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More Lusin properties in the product space S"
. by

G. V. Cox (London)

Abstract. The work of an earlier paper on the subject is extended to include a generalization
of the concept of concentrated spaces that applies to the Cartesian produgct, S™. Particular attention
is paid to the properties of being hereditary, being preserved by continuous functions, and being
preserved by unions.

1. Introduction. In an earlier paper [C] on this subject, generalizations of proper-
ties L and v as found in Section 40 of [K] were introduced, and basic relationships
about them were proved and several related examples were given. The purpose of
the present paper is to go deeper into the subject by generalizing property P
(i.e., concentrated about a countable dense subset of itself) in a similar fashion. We
keep the notation of [C], and the definitions of properties C”' and C as found in
Section 40 of [K] are referred to. We call spaces of universal measure 0 [L] S spaces.
We assume that our spaces are hereditarily separable, regular, Hausdorff spaces.
By n, we always mean a positive integer.

DEFINITION. § is P" means that there exists 2 countable densé subset B of S such
that S” is concentrated S"—(S—B)". .

DEFINITION. S is P® means that S is P" for every n.

Note. We let Hy", Hv®, HP", HP® denote hereditarily v, v®°, P", P®,

2. Basic theorems.

THEOREM 1. Each of the following is true.

(1) If S is countable, S is Hv®,

@ I Sis v+, 8 sy,

@) If S is P"*1 S s P7.

@ Ir Sis v, S is P,

Proof. (1) and (4) are obvious. (2) and (3) have essentially the same argument,
and that argument is given in Theorem 1 of [C]. &

THEOREM 2. If S is P" (or HP") and f maps S continuously onto T, then T is P"
(or HP"),
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Proof. We prove the theorem for S P". If S'is HP", thenif 7" < T, let S’ = f~1 T
-and f|S’ maps S’ continuously onto 7' and S’ is P".

Given f: S— T, a continuous surjection, let F: S"—sT" be defined by
F(s1y 00 8) = (F(50), s f(5)). F, likewise is a continuous surjection. Now
letting B be countable dense in S such that " is concentrated about the B- grid, we
show that T" is concentrated about the f(B)-grid. As f (B) is countable and dense
in T, this will prove the theorem.

Suppose that O is open in T™ containing the f(B)-grid. F~4(0) is open in S"
and contains the B-grid. As $"—F~!(0) is countable, T"—0 is too. H

Next, we investigate the analogue to the following propositions:

. o N
(1) Ifeach S;isdense in T = (J S, and each S, enjoys property v, then so does T,
i=1

o0
(@ If each S;-enjoys property P, then so does T = U s
i=1

The reason for the density requirement in (1) is seen by the fact that under CH,
uncountable v subspaces of a Cantor set in R exist, yet when we union it with the

rationals, which is v, the result contains an uncountable, nowhere dense subset, and
is not y.

We start with a lemma.

LemMA A. Let T be second countable, and suppose that ST is HV* and C<T

is countable. Suppose further that if B is dense in S U C and u is open (relS), then‘

there is b € B that is a point or limit point of u. Then S v C is V.

Proof. By induction. When n =1, B n cl(S) is dense in cI(S), hence S is
concentrated about B N ¢l(S), so S U C is concentrated about B.

Now suppose the result is true for 72— 1, but not for . Let M be an uncountable
closed subset of (S C)" that misses the B- gridin(SUCY. Let M’ = M~ (Su By,
which is closed in (S v B)" and still uncountable, for the only points removed are
in 7;(C—B) and M can only intersect 7 1(¢) (which is homeomorphic to
(SUCY~" in a countable set.

Let {Uy, Uy, U,, ..} be a basis for S. Pick d, € § A U, such that {d,}" misses M.
If this were not possible, then b € B cl(Uy) is such that (b, ..., b) € M. Next pick
di €S n Uy such that {d,, d,}" misses M. As before, such a point d; must exist.
In general, pick d;e S n U; such that {do, ..., d;}" misses M.

Let D = {d,, d,, d;, ...} which lies in S and is dense in 8. For each iz0, let

g

n n w '
E=U(Um(mj'd)aM’)) and E=U E~D.
¥ =1 k=1 i=0
E is countable since the sets, 7y Yd) o M’ are.
Let S = S—F and we show that S’ is not v", contradicting that S is Hv".
DeS', M’ n S™ is still uncountable and misses the D-grid. To see this, suppose

me M’ and m is in the D-grid. Some coordinate of m is therefore in D, and in fact,
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every coordinate is in D, else such a coordinate would be in E. Thus m € D", but
{dy, .., d;}" misses M for each i. B

Now, for relatively little additional work, we can prove our theorem.

THEOREM 3. Let T be second countable, and suppose that S is a dense subspace
of T and that S is HV* and C<T is countable. Then S v C is HV".

Proof. An arbitrary subspace of S U € may be written as S’ U C’ with S'&§
and C’'cC. As S’ has property v, we assume that S is somewhere dense in T,
else S’ is countable. Let O be the maximum open set in T such that S’ n O is dense
in 0. Thus S'—0O is nowhere dense in T and therefore countable.

Write S0 C’ as S”" U C” where S”" =S"'n0O and C" = C'"U(S'—0).
Lemma A is applicable and $” v C" is V", Thus, Su C is Hv". B

The proof for the analogous statement concerning P" spaces is much easier.

TuroREM 4. If S<T is P" (or HP") and C<T is countable, then S L C is P”
(HP").

Proof. If " is concentrated about a B-grid in S*, (S u C)" is concentrated
about the (Bu C)-grid in (Swv C)". This also applies to §'u C'eSu C.

Remark. As weak as Theorems 3 and 4 are, we shall see (Example 7) that they
are the best possible. With regard to Theorem 3, the requirement that S be Hv" as
opposed to v" is necessary, even to conclude that S u C is V", as shown by Theorem 7
of [C]. .

We end this section by giving two theorems that provide a foundation for later
examples.

THEOREM 5. If S is P", then S™ is C".
Proof. See [T, Corollary 2.5]. &

n
THEOREM 6. If @ S = R, then S™ does not have property C.
i=1

Proof. This is more or less a generalization of [S]. It is proved using properties
of the inner product space, R". Let L be the line in R" contai.ning ©, 9, s 0) and
(1,1, ..., 1). Given a point x & R", its projection, P(x), onto L is the point w1t¥1 cac'lil
coordinate Zx,/n. From some elementary inequalities, if x and y are in R",
1PG)—-PO)I< le—yjl .

Now suppose € S = R. Let, for each i d; = 2% Given any sequence,

i=1

{Xy,%;,..> of points from S" let p, = P(x;) for each i As some point,
(p,p, -.,p)eL is not covered by the collection of neighbourhoods,

{N(p19 d])a N(Pz, dz),_ "-} ’

and as some x € S" projects onto (p, p, ..., p) (namely, x SI}Ch thaf Zx; = np), then
because the neighbourhoods do not shrink through projection, x is not covered by
{N(xy,d)), N(x;,dy), ...}. Therefore, S™ does not have property C. B

1*
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" 3. Examples. The examples given here are similar to those found in Theorems 6
and 7 of [C]. In fact, Example 8 improves Theorem 6. We first define a useful con-
dition and prove two lemmas. The reader should consult [C] for definitions of «, B,
and y. Although they are defined there for I”, there is no problem in extending their

meaning to an arbitrary S”. The only possible confusion might be with «, where-

the change involves changing the condition that “x belongs to the segment (a, by”
to “x belongs to the open set u in S”.

DeFINITION. S has property H, means that if O is a dense open set in S" and

B(0O) contains no open (reldiag (S")) subset of diag (S"), then y(0) is countable.
~Lemma B. If S is H,, S is v".

Proof. Let B be dense in S and O be open in S” containing the B-grid. Then
B(0) contains no open subset of diag (S"). Also, "0 = B(0). a(0) is empty,
for if p € «(0), then one coordinate of p is allowed to move and the result remains
in $(0); this would put a point of the B-grid in f(0), which cannot happen. Thus
B(O) =9(0), s0o Sisv". B

Before proceeding, we direct the reader’s attention to two useful propertics
regarding f, o and y.

(1) I S=T and Sis dense in T and O’ is open in S” and O is open in T with
0N S"= 0" then B(0)=BO)NS" a(0)=ua(0)nS" and y(0)
= 9(0) n §". We use ambiguous notation. f(0") refers to the boundary of 0’
in S™ and B(0) to the boundary of O in T". Similar interpretations apply for a
and y.
(2) I S<T, O'is adense opensetin S” and O is open in 7" such that O N " = O’
and also such that O contains T"—cl(S"), then £(0") = f(0) N S", and
a(0) n §"<a(0), so y(0)=y(0) n S™
Both of these are easily verified.
Lemma C. If T is H, and S<T, then S is H,.

Proof. Suppose O’ is a dense open set in S" for which $(0’) contains no open
subset of diag (S"). Let O be open in 7" such that O A S = 0’ and also such that O
contains T"—cl(S"). B(O) fails to contain an open subset of diag (T™), for supposing
that v is open in T and if x € v, (x, x, ..., x) € B(0), then v 1 S is dense in v since O
contains 7" —cl(S"). So v' = v N .S is open relative to S and if x e v, (%, %, .0y X)
€ p(0). ’ v

Since T has H,, y(O) is countable and by (2) above, y(O’) is countable. B

Remark. The main reason for (1) is that we shall construct dense subspaces S,
of R, looking at the open sets in R". We want to assume that by forcing countability
conditions on y(0), for these open sets O, we have in fact forced countability con-

ditions on y(O N S"). As a matter of fact, Theorem 6 of [C] does adhere to this
situation.

ExampLE 7 (CH). There exists two Hv® subspaces, X and Y, of R, each un-
countably dense in R, but such that X U Y is not P2,
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Proof. Let {By}, 8<w;,, list the countable dense subsets of R in such a way
that each countable dense subset of R appears o, times. For each n, list the dense
open sets in R" whose boundaries contain no open subset of diag (R”), {0}}, 0<w;.

Let {ug,uy,t;,...p be a sequence such that both {ug,u,,u,,.+} and
{ui, 13, Us, ...} are bases for R. The even sequence will pertain to X, the odd one
to Y.

Let A, be a homeomorphism from R onto R that maps B, into its complement.
Let F, = G, be a first category in R set such that if x e R—F,, {x}" ny(0%) = &
for each n. This is possible since none of the open sets have boundaries containing
open subsets of diagonals. Now let Qg = (Bo U ho(Bo) U kg (Bo) L h (k5 (By))
which is first category in R, and pick x,€uo—(Qo U Fo U hg*(G,)) and let
Yo = ho(xg). The transfinite induction is now started. '

For t<w,, if B, = B, for some <, let h, be the homeomorphism defined at
ordinal 4. Otherwise, let &, be a homeomorphism defined from R onto R that maps

U {4, ¥s} U B, into its complement. Let F, be a first category in R sét such that

o<t

if xe R—F,, 0<t, and n is a positive integer, [( ) {x,} U {x})"—( go{x,})"] N
B o<t a

N (0% = @. (The argument for the existence of F, is very similar to one found in

Lemma C of [C]. It is a combinatorial consideration of different first category sets,

and thus omitted here.) Let G, be a similar set for the y,’s. Let

Q. = U [B, U h(Bo) v h*(B) v h7H(h7 (B2))] v
U U [ (helB2) © B (7B -

If [c] is even, X, is picked from u,. If [¢] is odd, x, is picked from A, Yug).

So pick x, in accordance with that rule and also such that x, ¢ (Q, U F; L ;' (GY).

Furthermore, pick x, outside | {x,} and such that %,(x;) is not in {J {yo} Gee., %, i
o<t e<t

not equal to AT(y,) for a previous o). Let y, = A(x.).
Let X = U {x;} and ¥ = U {».}, both of which are uncountably dense in R.

< T<wy
Both spaces havc1 property H, for every n (recall Proposition (1) between Lemmas B
and C). Thus X and Y are Hv®.

Now we show that X u Y is not P2, Suppose that B is countable and dense
in X U Y. There is a first ordinal & such that B = B;. We are able to find an un-
countable closed set in (X U Y)? that misses the B-grid, namely the graph of /s
when intersected with (X U Y)2 The graph is clearly closed, and has uncountable
intersection with X'x Y= (X u Y)?, because for each t>8 with B, = Bj, (X, o)
is a pew point of the graph.

This uncountable closed set surely misses B2 Now consider what happens if
some (b, z) € (X' U Y)? is on this graph. Then z = A,(b), yet hy(b) is not in X U ¥,
for it could not be picked prior to the 5-level since s; maps B; away from qa{x,, Vabe

o

It is not picked at the §-level, for 44(b) would be either x; or y,, which means x; is
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in Q. It is not picked after the §-level, for ,(b) = x, (1>5) means x, € 4,(B;) and
for hyb) = y, means x, €k, '(hy(Bs), both of which were disallowed. Similar
reasoning takes care of (z,b) e (X u Y)% Thus, XU Y is not PP B

Remark. As X and Y are both dense in R, X u ¥ is v as well as P.

Remark. There does not appear to be the result that property C" does not
imply property P in the literature. X above has the property that X~ 2 is not P (for
if B is countable in X2, B misses n~*(x) for some x € X which is closed and un-
countable), yet by Theorem 5, X2 is C".

The next example improves Theorem 6 of [C]. First we state two lemmas, very
similar to Lemmas A and C of [C]. For this reason, the proofs given are lacking in
details.

LeMMA D. If teR, then the subset P of R"*, consisting of all x such that
X1+t Xany = t, has the property that if k is an integer, 1<k<n, and s is an
increasing finite subsequence of (1,2, ..., n-+1) with k terms and F is first category
in I, R;, then ng'(F) 0 P is first category in P. :

Proof. It suffices to show that if F is closed and nowhere dense in H Ry,

Jes
then 7, *(F) n P is closed and nowhere dense in P. This, in turn, follows from the

fact that if U is an open rectangle in R*** and U intersects P, then n(U n P) is open

in [T R;. To see that the latter is true, suppose (py,, ..., Py) € (U N P) yet is
JES

a limit point of non-members of 7 (U n P). Find a sequence, {(g,, ..., g5)) that

converges to (py,, ..., P,) With y, but such that no point of this sequence is in

(U n P). Let (py, ..., Ppt1) €P 0 U project to (p;,, ..., py,). Let z be an integer,

1<z<n+1 such that z s j; for any j. Let, for I<m<n+1, m # z,

y
l‘,’;‘ — Im
m

Let r) solve r} +...+13+...+rh, = t. For large y, (], ..., 7} 1) € P n U yet projects
to (g7, ..., g},), which is a contradiction. & !

LeMMA E. Let te R. Let P be defined as above. Suppose that C is a countable
subset of R (perhaps empty) and C'<C and O is open in' R" and C"—C"" misses y(O).
Then there exists a first category subset F of P such that if (xy,..., X,+1) € P—F,
then ({xy, ..., Xp41} U CY'—C'™ misses y(0). B

" Proof. Almost identical to Lemma C of [C].

ExAMPLE 8 (CH). Let n be a positive integer. There exists a subspace S of R
n+1

which is uncountably dense in R such that S is Hv* but @ S=R.
i=1
Proof. Let {uy,uy, ...} be a basis for R. Arrange the dense open sets in R
whose boundaries contain no open subset of diag (R"): {O,}, 0<®,. Arrange the

elements of R: {t;}, 8<wy. For each 8, let Py be the set P in Lemma D with ¢ = t,.

if m is term of s,
if m is not.
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Apply Lemma E with C = €' = @ and O = 0,. Pick (x4, ..., x3™) from P,
such that {x}, ..., x§**}" misses y(O). Furthermore, do it so that x§ & .
For ordinal v<d,, let P = P, and C = |J {x}, ..., xJ**}. For each 6<r, apply
o<t

Lemma E with C' = {J {x, ..., x!™1} to get F = F,. As there are only countably
o<@

many 0<r, we get a first category subset of P,, the complement from which we
pick (x!, ..., x0*1), We also make x; €y and xJ ¢ U {x3}.
a<t

Let § = | {x!,..,x""!} which is uncountably dense in R. Furthermore,

t<wy
w1
@ S = R, and S has property H,. B
=1

Remark. Coupling this example with Theorems 5 and 6 (and with C"' — C),
we have Hv" does not imply P**!. We also refute the converses to (2) and (3) of

*Theorem 1.

Remark. Although it has appeared in the literature [MS] that p+» C, and
in fact, there are set theoretical differences between f and C [L], the above example
(for n = 1) gives another example. That is, if S is v, then it is easily verified that S?
is B, yetif S@ S =R, S? is not C.

The last example refutes the converse to (4) of Theorem 1.

ExAMPLE 9 (CH). There exists a HP® subspace of R that is not v.

Proof. We start with the space X of Example 7. We shall map this continuously
onto a space that is not v. In view of Theorem 2, this will give us our-conclusion.

Write that space, X, as a countably infinite union of mutually exclusive open

-]
sets, X = | 0;. Let {(Cy, Cs, ...y be a sequence of Cantor sets with the property
i=1

that if u is open in R, then u contains some C;. Continuously map, for each i, 0,
into C; in a 1-1 fashion. From a well known result on 0-dimensional sets, this is
possible. The resulting map is continuous, yet the image contains lots of uncountable
nowhere dense sets, and therefore is not v, H '
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A characterization of expandability of models
for ZF to models for KM

by

Zygmunt Ratajezyk (Warszawa),

Abstract. In this paper we characterize KM-expandable and KM-non-f-expandable models
by means of certain games. Also another characterization is given. It is proved that KM-expand~
ability and KM-non-f-expandability are equivalent in a wide class of models for ZF.

§ 0. Introduction. The primary aim of our paper is the characterization, with
the aid of a certain closed game, of those KM-expandable models for ZF whose
height has a cofinality character equal to w.

We characterize KM -expandable models in a way similar to that of Bielinski [3]
in the case of countable models. We do this by means of approximations for recursive
closed game formulas considered by Barwise in [1].

The investigation of properties of KM-expandable models was initiated by
Marek and Mostowski in [6]. The authors focus their attention on KM - f-expandable
models and- give their full characterization. Among other.things, they show that
KM-expandability is not an elementary property in a 1-st order language. In that
paper a characterization of KM-expandable standard models whose height has
a cofinality character > is given. In fact, it is shown that any model for KM
possessing such a set universe is automatically a B-model, hence KM ~expandability
can be reduced to KM-fB-expandability in that case.

Let K be a language. By K, we shall denote the class of all infinitary formulas
of the language K. Let L,: « € Ord be the hierarchy of constructible sets. By X, we
‘shall denote K., N L, and by ZFS* the class of all formulas ¢ from language
(%2F)«e Such that their relativization ¢" is a theorem in KM. By ZF™ we shall
understand the intersection of ZFXM and L,. Note that for admissible a>w,

ZFM = (o e (Lzp)et L F (KM F 0"}

K. Bielifiski, in [3], shows that although KM -expandability is not an elementary
property (in language (£zp)yy), nevertheless it can be characterized in a uniform
manner in the class of countable models M by a theory which is Zy in HYPy.

Namely: -
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