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and so ‘there exists a natural number p, such that the set

. o0 [ @
D=nNn U U {x: [fpa0)|>1po}

M=1 m=M+1 n=M+1
is of the second category. D is obviously a set having the Baire property, and so
D = GAP, where G is open and non-empty and P is of the first category. Let K(x, r)
be an open ball with the centre x and the radius r>0 included in G.

Put H,, = {x: | fusX)|>1/po} for m, ne N. These sets have the Baire prop-

erty, and so there exist open sets {Gp,}mney and the sets of the first category
{Puntmnen such that H, , = G, AP, . for every m,ne N.

o«
It is not difficult to prove that for every natural M the set U U Guais
m=M+1n=M+1
dense in K(x, r).
Let {Gy: ke N} be a basis for'a subspace topology in K{(x,r) such that
{Gy: k =j,j+l, ...} is also a basis for every je N.
o0
The set U U G, is dense in K(x, r), and so there exist natural numbers m1

m=1 p=1
0 -]
and n, such that G, N G, ., # 3. The set U
. ) m=max(m,n)+1 n=max(my,ny)+1
dense in K(x, r), and so there exist natural numbers m,>m, and n,>n; such that
Gy N Gy, # . Proceeding in this way, we obtain two increasing sequences

{m}ren and {m}ycy of natural numbers such that Gy N G,, ,, #.@ for every ke N.

Gp,n is also

Hence the set |J G, is dense in K(x, r) and, moreover, for every j€ N, the set
k=1
o« . 0
U Gy, is also dense in K(x, r). So, for every je N, the set U Gy, is Tesidual
k=j )

in K(x,r) and from the fact that U Hypme™> U G — U memc it follows that

hmsup H py.m, is residual in K(x, r). chce lnnsup e & 5+ But if x € lim supH,,,

Wk >

then hm S (%) is ot equal to zero — a contradlctlon This ends the proof,
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Circularity of graphs and continua: topology
by

Harold Bell, Ezra Brown, R. F. Dickman, Jr.,
and E. L. Green *, (Blacksburg, Va.)

Abstract. A chain in a space X is a finite collection {Kj, ..., Ku} of distinct closed and connected
sets such that Kin K+ @ if and only if [i—jl<1. A circular chain in X is a. collection JG such
that for any K€ 3, }—{K?} is a chain. For any locally connected, connected space X, m(X),
the circularity of X is defined by

m(X) = sup{n: X can be represented as a union of a .
circular chain with exactly n elements} .

The circularity, o(G), of a finite connected graph G is defined by

o(G) = sup{n: G can be represented as the union of a circular chain X in G
such that every member of JG contains at least one vertex of G}.

The principal results in this paper are: (1) if G is a (planar) graph, then G can be-embedded
in a (planar) Peano continuum X with o(G) = m(X). (2) If X is a planar Peano continuum,
then m(X) is infinite or even. (3) If G contains a cycle, then 6(G)>6 and if G is planar, then ¢(G)
is even. (4) The G is one of the Kuratowski non-planar graphs, then o(G) = 6.

In another paper, Circularity of Graphs and continua: Combinatorics, the authors develope
combinatorial techniques for the evaluation of the circularity of graphs and show that for any
integer k3> 6, there exists a non-planar graph Gy with a(Gx) = k.

1. Tntroduction. Throughout this paper X will denote a locally connected, con-
nected normal space. For A< X, by(4) denotes the number of components of A
less one (or oo if this number is infinite). The degree of multicoherence, r(X), of X is
deﬁned by

® r@X@= sup{bo(HnK) X=HuKk and H and K are closed and
connected subsets of X7} .

If r(X) = 0, X is said to be unicoherent and wé say that X is multicoherent
otherwise. X is said to be finitely multicoherent if 0<r(X)< oo, If this value is never
attained, i.6. by(H N K)< o for representations X=HuKasin (», X1 is said
to be weakly-finitely multicoherent. A. H. Stone has studied multicoherent spaces
extensively [6, 7, 8, 9] and many authors have studied unicoherent spaces. Stone
has raised several interesting. questions ¢oncerning multicoherent spaces.

or wds partially supported by a grant ‘from the National Science foundation.
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By a chain # in X we mean a finite collection {Kj, ..., K} of distinct closed
and connected subsets of X such that K; n K; 5 @ if and only if |i—j[<1. A circular
chain in X is a collection of closed and connected sets o~ such that no three members
of o have a point in common and if Ke o', then o —{K} is a chain in X. Let
n>2 be an integer and let S(n) denote the following statement:

S(m): X is multicoherent if and only if X can be represented as the union of
a circular chain containing exactly n elements.

In a private communication A. H. Stone conjectured that S(») is true for all
n>2 and he stated that he had established S(n) for all n>2 when X was finitely
multicoherent and he announced S(3) for locally connected, connected normal
spaces in [6]. In [4], Dickman proved that S(6) is true for compact spaces and he
showed that S(n) is true for n>2 whenever X is weakly-finitely multicoherent.
In [6], it was shown that S(4) always obtains for a large class of spaces. Finally, Bell
‘and Dickman gave an example of a plane multicoherent, one-dimensional Peano
continuum C for which S(7) fails, i.e.' C could not ‘be represented as the union of
a-circular chain of seven subcontinua [3]. It was known from [5], that C could be
-represented as the union of a circular chain with six members. The results led naturally
to the following definition:

For any locally connected, connected space X, let m(X), the czrculanty of X,
be defined by:

() m(X)

In [3], the authors indicated that they were unable to construct an example of
a plane Peano continuum where m(X) is an odd integer, however, for any integer
k=3, they gave an example of a plane Peano continuum C, for which m(G) = 2k.
-In the example C of [3], for which m(C) = 6, the continuum C was obtained as the
“closure of the union of a nested sequence of planar graphs Gy, G,, ...; Gy, ... wheré G,
is a triangle and G, , is obtained by subdividing G, and adding certain new edges.
This observation in-turn, led to the deﬁmtlon of -a new topological invariant for
graphs.

" For completeness we include the following standard definitions:

A ‘graph G is a finite, nonempty set V together with a set E (disjoint from V)
of two-element subsets of (distinct) elements of V. Each element of V is called a vertex
and V itself is called the vertex set of G; the members of the edge set E are called
edges. In the present discussion, the topological realization of an abstract graph G
will also be denoted by G. Note that if » and v distinct vertices of G, then u and

= sup{n: X has a circular chain representation with »n links}.

v are joined by one edge or no edges, i.e. there are no parallel edges. This restriction -

is for convenience only. It can be shown that the addition of a parallel edge to a
graph does not change the invariant defiped herein.
For any graph G, define the circularity of G, o(G), by

(#%#) @(G) =sup{n: G can be vovered by a circular chain of
- n elements each of which contains at least one vertex of G}.
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Note that each 4 € & is a closed and connected subset of the topological realization

“of G and thus is not necessarily a union of whole edges and vertices of G. Frequently

we will call the circular chain representation oA = {4, 4,, ...

(or a graph) X, a circular covering if X = U A, Aindp . #9 for i=1,2,

5 An} of a continuum

(where we take n+1 = 1), and no three of the A}’s have a point in common (and
each A, contains at least one vertex of the graph).

Since for a large class of continua, the-circularity is infinite, (i.e. for any weakly-
finitely multicoherent space X, m(X) = oo) the study of the circularity of graphs is
inherently more interesting than the study of the circularity of continua. However
the two concepts are intimately related. For example, in this paper we prove that
if G is any graph, there is a Peano continuum X containing G such that m(X) = a(G).

The principal result of this paper is that the circularity of any planar Peano
continuum (respectively, planar graph) is always even or infinite (respectively,
always even). Furthermore, we establish some basic results concerning the circularity
of graphs and calculate the circularity of several classes of graphs.

In another paper, Circularity of graphs and continua: combinatorics, we continue
our investigations and show that for any n:>3, there exist a planar graph with cir-

-cularity 27 and a non-planar graph with circularity 2n-1. The techniques of the

second paper are combinatorial in nature, whereas the techniques of this paper are
principally topological. Definitions not given herein may be found in [1] or [11].

I1. Basic results-circularity of graphs. Hereafter we shall only CO]’ISIdCr (finite)
connected graphs with at least two vertices.
LemMA (2.1). For any graph G, o(G)=2.
Proof. Let 4; = G = A,. Then & = {4,
TaroreM (2.2). Let G be a graph that contains a cycle. Then ¢(G)=6.
Proof. Let {v;, vz, ..., v,} be the vertices of a cycle in G, n=>3, with #; and v,
adjacent. Let {L,,L,,L;} be a maximal collection of mutually disjoint continua
such that v, € L, v, € L, and {vs, ..., 0,}SLs and such that each L,, i = 1,2, 3,
is the union of edges and vertices of G. (Here maximal means that if {L}, L;, L3} is
any other such collection and L,cL{, L,cLj and LycLj, then L;= L,
i=1,2,3.) Note that every edge in G/{L;, L,, L5} has its vertices in exactly two
of the L;’s. Thus for each edge ¢ = uv of G let m(e) be a point of e distinct from u
and v and for i,j=1,2,3, i #J, let )

A,} is the desired circular covering.

Ky =U{lu,m@): e =uweE@G),uel; and veL; UL}.

Then {K,;} forms a circular chain of continua with 6 members and ¢(G)=6.

- COROLLARY (2.3). If Gisa graph, then ¢(G) = 2 if and ;only if G is acyclic,
ie. G 15 a tree.
’ Proof. The result follows immediately from (2.1);(2.2) and the observation that
trees are unicoherent. ;
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- DerNiTIONS. Let V(G) and E(G) denote the set of vertices ‘and edges, respect-
ively, of a graph G. Let u, v be members of V(G) and define the distance dg(u, v)
relative to G as the length of the shortest path in G from u to v, i.e. the minimum
number of edges contained in a path in G from u to v. Note dg(u, v) = 1 if and only
if u and v are adjacent in G. Let J = {v,, v, ..., v,} be a cycle in G. We say that J is
a proper cycle if dg(Vy, Vj) = d,(V, V) for all pairs i, j (here we are considering
J to be a subgraph of G.)

For any graph G, let p(G) the proper gzrth of G, be defined by:

p(G) = max{n € N: G contains a proper cycle with »n vertices} .

THEOREM (2.4). For any connected graph G, o(G)<2p(G).

Proof. Let ¢(G) = n and let & = {4,, ..., 4,} be a circular covering of G.
Let ¢: G—S!' = {ze@Q: |z| = 1} be any continuous map such that for each
i=1,2,..,n oM)s{: 21:(1—1)/n<9<2m/n} and @ ™M) = A, 44y
(where we take n+1 = 1).

Let J = {v5,0y..,0} be a cycle in G of minimal length such that the
topological index u(fpJ,0)+# 0. It is cleary that J is a proper cycle. Since
#(feJ,0) # 0 it follows that f(J) = S'. It follows now that J must intersect
each 4;. Since each vertex of J, lies in at most two 4,’s, ¢(G)<2¢<2p(G).

COROLLARY (2.5). If G = {vy, ..., v,} is a cycle, then o(G) = 2n,

Proof. Clearly G can be represented as the union of 2n-half-edges each con-
taining-a vertex of G and so ¢(G)>2n. Then by (2.4), o(G) = 2n.

COROLLARY (2.6). If K, is a complete graph on n vertices, n>3, then a(K,) = 6.
Proof. Since K, is complete, p(G) = 3 and so by (2.2) and (2.4), 0(G) = 6.

III. Embedding graphs in continua.

Lemma (3.1) (Lemma 8 of [2]). Let X be a locally connected, connected normal
space and let a, b be distinct points of X such that X\{a, b} contains (at least) three
distinct non-empty components, R, P and Q with clR n clP A clQ = {a, b}. Then
if € is a circular cover of X and some C & € lies entirely in R, then R contains all but
at most four members of €.

THEOREM (3.2) Let G be any (planar) graph. Then G can be embedded in a (planar)
Peano continuum X with ¢(G) = m(X).

Proof. If ¢(G) <6, then by (2.3), Gis a tree and ¢ (G) = 2. In this case, let X = G.
Thus we assume that ¢(G)>6. In [1] a planar Peano continuum C was constructed
with ¢(C) = 6. The continuum C contains a closed interval [a, 5] where C\{a, b}
tas exactly three components P, Q and R and clP n clQ n clR = {a, b}. Let X be
the (planar) continuum obtained by replacing each edge e in G with a copy, Ce;
of C in the natural way, so that each edge e of G is identified with a copy, [a,, b,),
of [a, b).
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Clearly every circular covering of G can be extended, link by link, to a circular
covering of X. Thus ¢(G)<m(X).

Let {K,, ..., K,} be a circular covering of X. If some K; contains no vertex
of G, then a component of some C,\{a,, b} contains K;. Then by the proof of The-
orem 1 of [1], m(X)<6<a(G).

If on the other hand if every K; contains a vertex of G, we write each
e = u,v, € E(G) as the union of two non-degenerate arcs, [4,, p,] and [p,, v.] with
[ue, Pe] O [Pes vl = {pe} and let

= U {[u,,P,,]: e = ue”ee-E(G) and u ek and v, € (Kl—l Y Ki v Ki+l)} ’

i=1,2,..,n (where we take n+1 = 1). Then {K{, K3, ...,
ing of G and ¢(G)=m(X). This completes the proof.
THEOREM (3.3). Let X be a multicoherent Peano continuum, Then

K,} is a circular cover-

m(X) = sup{m(P): P is a cyclic element of X} .

Proof. Let P be any cyclic element of X and let {4,, 4,, ..., 4,} be a circular
covering of P where m(P) = n. By Proposition (2.1) of [11, p. 66], if B, is the union

"of 4, together with the components of X\P with limit points in 4;, then

{Bys By, ..., B,} is a circular covering of X. Hence m(P)<m(X).

Suppose {Cy, ..., C,} is a circular covering of X. Now X contains a simple
closed curve J that meets each A4;. Let Q be the cyclic element of X that contains J.
By Propositions (3.5) and (3.1) of [11, p. 66], each of the sets C; N Q is connected.

Thus Q = |J(C;yn Q) is a circular covering of Q. It then follows that m(X)
i=1

= sup{m(P): P is a cyclic element of X7}.

DEFINITION (3.4). A graph G is separable if it is the union of two non-degenerate
subgraphs H,; and H, such that H, and H, have exactly one vertex in common. We
say that G is non-separable if it can not be so represented.

THEOREM (3.5) [10, Thm 12]. 4 graph G may be decomposed into its non-separable
Is in a uniq anner,

THEOREM (3.6). Let G be any graph with o(G)=6. If Gy, Gy, ..., G, are the non-
separable components of G, then o(G) = max{c(G,), 0c(Gy), .., 0 (Gp)}.

Proof. The proposition follows from (3.2) and (3.3). .

Loy

IV. Planar graphs and continua.

LeMMA (4.1). Let P be a plane continuum, let & be the set of bounded complemen-
tary domains of P and let T(P) = P u (U {D: De @}). If p: P— S* is continuous,
then ¢ extends continuously to a map @: T(P)— S* if and only if ¢ extends con-
tinuously to a map ¢p: P D—S! for each D& D. Thus, if p: P—S* is not null-
homotopic, ¢(FrD) = S* for some De 9.

Proof. By the Tietze Extension Theorem, ¢. extends contmuously to a map
0y T(P)— {ze Gz} iLet @y = {DeD: 91 *(0) 0 D # B} Foreach De 9,
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let ¢p be a continuous extension of ¢ to a map ¢p: P U D— 8. Then, since 9,
is a finite set, the function ¢: T(P)— S* defined by

op(x) if xeDeZ,,’
o) = {rpf(x)/llfpl(x)u othervise

is continuous. ' )

Lemma (4.2). Let {dy, 4y, .., 4}, n>2, be a circular covering of the plane
multicoherent continuum X. Then there exists an embedding of X in the plane such that
the boundary of some bounded complementary domuin of X and the boundary of the
unbounded complementary domain of X each intersect every 4, i= 1,2,.

Proof. For each ie {1,2,..,n},let Z, = {ze C: z = &™; (z—-l)/n<0<z/n}
and let ¢: X' — S be any continuous map of X onto: St such that @(4)<Z;.
Clearly ¢ is not null-homotopic, so by Lemma (4.1), there must be a bounded
complementary domain @ so that ¢|Fr Q is not null-homotopic. Thus ¢ (Fr Q) = S*
and Pr Q meets every 4;. Now let p e Q and embed X in the plane so that Q— {p}
is homeomorphic to the unbounded complementary domain of X. Another appli-
cation of Lemma (4.1) to this embedding assures us that there is a bounded comp-
lementary domain C of this embedding such that ¢ (FrC)= S! and this completes
the proof.

LeMMA (4.3). Let Y be the union of k = (2n—1), n>2, simple arcs {My, ..., My}
with common endpoiits a and b and such that M, M; # {a, b} if and only if
(.7} = {k, k+1} for k = 1,2, ..., n (where we take n+1 = 1). Then Y contains
a collection of simple arcs from a to b Sy, .., S, such that S;n S; = {a, b}, for
P 1<, j<sn(®).

Proof. By our hypothesis no collection of fewer than » points of ¥ separates a
from b in ¥. The proposition then follows from Whyburn’s n-arc Connectedness
Theorem [12].

THEOREM (4.4). If X is any multicoherent planar Peano continuum and m(X)< oo,
then m(X) is even.

Proof. By (3.3) we may assume that X is cyclic. Suppose that m(X) = k = 2n—1
is odd where n>3 (recall that m(X)>6). Let {4,, 4, ..., 4;} be a circular covering
of X where each 4, is a Peano continuum. (We may choose the 4,’s to be locally
connected by Theorem (15.4) of [11, p. 21].

By Lemma (4.2), we may suppose that X is embedded in the plane so that the
boundary I of some bounded complementary domain Q of X (FrQ = I) and the
boundary O of the unbounded complementary U of X' (Fr U = 0) each meet every 4;,
ie,0nA; #B#In A4, fori=1,..,k By (2.5 of [11, p. 107}, 0 and I are
simple closed curves.

(%) "The authors express their appreciation to Howard Cook and F. Burton Jones for pomhnz
out that the n-arc connectedness theorem could be employed in this proof.
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Let. pe U and ge Q. By the Schoenﬂies' Theorem (or Theorem (4.4) of

[11, p. 113]) we may select a collection {My, ..., M,} of simple arcs from p to g such

that M; 0 M; 0 U = {p}, M M; n Q = {q} for i +# j, and for each i/, M;n X
k

is a simple arc (possibly degenerate) in 4;. Then by Lemma (3.4), (J M, contains
‘ =1

a collection - {Sy, ..., S,} of simple arcs such that S;n S8, = {p, g} for i+ j,
1<, j<n. By re-ordering the S;'s if necessary we may assume that if B, is the closed
2-cell bounded by S; U 8,4, 1= 1,n—1 and B, is the closure of the unbounded
complementary domain of §, U Sy, then int B; N intB; = @ if i # j, and B;_; N B,
=8, fori=2,..,n and B,n B, = S;.

We next argue that X n B,, is connected. First of all, by our constructlon
S, n X = T; simple arc for each i =1, ...,n and every point of X n B, can be
joined to (S; N X) U (S, N X) by a simple arc lying in X' n B;. It remains to
show that some component of X n B; meets both §; N X and S, n X. Now X
separates p and g in the plane and so X n B, separates p and ¢ in By. Since By is
unicoherent, some component C of X' n By separates p and q in By [3, Thm (4.12)).
Congequently C n S; # @ % C ' S; and thus X' n B, is connected. It then follows
by a similar proof, that X' n B, is connected for i =1,...,n

Now by Whyburn’s Separation Theorem (see Lemma 3 of [4]), X n B, can be
represented as the union of two continua D} and D? where (S; n X)=(DI\D})
and §,,,c(D\ND}). Then {D}, D}, D}, D}, .., Dy, D}} is. a circular covering
of X and so m(X)>2n. This contradicts our assumption that m(X) = 2n—1 and
this completes the proof.

CoROLLARY (4.5). If' G is any planar graph, then o(G) is even.
Proof. This follows from (3.2) and (4.4).

EXAMPLE (4.6). Here we describe an example of a non-planar graph G with
exactly 7 vertices and for which ¢(G) = 7. The proof that ¢(G) = 7 will appear in
Circularity of graphs and continua: combinatorics.

Let G, be a cycle with seven vertices v, v,, ..., v7 so that v; and v, 4 are adjacent
for i=1,2,..,6 and v, and v, are adjacent. We add the following edges to
Go: {0,035, 0,04, V3, Us, Ualg, Usy, VgV, U7U,} SO as to obtain G. Now G is non-
planar since it contains a homeomorphic copy of K; 5 [1].

Since ¢(G) = 7, by Theorem (3.2) there exists a non-planar Peano continuum X
containing G such that m(X) = 7.
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Spaces of order arcs in hyperspaces
by

Carl Eberhart, Sam B. Nadler, Jr. *
and William O. Nowell, Jr. (Lexington, Ky.)

Abstract. Let X be a metric continuum and let 2X and C(X) denote respectively the space of
closed subsets and the space of subcontinua of X topologized with the Hausdorff metric. An order
arc in 2X (C(X)) is an arc a contained in 2¥ (C(X)) such that if 4, Be a, then 4C B or BCA. Let
reX) (I'(C(X))) denote the space of order arcs in 2X¥ (C(X)) together with the smgletons {4},
Ae2X (C(X)), topologized with the Hausdorff metric on 2:*. In this paper we prove that if X is
locally connected, then I'(2X) is homeomorphic with the Hilbert cube Q and if, in addition, X con-
tains no arc with interior, then I'(C(X)) is homeomorphic with Q.

1. Introduction, Let X be a continuum (i.e., a compact connected metric space
containing more than one point). The hyperspaces of X are the spaces 2%, consisting
of all nonempty closed subsets of X, and C(X), consisting of the connected elements
in 2%, each with the Hausdorff metric H. Basic facts about hyperspaces may be found
in [13] and [9].

An order arc in 2% (resp., C(X)) is an arc a=2% (resp. acC (X)) such that if
A, Bea, then A< B or B A. Order arcs in hyperspax:cs were first constructcd in [2],

. as a part of the proof of the followmg

1.1, TueoreM. For any contmuum X 2¥ and C(X) are each arcw;se ‘connected
continua

However, the fact that the construction ip [2] yielded an arc was not noted until
later in [10, Lemma 5]. Since the publication of these two papers, order arcs have
been used extensively in studying hyperspaces. However, spaces of order arcs have
undergone almost no investigation. In this paper we investigate the spaces

(%) = {&=2*: a is an order arc} U {{4}: A4e2"}
and

r(CXx)) = {ac=CX): o is an order arc} U {{4}: 4e C(X)}

* The second author was parﬂally supported by National Research Council (Canada) grant
no. AS616.
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