are rationals ¢ and b, pe (S, and
velTD, so that
W= ptas, = v+bt,.

Ifx, € {8+ {Ti>g, thens, = t, = 0, and w e (S N (Tppg = {0} If x, & (Se+
+{T,>q, then
ptas, = v+b(x,—s;) .
Or,
(a+b)s, = v—p-+bx,.
We consider two cases. :
Case 1. a+b = 0. Then bx, = v—p. Since x ¢ (Sg+<{Twyg, b = 0. Then
a=0and w =g = v is an element of (S;yg N{T,>. Thus, w = 0.
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Case 2. a+b # 0. Then
1 1 b

So=——v——— it —

at+b  atb a—i—b

But, this is prohibited by the choice of s,. Thus,

<S1>Q al <T1>Q = {0} N

Next, suppose y<t and we{Spg N (U {F: B<y}). There is an element
pelSe and a rational r so that w = p-+rs,. If x, e(S;>Q+<T:)Q, then s, =0
and it follows that w e {S,q. If x, ¢ {S;>o+<{Trpo and r # 0, then s, € (/r)w—p.
But this is prohibited by the choice of s,. Therefore, r = 0, w = p and it follows that
we{S,>q. Thus,

{80 0 (U Fp: B<y})S{S00-
It can be shown in a similar fashion that
(Tden (U {Fp: B<y})=(Tpo. Q.ED.

Our final goal is to show that under certain conditions there is an uncountable
concentrated set such that the sum of this set with every set of Lebesgue measure zero
still has measure zero. This is the content of Theorems 12 and 13. First, we prove

" some-lemmas which hold outright.
Let us make the following conventions.

Define ¥: 28 — [0, 1] by
V() = 3 727"
If ScN, let
={ze2": Vn¢s (z, = 0)}
and let -

Os = ¥(P5)<=[0,1].

Notice that if ScT'< N, then Py Pp and Qs Qy. Also, if S'is infinite, then Py
and Qg are- perfect sets.
For each ScN, set

= U {0r: |84T|<w} = | {Qs: T<*S}.
Of course, if T<*S, then RrcRy.
Finally, if fe NV, Pr, Qp, Ry denote Poyyiry, Qranirys @nd Ry 1y, Tespectively.

LEMMA 6. If I and J are subintervals of R, then A(I+J) = A+ ().

- LemMA 7. Let I be a subinterval of R and let fe NY be strictly increasing. For
each ne N,

I+ Q)<2(AI)+277M)
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Proof. Notice that for each n e N, @ is a subset of a union of 2" intervals each
of length 27/™. Thus, this lemma follows immediately from the preceding lemma.
Q.E.D.

Let us make the followmg convention, if f, g € NV, say f<g past n provided
Vmzn(f(m)<g(m)) and f<*g if and only if An(f<g past n).

LeMMA 8. Let U be an open subset of R with J(U)< + 0. Foreache>0andn € N,
there is a strictly increasing fe N" such that if g e N" is strictly increasing and f<g
past n, then

MU+ Q) <2 A(U)+¢.
Proof. By blocking the components of U, there is a sequence { ¥, }, =, of pairwise

disjoint sets such that U = | ¥, each ¥} is a union of finitely many open intervals
and for each k>1,

AU= U V)ge278m2,
i<k

Consequently, for each k>1, A(V)<e-27%* "2 with
=U{:i<n), .
where the sets I are disjoint open intervals.
Now, choose a strictly increasing f so that 2"~/™.r <27 and so that for
k>1,
2n+k~f("+k).rks6.2—k-—l N

Assume g e NV, g is strictly increasing and g3>f past n. Then
AP+ Q)< Y M+ 0,)< Y 27T +27°)
i<rg i<ro

KPAU)+r, 277N A(U) 8271 .
Also, for k>1,

AVt Q)< T i+ Q)< T 2" AT +27P)
i<rg i<ty R

STV 41y 2O G 0Tkl g g ke gk,
Thus,

MU+ Q)<2UU)+ Y 6275 = 2°4(U)+¢. Q.E.D.
¥=1 - i

LeMMA 9. If A(G) = O, then there is a strictly increasing element g of NY such
that A(G+ Q,) = 0, whenever h is strictly increasing and g <*h.

Proof. Let {U,}%; be a sequence of open sets with U,2 U,sq, MU,)<27%"
and Gg () U,. For each n, let f, be a strictly increasing element of N such that
if A is strictly increasing and f</ past n, then

) AU+ Q)T ATY +1/n.
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Choose a strictly increasing g so that for each n, f,<g past n. If & is strictly
increasing and g<*h, then () holds for all but finitely many »n and therefore,

A(G+0;)) =0. QE.D.

LemMa 10. If SN and A(G+ Qs) = 0, then A(G+Rg) = 0.

Proof. This follows from the fact that Ry is the union of all translates of Qg
by dyadic rationals. Q.E.D.

Let D be the set of all dyadic rationmals in the interval [0,1) and let
E = {ze2": z is eventually zero}. Then D = ¥(E) and since D = R,, DcRg
for any subset S of N.

LemMaA 11. Let U be an open set containing D. Then there is an element g of N¥
such that Ryc U whenever he NY is strictly increasing and

l{n: g <Y = %

Proof. Let ¥ = Y~ *(U). For each z = (z,> € E, let p, be the least p € N such
that Vazp.(z, = 0). For each pe N, let k(p) be some integer greater than p so
that :

Vze E(p,<p—{re2": z|p = t|p and Vm(p<m<k(p)— t(m) = 0)}c V).

In particular, for all p
{re2": Vm{p<m<k(p))—t(m) = 0} V. ’
Thus, if T= N and 3p([p, k(p)) N T = &), then Pr< ¥ and Qr< U. Thus, whenever
Hp: [, k@) N T =B} = %,
then RrcU.

Suppose i e NY is strictly increasing and there are only finitely many p such
that [p, k(p)) N ran(h) = @. Then for all but finitely many n,

[A(m)+1, k((m)+1))) N 1an(h) = B,
or h(n+1)<k(h(n)+1). Thus, for some ce N, h<*g,, where g, is defined by
gt) =c¢,
ge{n+1) = max{k(p): p<g.(m)+1}.

1t follows that if we choose g so that g, <*g for all ce N, then for all strictly in-
creasing A,

(h<*g)—> Ry,cU. Q.E.D.

THEOREM 12. Assume 2% = . Then there is a subset X of R such that
@ 1X] = sy,

@) YGSRIAG) = 0 = A(G+X) = 0],

(3) X is concentrated on the rationals.
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Proof. Let {h.: «<w;} be a family of strictly increasing elements .of N¥ such
that

(a) if a<p, then h,<*hy,

(b) if «<f, then ran(hz)c*ran(h,),

(c) Yg e N", Ja(g<*hy). !

Choose x;€R,, and for each a, O<a<w, x, € Ry ~{x5: 6<a}. Let
X = {x,: a<w,}. It follows from Lemmas 9, 10, and 11 that X satisfies (1), (2)
and (3) of the conclusion. Q.E.D.

Let us remark that Theorem 12 cannot be proved as it stands under MA + -] CH,
since MA+ "1CH implies that no uncountable set can be concentrated on the
rationals. Of course, under MA + —CH it is true that AG+E) =0 for any set G
with 4(G) = 0 and |E|<2™. Finally, our proof of Theorem 12 can be easily modified
under the assumption of MA+ "1CH to yield a subset X of R of size ¢ so that if
is an open set containing the rationals then |X— U|<c¢ and such that if A(G) =0,
then A(G+X) = 0.

Added in proof. Friedman and Talagrand [6] bave done this.

OPEN QUESTION. Can one prove in ZFC that there is an X satisfying (1)
and (2) of Theorem 12? .

Added in proof. T. Carlson has shown that the answer is no.

Finally, we comment on where an X satisfying the conditions of Theorem 12
can lie in the projective hierarchy. From Theorem 1, X cannot contain a perfect
set, 50 X cannot be analytic. Also, one cannot even produce a projective X in
ZFC+GCH, since Solovay has shown that it is consistent with GCH that every
uncountable projective set contains a perfect subset. If we assume V = L, then a stan-
dard argument, due to Gdodel will produce an X which is 43 = (PCA n CPCA).
A somewhat more careful argument yields:

THEOREM 13. If V = L, then there is an X satisfying the conditions of Theorem 12
which is coanalytic (= ).

Proof. 1t is sufficient to show that there is a subset H = {,: a<w,} of N¥
satisfying conditions (a), (b) and (c) listed in the proof of Theorem 12 so that H is
coanalytic and such that h, # kg, if @ s . We may then define x, to be ¥(z),
where z,(n) = 1 if and only if neran(h,). The set X = {x,: a<aw,} will then be
coanalytic, since X = ¥(g(H)), where g: N 2% by g(h) = Xrantny- The map g is
Borel measurable and when restricted to the Borel set, D, of strictly increasing
elements of NY it is also one-to-one. Thus, g|D is a Borel isomorphism of -D onto
g(D). Since H=D, g(H) will also be coanalytic.

To construct such an H, let

A ={¢<w;: L,k ZF—P and L, is point-definable} .
Since A is unbounded in ,, let {g,: < w,} be an increasing enumeration of 4.

If ¢ = g4, define by to be the <;-first A€ NV such that

3 — Fundamenta Mathematicae CXIII/3
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@) VfeNY nL(f<*h).

(if) Ya<p(ran(h)<*ran(h,)), )

(iii) Va(l{m: 2"3" e ran(W}| = wo),

(iv) Th(ZL,) is recursive in A. '

Notice that (i) and (ii) ensure that {#,: a<®;} satisfies (a)~(c) of Theorem 12.
Also, (iif) makes (iv) possible; Th(L,) can be encoded in, for example,

(n: pm(2"3" € san(h)) > um(2"*13™ e ran(h))) .

Finally by (iv), H is aj. Q.E.D.

Let us note that Mokobodzki has demonstrated the following theorem [31.

TueoreM. Let X and Y be compact metric spaces, let F be an analytic subset
of X% Y, let i be a regular Borel measure on X and let v be a regular Borel measure
on Y. If, for every compact subset K of X with p(K) = 0,

™) v(m(F n 2z }(K))) = v((y: Ax((x, ) e F n (KX‘Y)))) =0,

then
v({y: [F[>8e}) =0.
Here F” = {x: (x,y)e F}. ’
1t follows from the methods of Theorem 13 that Mokobodzki’s result cannot be
extended to coanalytic sets.

THEOREM 14. If V = L, there is a coanalytic subset F of T x T, where T is the circle
group such that () holds where p and v are Haar measure on T and yet for every y,
F? is uncountable.

Proof. Assume V = L and construct an uncountable coanalytic subset C of T
which is concentrated on the rational points of the circle and such that if u(M) = 0,
then p(C+M) = 0.

Let F = {(x,x+c): x €T and c € C}. Clearly, Fis a coanalytic subset of I'x T’
which has the required properties. Q.E.D.

Let us note that Theorem 13 includes a partial answer to a question of
A. Ostaszewski [5], namely, is there a coanalytic concentrated set?

Finally, let us note that our constructions can be slightly altered to answer
a question of S. J. Taylor [4]. At the end of that paper Taylor raises the question
of whether there is a subset X of R of power 2% such that if G is a subset of R with
Lebesgue measure zero, then the planar set X'x G will always have linear measure
zero. We have the following theorems.

THEOREM 15. Assume 2%° = 8,. Then there is a subset X of R such that

M X1 = s,

(2) VGSRIA(G) =0 = XxG has zero linear measurel,

(3) X is concentrated on the rationals.

icm
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THEOREM 16. If V = L, then there is an X satisfying the conditions of Theorem 15
which is coanalytic.

The proofs of these theorems are similar to those given for Theorems 12
and 13. These proofs use Lemma 11 as it stands and the following two lemmas which
are analogous to Lemmas 9 and 10.

Lemma 17. If A(G) = 0, then there is a strictly increasing element g of N¥ such
that the linear measure of the planar set G x Q, is zero, whenever h is strictly increasing
and g<*h.

We indicate how this lemma follows immediately from Theorem 1 of Taylor’s
paper. One only need note the following connections. Let G R with A(G) = 0. Let
{a,} be a sequence with a,>0 for each n such that if {b,)<{a,} (Taylor’s notation),
then Gx ¢9{b,} (Taylor’s notation) has zero linear measure. Let g be a strictly
increasing element of N™ so that for each n, 27 <g . Now, if & is strictly in-
creasing and g<*h, then {0} x 0, = €“{b,}, where b, = 27",

Lemma 18. If SN and Gx Qs has zero linear measure, then Gx Rg has zero
linear measure.

We wish to thank R. J. Gardner for his comments concerning the connections
of our work to that of some others.
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