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Refinable maps in the theory of shape
by

Hisao Kato (Ibaraki)

Abstract. A map r: X — Y between metric compacta is said to be refinable if for every e>0
there is an e-mapping f of X onto ¥ such that sup {dist(r(x), f(x))| x € X} <e. We establish certain
properties of refinable maps in the theory of shape. In particular it is shown that if X is a movable
continuum with Fd(X)<1, every refinable map r: X-> Y preserves shape, but there exist 1-di-
mensional continua X, Y and a refinable map r: X~»Y which does not preserve shape.

0. Introduction. The term compactum is used to mean a compact metric space.
A connected compactum is 2 continuum. A map f: X — Y between compacta is
said to be an e-mapping, ¢>0, if f is surjective and diam f ~1(y)<e for each ye Y.
If x and y are points of a metric space, d(x, y) denotes the distance from x to y.
A map r: X — Y between compacta is refinable [9] if for every £>0 there is an
g-mapping f: X— Y such that d(r,f)= sup{d(r(x),f (x))| xeX}<e. Such
a map fis called an &-refinement of r. For the pointed case, a map r: (X, x) = (¥, »)
between pointed compacta is refinable if for every e>0 there is a map f: (X, x) —
(Y, y) which is an e-refinement of r. By the definitions we know that each refinable
map is surjective, each near homeomorphism is refinable and-if there is a refinable
map from a compactum X to a compactum Y, then X is Y-like. But, any converse
assertions of them are not true.

Throughout this paper, by an ANR we mean an ANR for the class of metrizable
spaces.

In this paper, we shall investigate shape theoretic properties of refinable maps.
In the first section, we prove that a refinable map induces a pseudo-isomorphism
in shape category. In the next section, we show that if X is'a movable continuym
with Fd(X)<1, every refinable map r: X — Y preserves shape, but there exist
1-dimensional continua X, Y and a refinable map r: X — ¥ which does not preserve
shape. Moreover we show that under some conditions refinable maps preserve
FANR. In the last section, we give more detailed information on the refinable
map r: X— ¥ when Y is a compact ANR.

The author wishes to thank Professor Y. Kodama for helpful comments.
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1. Refinable maps and pseudo-isomorphisms. By HCW we mean the category
of spaces having the homotopy type of CW-complexes and homotopy classes of
maps. For a map f [f] denotes the homotopy class determined by f. If Kis a cat-
egory, by K we mean the category of inverse systems in K and system map in K,
also by pro-K the homotopy category of K [14].

First, we give the following definitions.

1.1. DeriNITION. Let K be an arbitrary category. A system map [14]
f={f T3, B} {X;,Powr» A} = { ¥y, dpy, B} of K is a pseudo-isomorphism if for
each fe Band each a3 f (B) there exist g (, B) = ff and a morphism g, gy* Yy(a, sy~ X,
such that for every f' =g (x, B) there exist #(f") >« and a morphism A5: Xjpy — Ypr
such that

ferodam = Gowm 204 G pn ot oty = Panipy -

A morphism 13 {X,,, Payr A} —{ ¥4, dpp» B} of pro-K is a pseudo-isomorphism
if it has a pseudo-isomorphism f: {X,, Pur, A} = {¥g; dpp» B} of K as the rep-
resentation, i.e. f=[f]

1.2. DermNITION. In the shape category [13], a shaping f: X — Y is a pseudo-
isomorphism if there is a pseudo-isomorphism f= {f, /3], B}: {X,, [Purl, 4}
— {¥;, [945], B} of HCW such that

(#) SLfyps) = Slas] /; where {X,, [Pl 4} and {¥;, g1, B} are associ-
ated with X and Y respectively, p,: X — X, g,:Y — Y} are projections [18, Def-
inition 1.2], and S denotes the shape functor (cf. [13], [18, Theorem 2.3]).

The following proposition is easily seen from the definitions.

1.3. PrOPOSITION. If a shaping f: X — Y is a pseudo-isomorphism, then every
system map f which satisfies the condition (%) is a pseudo-isomorphism of HCW.

1.4. Remark. For a shaping f, the following implications are true, but any
of converse are not (cf. Examples 2.6 and 2.7) ;

[ is a shape equivalence — f is a domination
fis a pseudo-isomorphism — f is a weak domination

(see [6] for the definition of the weak domination.)

1.5. THEOREM. Let X and Y be compacta. If a map r: X — Y is refinable, then
the shaping S[r] induced by the map r is a pseudo-isomorphism.

Proof. Let {X,, P, ,+1,N}and {¥,, ¢, ,+1, N} be inverse sequences of compact
polyhedra such that X = invlim{X,, p, ,+1, N} and ¥ = invlim{Y;, g, .41, N}.
Let p,: X— X, and ¢,: ¥ — Y, be natural projections respectively. Since each Y,

is a compact ANR, there are positive number &, and 8, such that any two &,-near
maps to Y, are homotopic and

(1) if x,ye Y and d(x,y)<8,, then d(g,(x), q,(»))<Ze,.
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By S. Mardesié and J. Segal [16], for each n there is a map f,: X, — ¥, such that

(2) d(fnpm an)<'}Tan and .Ef;xpn,n+1:Qn,n+1f;l+1~

Let f = {1, [f,], N}. We shall show that f is a pseudo-isomorphism of HCW. For
each n, choose a positive number 7, such that any two 7, ~near maps to X, are homo-
topic and

() if x,yeX, and d(x,)<n,, then d(f,(x),F.(M)<te.-

By [15], for each n there exist a map gy Y— X, and a §,-refinement r, of r such
that

@ A(Pr> Gula) <M -
Then by (4) we have
) Pu=Gnln -

Let us show that f,g.q,. For each y € Y there is x € X such that r(x) = y. By (1),
(2), (3) and (@),

(2.0, 1,9:()
= d(guro(), £ugurn(0) < A(@ars(X)s dur (3))+d(g,7 (%), £u2a)) + 4l (£2a Fogulal(%))
SEetEotE6<e -
Hence we obtain

() 3,2 fon -

1t follows from (2), (5) and (6) that fis a pseudo-isomorphism of HCW. Thus' the
shaping S[r] is a pseudo-isomorphism.

1.6. Remark. For the pointed case, we have the same result as Theorem 1.5.
In this paper all results proved for the absolute case are also true for the pointed
case. :
" 1.7. PropOSITION. If a shaping f: X— Y ‘is a pseudo-isomorphism, then

(1) f is an epimorphism.

Q) if X is movable ([3], [17]), then Y is movable.

(3) X is approximatively n-connected ([3],[6 p. 501) if and only if Y is so.

4) ddimX = ddim Y, where ddim X' implies the deformation dimension of X in
the sense of J. Dydak [6, p. 23].

(5) X is of trivial shape ([3], [6, p- 50]) if and only if Y is so.

Proof. Let f={f,[f3], B}: {Xe» Puwl, A} — {Y;,[q50:), B} be a pseudo-
isomorphism of HCW satisfying the condition (d) of Definition 1.2.

(1) Since f is a weak domination by Remark 1.4, by [6, Proposition 2.9] f is
an epimorphism.

s
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(2) Since fis a weak domination and X is movable, by [6, Theorem 2.11] ¥
is movable.

(3) Suppose that X is approximatively n-codnected. For each f & B there is
o2 f(F) such that for any map ¢ of the n-sphere $” to X, p (s, tis null-homotopic.
Then there exist g («, f) > fand amap ge,, sy Yy, 5y — X, such that [ f5] [pf(,,)u] [9@.m]
= [@pga, ;y]- Let 51 8" — Y, 5y be an arbitrary map. Then we have

Upote, DS =SpP st S -
Hence, gy, 5y is null-homotopic, which implies that Y is approximatively n-con-
nected. The converse is similar.

(4) Since fis a weak domination, by [6, Theorem 4.2] we have ddim X > ddim ¥,
The converse is similar.

(5) The proof is the same as (3).

1.8. THEOREM. If @ map r: X — Y between compacta is refinable, then

(1) SIr] is an epimorphism. ’

(2) if X is movable, then Y is movable.

(3) X is approximatively n-connected if and only if Y is so.

(4) Fd(X) = Fd(Y) [3, p. 253] and dimX = dim Y.

(5) X is an FAR [3] if and only if Y is so.

Proof. All of ‘the proofs except dimX = dim Y follow from Theorem 1.5
and Proposition 1.7. Let us show dim X" = dim ¥. Since r is refinable, for any family

of ANR’s X is §-like by [9, Corollary 3.1] if and only if ¥ is f-like. This implies
dimX = dim Y.

2. Refinable maps preserving shapes. In this section we show that under some
conditions refinable maps preserve shapes. Also we give some examples in which
refinable maps do not preserve shapes.

The author thanks the referee for some remarks concerning this section.

2.1. PROPOSITION. For a category K, if f+ X = {X,, Do, A} = ¥ = {¥;, qpp» B}
is a pseudo-isomorphism of pro -K and Y is dominated in pro-K by an object of K,
then f is an isomorphism.

Proof. Let f= {f,f;.B}: X— ¥ be a pseudo-isomorphism of K such that
S = [f] Then for each § € B there exist f'> B such that for every 5 & B there exist
a morphism kgt Yy — Y. and f'=f, 87 such that KgopeQper = Qregonr,
because ¥ is dominated in pro-K by an object of X. For each af (B), choose
o'>a, f(B’) such that U [3 P sprya = J3P sepywe - Since fis a pseudo-isomorphism of K,
there exist g (o, f') ' and a morphism Iyt Yo, py — X, satisfying the condition
of Definition 1.1. Then for every ' =g (¢, B) there exist a morphism kegngr: Yy Ypor
and f*'>p" such that kg pgppm = ppr. Also, there exist h(B")zda!, £(B")
and a morphism Ag.: Xy~ Ypo such that

I, ) doter, pyphge = Pangy  and JePriym = Qg Fore D peprenymepry -
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Then we have

Gproprn JpoP pprmepy = Ky e gor FpeD pigeonpory = Ko gr S P pipmear
= kg Sy Pragw 9, 9o, g e
= Ky pr g, 1y 9ot g M

= qﬂuﬂmhﬁm .
Hence, we obtain

g(a,_ﬁ/)qg(,x,_,,')ﬁ',,,f',mpf(p,,,),,(l,m) = G, 3y Dyt pypr-dprpor s = Pamipery »
and

ol o9, 5y = Qpater, 9 -

This implies that f is an isomorphism.

The following theorem follows from Theorem 1.5 and Proposition 2.1.

2.2. THEOREM. Let X and Y be compacta and a map r: X — Y be refinable.
If Y is an FANR, then S[r] is a shape equivalence.

2.3. COROLLARY [9, Corollary 3.4]. Let X and Y be compact ANR’s and a map
r: X — Y be refinable. Then r is a homotopy equivalence.

2.4. THEOREM. Let X and Y be compacta and a map r: X — Y be refinable.
If X is a movable continuum with Fd(X)<1, then Sh(X) = Sh(Y). Moreover if
either X or Y is an FANR, S[r] is a shape equivalence.

Proof. Since X is a movable continuum with Fd (X)<1, by Theorem 1.8 Yis
a movable continuum with Fd(¥)<1. Then there exist continua X; and ¥; such
that Sh(X) = Sh(X;), Sh(Y) = Sh(Y;), dimX; <! and dim ¥,<1. Further, by
A. Trybulec [21] there exist plane continua X, and ¥, such that Sh(X;) = Sh(X})
and Sh(Y;) = Sh(Y,). By K. Borsuk [3, p. 221, 267], it is enough to consider the
following two cases.

Case (1). If Y, is an FANR, then .Y would be an FANR.-It follows from
Theorem 2.2 that Sh(X) = Sh(Y).

Case (2). If Y, is not an FANR, we must show that X, is not an FANR.
Suppose that X, is an FANR. By [3, p. 267] we have,

(i) the projection py: H(X)— pro-H,(X) is an isomorphism where H,
denotes a 1-dimentional homology with integer coefficients, and

(i) pro-H,(Y) is not dominated in pro-groups (e.g. see [l4]) by a group.

Then, by Theorem 1.5 the composition pro-H;(r)p;: H,(X) — pro-Hy(Y)
is a weak domination of pro-groups. Since H,(X) is a finitely generated abelian
group, by [6, Lemma 2.20] pro-H,(Y) is dominated in pro-groups by a group.
This implies a contradiction. Thus we conclude that X, is not an FANR. By
[3, p. 221], Sh(X;) = Sh(Y;) hence Sh(X) = Sh(Y).
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The second part of Theorem follows from the first part and Theorem 2.2. This
completes the proof.

2.5. COROLLARY. Let X and Y be continua in the plane R®. If there exists a refinable
map of X to Y, then two continia X, Y< R* decompose the plane into the same number
of components.

2.6. EXAMPLE, Let k be a natural number and {X¥,p} .., N} be an inverse
sequence of the k-sphere X = S* where the bonding map pf ., is a map of S*
onto S* of deg(pf ,+,)>1 for each n. Consider the following sets:

Z (k) = invlim{X;, ph s1, N},

. . .
Yn = {(x1’x2:~-',xk+1)ERk+1| (xl_lln)2+x§,+"‘+xz’+1 = 1/’12}:

Yk =U ¥y,
n=1

Yo = (0,0, ...,0) € R**1, where R is reals.

By identifying a point z, € Z(k) and y, € Y(k) we obtain a continuum
(X(k)’ *) = (Z(k)a ZO)V(Y(k)syO) -
Now, define a map r,: X(k) — Y(k) by )

r(x) = {x %f xe Y(k),
yo ifxeZ). o

Then, r, is reﬁn-able. In fact, for a given &>0 choose a natural number n, such
thakt 4fng<e. Since Z(k) is S*like, there is an }e-mapping f: (Z(k), zo) —
(Yno+15 ¥o). Define a map g: X (k) — Y(k) by

no ©
x ifxelUYru U 7T,
n

- =1 n=no+2
o) Yo if xe Yr.y, ’
f@) if xeZk).

Clearly we have diamg~'(y)<e and d(r;, gy<e, henée r, is refinable. On the other
hand, Y'(k) is movable but X(k) is not movable [17), which implies Sh(X (k))
# Sh( Y (k)) for each k. Note that X(1) and ¥(1) are contained in R3 and dim X\ )
= dim Y(1) = 1. Hence this example shows that the movability of X in Theorem 2.4
can not be removed. ‘ ‘

2.7. EXaMPLE. Let 4 be an arbltIaIy cont. um. Consid 5¢
1nu . 1sider the fol owin, ts
g

Ay = Ax{t}cdx[0,3] for 0<r<3,

 w w
X(4) = 4, v U1A1/" VA, VU 4yhqpms
n= n=1

@
Y(d) = 4o 0 U 4y
=1
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Deﬁnq a map ry: X(4) — Y(4) by

o0
(a,8) if (a,t)edou U4y,
rA(a: t) = HZI
(@,0) if (@,)ed, v U1A2+1/n .
ne

Then the map r, is refinable. On the other hand, Sh(X () # Sh(Y(4)), because
the decomposition space [1{X(4)) of X(4) can not be embedded in the decompo-
sition space [I(Y(A)) of Y(4) [3, p. 214]. If 4 is a one point set, X (4) and Y(4)
are movable compacta of dimension 0. Hence this example shows that the connec-
tivity of X in Theorem 2.4 can not be removed.

2.8. BExampLE. Let Y¥, Y(k) and y, be the same in Example 2.6. Since each Y¥
is the k-sphere, there is a homeomorphism 7, Y%, . — Y¥for each n such that
hy(¥o) = ¥o. Define a map h: Y(k)— Y(k) by

{hn(y) ifyeYe_ (n=1,2,.),

Y/ =
1) ifye ¥, (=1,2,.).

Then, by the same way as in Example 2.6 we know that & is a near homeomorphism.
Note that Y(1)cR% Clearly, # does not induce a shape equivalence. Hence this
example shows that if X is not an FANR in Theorem 2.4, every refinable map
r: X — Y does not necessarily induce a shape equivale'nce‘

2.9. Remark. (1) For an arbitrary inverse sequence (X Pans1s N } of compacta
with bonding maps p, ,+; onto, the method of the construction of the refinable
map in Example 2.6 can be generalized. Therefore for any nonmovable continuum
we can construct a refinable map which does not preserve shape.

(2) T. Watanabe showed that a refinable map does not necessarily preserve
shape for compacta in R® by using the example of K. Borsuk [2].

Applying Theorem 2.4, we get the following

2.10. COROLLARY. Let @ map r: X — Y between compacta be refinable and Y be
a plane compactum. If X is an ANR (resp. AR), then Y is an ANR (resp- AR).

Proof. Without loss of generality, we may assume that X" and ¥ are continua.
Since X is locally connected, Y is locally connected. By Theorem 1.8 we have
Fd(X) = Fd(Y)<1. Further, by Theorem 2.4 Y is an FANR, hence by K. Borsuk
[4, Theorem 14.1] we conclude that Y'is an ANR. If X'isan AR, then by Theorem 1.8
Y is an FAR, hence we conclude that Y is an AR.

2.11. CorOLLARY [19]. Let @ map r: X — Y between compacta be refinable.
If X is a 1-dimensional ANR, then Y is a 1~dimensional ANR.

Proof. We may assume that X and Y are continua. By Theorem 1.8 Y is
a 1-dimensional locally connected continuwum. Further, by Theorem 2.4 Y is an
FANR, hence by 4, Corollary 13.6] we conclude that Y is an ANR.
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Now, the following problem is raised; if X is an FANR, does every refinable
map r: X — Y induce a shape equivalence? If Fd(X)<1, we have an affirmative
answer from Theorem 2.4. Moreover, we obtain the following partial answer.

2.12. THEOREM. Let a map r: (X, x)— (Y, ) between pointed compacta be
refinable. If X is a connected pointed FANR and the first shape group m;(X, %) is
trivial, then S[r] is a shape equivalence.

Proof. Since the Wall obstruction w(r,(X,x))e Kz, (X, x)) vanishes,
by [7] there is a compact polyhedron (P, p) such that Sh(X, x) = Sh(P, p). Further,
since m,(P,p) = 7,(X,x) = 0, by [20, p. 509] m(P,p) = (X, x) is a finitely
generated abelian group for each i Then, by [10] the projection p;: 7;(X, x) —
— pro-n(X, x) is an isomorphism of pro-groups (e.g., see [14]), because (X, x)
is movable and 7,(X, x) is a countable group. Then, by Theorem 1.5 we conclude
that the composition pro-m(r)p;: n(X, x) — pro-n(Y, y) is a weak domination
of pro-groups. Since by [6, Lemma 2.20] pro-=,(Y, y) is stable and by Theorem 1.8
Fd(Y) = Fd(X)<oo, by ([8], [6, p. 46]) Y is a pointed FANR. By Theorem 2.2 we
conclude that S[r] is a shape equivalence.

3. Refinable maps ontoe ANR’s. In this section, we give detailed information
on the refinable map r: X'— ¥ when Y is a compact ANR.

3.1. TuroreM. Let r: X — A be a map between compacta and A be an ANR.
Then the map v is refinable if and only if there exist an inverse sequence {4y, ps, 141, N 1
such that for each i, A; = A4 and p; ;.1 is an ontg map which is homotopic to 1, and
a homeomorphism h: X — invlim{d;, p; ;4,, N} such that lim (p;k) = r, where

iv0

Sor each i p;: invlim{4,, Diyiv1, N} — A, is a natural projection.

Proovf. It is enough to give the proof of necessity. It is essentially due to
S. Mardesi¢ and J. Segal ([12], [15]).

Inductively, we can find for each i, maps p;;4,: 4;.q — A; onto, positive
number ¢; with limg; = 0, g-refinement f; of r, and positive number n;<¢; having
the following properties. °

(1) For any set N;=d; with diam(N)<#;, we have diamp,.j(]\fj)<17,-/21".

(2) If d(x, y)>2e, for x,yeX, then d(fi(x), /i{()))>27;.

3) d(f, Pi,iv1 fre) Sy for each i
Then the sequence {p;f};=y,»,.. is a Cauchy sequence for each i Put
hy =jl_i32 (pi;f;). Then we have h; = Pi,i+1hier and d(fy, h)<n;. Therefore there

is a map h: X~ invlim{4;, p; ;+,, N} such that p;s = k; for each i. Then k is
a homeomorphism [I15]. On the other hand, we have

d(r(x), p:h(x)) = d(r(x), h(x)
< d(r(), fi(0)+d(fi(x), hy(x))

S
< g+m;<2  for each x e X.
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Hence, lim (p;/) = r. Since 4 is a compact ANR, r= p;h for allmost all i. Then,
rech; =Ip: se1hi412Dioe 1t for allmost all i Since S{r] is an epimorphism, we
obtain p;, ;+,2¢1, for allmost all 7. This completes the proof.

A map f: X— Y is said to be monotone if f is surjective and for each ye ¥
f7y) is connected. ’

3.2. THEOREM. A map rof a(S; v S, v ...
is re'ﬁnable if and only if it is monotone, where S;v S,V ...
point union of n circles.

Proof. We shall show only the case n = 2. The case n # 2 is similarly proved.
If r is refinable, r is monotone [9, Corollary 1.2] because S; v S, is locally connected.

Conversely, suppose that r is monotone. Let & be an arbitrary positive number.
Now, let Ay, Ay, ..., 4,, and By, By, ..., B, denote circular chains of non—overlappin‘g
closed intervals of S, and S, respectively such that s, € Int(4, U Byo), where 5o 18
a common point of S; and S,, and diam(4, U By)<g&, diamd;<fe, diamB;<%e
for each 1<i<m. We may assume that m is a sufficiently large integer. Put
C; = r~1(4)) and D; = r~ (B for 0<i<m and choose points x; & C; and y; € D;
for 1< j<m such that

v S,)-like continuum X 10 Sy v Sy ... VS,
v S, (n>1) denotes a one

[€))] r(x)entd4; and r(y)elntB;.

Then the sequences Cy, Cy, ..., C,, and Dy, Dy, ..., D, ate circular chains of sub-

continua of X such that X = |J C; u U D;, because r is monotone [11, p. 131].
i=0 i=0

Then by (1) there\ is a positive number n<e such that

© dx;, U GGuUDp>y for 1<i<m,
Jjedi i=0 :
" .
d(y;, U Cju UDp>y for 1<ism,
j=0 jeJy

where J; = {0, 1, ..., i—=1,i+1, wym} (1<i<m), and

@) if 4(C;, C)<n for 0<i,j<m, then |i—jl<1 or [i—j| = m,
if d(D,, D;)<n for 0<i,j<m, then li—jl<1 or |i—jl = m, and
d(C,, Dy>n for 1<i,j<m. '
Since X is (Sy Vv S,)-like, there is an n-mapping f: X—(5,Vv5S,). Then, by (2)
and (3) we can prove that s,ef(Cy L Do) and the sequences f(C;),f(Cs)s e

s f (Crey) and f(D2), [ (D3), s [ (Dpy—y) are chains of closed intervals in S; or
S,. Clearly, there-is a homeomorphism A: §;v Sy — S, v S, such that

@ Rf (o) =r(x) and hf(p)=r(y) for
Now, hf is an 7-mapping, hence an e-mapping. Also, by (1), (2), (3) and (4) we have

@

2gism—1.
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o) RF(C)lr(xiey), r(Xp Dl e Aia1 O AU iy for 3<i<m-2,
©  RADYSIr(Vi-1), r(Pis Dl Bioy U By U Biyy  for  3kism—2,

and

0] hf(U Ciu U G UU DiU U D)C[r(la),r(xm DV r(s), r (V- z)

J=m~-1

cUAu U AJUUBiu 0 B

j=m-2 JEm=-2

where [x, y] denotes the smallest interval in a circle S from x to y if d(x, y) <diamS*
Tor x, y e S1. Then it follows from (5), (6) and (7) that d(, Af)<e, which implies
that r is refinable. This completes the proof.

Combining Theorems 3.1 and 3.2 we have

3.3. COROLLARY. If there is a monotone map r of a (Syv S8,V ... v S,)-like con-
timuum X 10 Syv Sy V ... VS, then S[r]is a shape equivalence. Moreover, X is homeo-
morphic to the limit of the inverse sequence of Sy v S,V ... v S, satisfying the conditions
of Theorem 3.1.

The map of the Warsaw Circle onto a circle obtained by shrinking the limiting
interval to a point is monotone, hence refinable. Generally we have the following

' 3.4. CoroLLARY. If X is a hereditarily decomposable circle-like continuum,

then there is a refinable map of X to a circle S'.

Proof. Since X is a hereditarily decomposable circle-like cgntinuum, by
[5, Theorem 3] we conclude that X is not arc-like. Also, since X is decomposable,
there exist proper subcontinua M and N such that X = M U N. Then, by

[5, Theorem 4] no proper subcontmuurn of X separates X, hence we may assume
that

M=X-N and N=X-M.

Then M n N is not connected, because X is not arc-like. By [5, Theorem 5]
M N = HuK, where H and K are disjoint subcontinua of X. Now, we define
an equivalence relation ~ on X by setting x~y if and only if x =y and
xeX—(HUK) or x,yeH or x,ye K. Let X, = X/~ be the quotient space
and p: X' — X, the quotient map. Note that p: X — X, p|M: M — M, = p(M)
and p|N: N— Ny = p(N) are monotone maps. Since M, N are irrcducible
between H and K respectively, M,, N, are irreducible between p(H) and p(K)
respectively [11, p. 192]. Further, M, and N; are atriodic, hereditarily unicoherent
and hereditarily decomposable by [11, p. 171]. Then for some intervals I; = [a;, b;]
(i=1,2 and a;<by<a,<b,), by [l, Theorem 8] there are monotone maps
fi: My —1I; and f,: Ny — I,. Since p(H) and p(K) are one point sets respectively,
we may assume that fip(H) = a4, fip(K) = by, fop(H) = a, and fop(K) = b,,
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Clearly, there is an onto map k: I; U J, — S such that k(a;) = k(a,) # k(by)
= k(b,) and k|I; (i = 1, 2) is injective. Define a map r: X— S! by

_Vkfip(x) i xeM,
r(x)_{kf;p(x) if xe N.

Then we can easily see that r is monotone, hence by Theorem 3.2 r is refinable. This
completes the proof.

ProBLEM. Does each refinable map preserve FANR?
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