24 S.E, Shreve

= {y] 3¢, Lo, ) &N such that y({y,.., {) = 1 Vn}

is BA. By Corollary 2.2, the function f: X — {0, 1}” whose sth component is the
indicator of 4(s) is BA. The result of operation () on the system {A(s)| s& Z} is

U A l) =F 4D,

. o Elape)ed n=1
and this is BA by the remark following Theorem 5. Q.E.D.

If p is a BP function from {0, 1}* to {0, 1}* satisfying (4), then p,, defined
by (5), (6) can fail to be BP [9]. If {g,] «<w,}is a BA approach to g, it is not known
if g can fail to be BA. It is not known whether the BA ¢-field properly contains the BP
o-field, nor whether the BA ¢-field is properly contained in the o-field of absolutely
measurable sets. The relation between the BP sets, the BA sets and the R sets [8]
has not been determined. Indeed, the cardinality of the class of BA sets is not known.
A particularly intriguing question is whether the product of the BA:¢-fields in X
and Y is the BA o-field in X'x Y.

4. Acknowledgments. The author benefitted from conversations with David
Blackwell concerning the Borel-programmable functions. He is particularly indebted
to Richard Lockhart for pointing out an error in an earlier version of this paper.
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A stabilization property and its applications in
the theory of sections

by

J. Bourgain (Brussel)

Abstract, We introduce a stabilization property in descriptive set theory which generalizes
the topological and measure theoretical situations, An associated theory of sections for measurable
sets in products is developed.

1. Preliminaries. The aim of this section is to make the text more selfcontained.
We will introduce the various classical notions and properties, which are the starting
point of this work. They can also be found in [12].

DermuiTION 1.1, Let E be a set. A paving on E will be a class.& of subsets
of E containing the empty set. We will call (E, &) a paved set.

DerNITION 1.2, If (E, &) is a paved set, we denote by cé : the class of subsets 4
of E such that £Ex\A belongs to &, b& = & N cd.

&* (resp. £V, &~, 6%): the stabilization of & for finite intersection (resp. ﬁmte
union, finite intersection and finite union, countable intersection and countable
union). )

&(&): the o-algebra generated by &.

DerNITION 1.3, Let (E;, #)),o; be a family of paved sets. The set & of subsets
of E = [[-E, of the form [] 4, where 4;€ &, for each 7e, is called the product

i v

paving &; T].
§

PRrOPOSITION 1.4, Let (E;, 6)),4; be paved sets such that Eye &; for each il
Then &(I &) contains the product o-algebra ®,&(&)). If moreover I is countable,
i
then S([16) = ®, S(&).

In fact, only finite and countable products will be involved here.
Let (E, &) be a paved set and let (K;);r be a family of elements of & We will
say that (K,);e; has the finite intersection property provided (| K; # & whenever J is
ieJ

a finite subset of I
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DEFINITION 1.5, A paving & on a set E is said to be compact (resp. semi-compact)
if every family (resp. every countable family) of elements of &, possessing the finite
intersection property, has nonempty intersection.

By a simple ultra-filter argument, we obtain

PROPOSITION 1.6. If & is a compact (resp. semi-compdct) paving on E, then
also &V is compact (resp. semi-compact).

The following proposition is immediate

PROPOSITION 1.7. Let (E;, &)i¢1 be a family of paved sets. If each &, is compact

. (resp. semi-compact), then ];[d"i on HEi is ‘compact (resp. semi-compact).

We now pass to a proposition which will be often used later (especially in
product situations).

PROPOSITION 1.8. Let (E, &) be a paved set and f an application of E into a set F.

We assume that, for each x € F, the paving consisting of the sets [ “H{xH 4, 46,

is semi-compact. If (d,), is a decreasing sequence in &, then f((\ 4,) = (S (4.
n n

Proof. It is clear that if x € f(4,), then the family F7Y{x) n 4, has the
finite intersection property. By hypothesis, the set f~*({x}) n [} 4, contains some
point y € E. Hence x = f(y) ef( ) 4,), completing the proof.

-]
N will denote the set of all positive integers 1,2,... Let # = {J N¥, consisting

k=1
of the finite complexes of integers. Take #* = & L {@}. If ce #*, let |c| be the
length of c. If ¢, de #*, we write c<d if c isan initial section of d. Let & = NN,

If ve & and ce #*%, we write c<v if ¢ is an initial section of v.

DEFINITION 1.9: Let (E, ) be a paved set. A Souslin scheme (4,);¢a o0 & Wwill
be a mapping of # into §: Thescheme (4,).« is said to be regular if A.> 4, whenever

c<d. The result of the scheme (4,)..q is the set Y N 4, = U () Ay, where v runs
=1

v c<v vk
over A
Let (£, &) be a paved set and (4,).ca a scheme on &. For each complex ce N,
we introduce the following sets:

A[0]= U An;l,...,m,s
m&ey

"k:sck
©
AQ =U N Ay
c<v k=1

where v runs over 4. = {ve #; c<y},
Alcl= U A(@mg,...,n).
’ ni<ey

<ok

@ ©
Im A stabilization property and its applications In the theory of sections 27

Obviously, the following properties hold
ProrosiTION 1.10. If ce &, then

A[c] € ’gv,
A@ < 4.,
Ale] € Ay,

Ae) = 91‘4(0’")’

Al = Ale.nl,

{8} U {A; ce R} is a paving on N, which we denote by 4.
The reader will easily verify

PrOPOSITION 1.11. 4" is @ compact paving on N

The following result is basic in the theory of analytic sets.

ProPOSITION 1.12, Let (E, &) be a paved set and (A)..xr a regular scheme
on &, with result A. If ve N, then () Apypg< 4.
k

[

Proof. Suppose x € () Apyy- For each ke N, we introduce the set
k .

Kk = {ILE -/V; By 6\’1, ey #ksvk and XEAm,...,uk} ’

which is clearly a nonempty member of 4", By the regularity of the scheme, the
sequence (K); is decreasing.
Since, by 1.6, also 4" is compact, we obtain some u € () K;: 1t follows that
k

-]
xe ()44, completing the proof.
k=1

DeFNITION 1.13. Let (E, #) be a paved set. A subset 4 of E is said to be
&-analytic if it is the result of a Souslin scheme on &. Let < () denote the class of
all #-analytic subsets of E. The members of ca&f (§) (resp. baf(#)) are called
&-coanalytic (resp. &-bianalytic).

The main property of «f(#) is the following:

PROPOSITION 1,14, of (£ (8)) = o (8).

Tn fact the proof of this property consists in the reduction of a scheme of schemes
to a single scheme. Although the idea is quite simple, its working-out is rather com-
plicated. For the details, we refer the reader to [15] for instance.

The class of the analytic sets is stable under projection in the following sense:

PROPOSITION 1.15. Let (E, §) and (F, F) be paved sets, such that the paving F is
semi-compact. If AcEx F belongs to o (8 x ), then n(A) is a member of (&),
if m: ExF— E is the projection.’

Proof. Let 4 be the result of the scheme (E.X F,),ea On 6 X &, Where E € &
and F,e & for each ce &. We define a scheme (B,).as On & by taking B, = E,
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if H Fy# @ and B, = @ otherwise. Since for each ve ./ we obtain that
k=1 * .
ﬂ( Q Eyp % Q Fv]k) = Q-Bv]k >

the result of the scheme (B.)..q is precisely m(4). )
To each subset R of #* we associate a transfinite system (R)u<w,» Which

we define inductively as following
-RO =R s :
R,.; = {ceR; there exists de R, with c<d and ¢ # d}.

If y is a limit ordinal, take R, = () R,.It is easily verified that the sequence (R,)s<a,
a<y

is decreasing. Because R is at most countable, the sequence stabilizes. Let
i(R) = inf{a<w;: R, = Ryy}, which is called the ordinal of R. :

We are now able to introduce the Lusin-Sierpiriski index, which is of fundamental
importance in the study of Souslin schemes.

DEFNITION 1.16. Let (E, &) be a paved set and (4,)c.« a regular scheme on é.
Suppose x€ E and consider R(x) = {@}u{ced; xed} Let n= i(R(x)).
If R(x), = @, let i(x) = n. If R(x), # O, let i(x) = @,. The ordinal i(x) is called
the Lusin-Sierpiriski index of the scheme (A)sea in the point x. L

Remark that a predecessor of a member of R(x), is also in R(x), and in parti-
cular R(x), # & if and only if @ € R(x),. ‘

PROPOSITION 1.17. If A is the result of the regular scheme (A)ceas then i(x) =,
if and only if x € A. .

Proof. 1. If x & 4, then x € () 4, for some ve 4. It is easily verified, using

e<v
induction, that for each a<w; the set R(x), contains every initial section of v.
2. If n = i(R(x)), then R(x), = R(x),+, and therefore every element of R(x),
has a strict successor in R(x),. Assume R(x), # &. Then we find some v e A" so
that vlk € R(x), for each ke N. Hence also v)k € R(x) for each ke N, implying
X€ Q A4 . N

PROPOSITION 1.18. If i(x)<wy, then i(x) is never a-limit ordinal.

Proof. If 5 =i(x) would be a limit ordinal, we would obtain that
R(x), = N\ R(x),. For each cr<# we have that R(x), # R(x),4, and hence R(x), # &.
a<n

It follows .that @ € R(x),, which is a contradiction.

DEEINITION 1.19. Let (E, &) be a paved set and (4,)..a a regular scheme on &.
If x.€ E, then we define for each ¢ e #* a subset R(c, x) of #* and an ordinal i(c, %)
by taking : .
R@,x) = R,
Rlc,x) ={deR*; red  yif c#D.

If 4 = i(R(c, ¥), let i(c, x) = n if R(c, x), = & and i(c, x) = w, if R{c, x), # .
Of course i(9, x) = i(x). If ¢ # @, then i(c, x) is the Lusin-Sierpifiski index
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of the scheme (A, g)ieq if x€A,. In virtue of 1.17 and 1.18, we obtain that
i(c, x) = w, ifand only if x & J ()4, and otherwise i(c, x) is never a limit ordinal.
. e<v k .

PROPOSITION 1.20. If a<w, and ¢, de @*, then de R(e,%), if and only if
(¢, d) € R(x),.

Proof, If ¢ = &, there is nothing to prove. If ¢ % &, we proceed again by
induction on «<w®;. .

ProrosiTioN 1.21. If ce®*, then i(c,x) = inf(w,,supi((c, n), x)+1).
n

Proof. If i(c,x) = w,, then R(ec, x) contains every initial section of some
sequence v € A". Therefore R((c, v;), x) contains every section of the sequence u
defined by p; = vy It follows that i((c, v;), x) = w,.

Assume now i(e, x)<w,. Then also i((c,n),x)<a)] for each ne N.

1. If ne N and a<i((c,n), x), then R((c,n), x), # & and thus contains &.
It follows that ne R(c, x), and thus & e R(c, x),, - Therefore i(c, x)>o+ 1. Since
i((c, ), x) is not a limit ordinal, it follows that i(c, x)>i((c, n), x). Because i(c, x)
is not a limit ordinal, i(c, x)>supi((c, n),x). :

2. If « = supi((c,n), x), then R((c,n),x), =@ whenever neN. Suppose
" ;

de R(e, x), and d = . Then d = (n,d’) for some ne N and d’ € %*. We obtain
that d’ € R{(c, n), x),, a contradiction. Hence R(c, x),={@} and R(c, X)g4; = O,
implying i(c, xX)<a+1. This completes the proof.

Proceeding by induction, we deduce easily from 1.21

PROPOSITION 1.22. If (A.)cca is a regulor scheme on &, then {x € E; i(c, X)>a}
is a member of &* whenever ce &* and a<wy.

II. A stabilization property. The topic of this section is to define a stabilization
property, which we will call (). It will provide us a generalization of various situa-
tions, especially the topological and measure-theoretical case.

DEeFINITION 2.1, Let E be a set and £, 9t pavings on E: We agree to say that
(E, &, M) is basic, if: i

1. & is stable under finite intersection.

2. If AeM and Bc=Ad, then also Be N,

DERINITION 2.2, Let (E, &, M) be basic. We say that (E, &, N) has property (S)
if moreover the following is true: .

Let (4,).cq be a regular scheme on & with index i. Then either the result of the
scheme is nonempty or {x e E: i(x)>a} e Nt for some a<w; (and hence for the
succeeding countable ordinals). It is clear that (S) is preserved if & decreases and N
increases. The following proposition will provide us a more explicit formulation
of property (S). .

PROPOSITION 2.3. Let (E, &, N) be basic. Then the following properties are
equivalent:
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1. Let for each ce R* a transfinite system (ADy<a, Of sets in &* be given,

verifying:

1. (4D, is a regular scheme on &,

2. A%> AP if a<pB,

3. A2tlc U AL,

Then ezther (Ac)“, has a nonempty result or Age N for some a<w,.

1I. (E, &, M) has property (S).

III. The same as (I), but where &* is replaced by 2F,

Proof. I=>11. Assume (4,),.¢ & regular scheme on & and define
A% = {xeE; i(c, x)>a}, which belongs to &*. Applying 1.21, we see that the
conditions of (I) are satisfied. Therefore either (4.)..# has nonempty result or
Ay = {x€E; i(x)>a} e N for some a<w;.

Il = III. Let for each c € #* a transfinite system (4.),<q, Of subsets of E be
given, satisfying (1), (2), (3). We consider the scheme (42, ea on &. The reader will
easily verify by induction on a<w, that Aic{xe E; i(c, x)>a}.

If (42), 4 has an empty result, then {x & E; i(x)>a} and hence Ag belongs to 9
for some a<®;.

III = I This is obvious.

It is clear that if (E,#, 9) has (S), thea also (E,&, Sftl) has (S), where
N, = {AcE; Ac4, with 4, € N~ £*}. Some examples are in order. The first
example requires the notion of a capacity.

DERNITION 2.4, Let (E, §) be a paved set such that & is stable under finite
union and finite intersection. An &-capacity on E will be a real valued function /
defined on 2F, verifying the following conditions:

1. I is increasing: A=B = I(A)<I(B).

- 2. If (4,), is an increasing sequence of subsets of E, then J( {J 4,) = sup/ (A,,)..

3. If (4,), is a decreasing sequence in &; then I( () 4,) = infI(4,).

ExAMPLE 1. Let (E, &) be a paved set such that £ is stable under finite union
and finite intersection. Let I be an &-capacity with I(@) =0. If we take
Nt = {AcE; I(4) = 0}, then (E, &, M) has property (S).

Proof. Let for each c e #* a transfinite system (45), <, of subsets of E be given,
such that (1), (2), (3) of Proposition 2.3 are satisfied.

If ce ® with |c| = k and a<aw,, let

A[c] = U Am. il *
mEey
m‘\c)‘
Assume Ag ¢ 9 for each a<w,. Then there is some >0 with I(45)>¢ for each
«<wm;. By induction on k, we construct a sequence (u,), of integers satisfying
I(Af,,,...m1)>¢ for each a<w;, and ke N. -
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+
For each a<w, we have that I(45"")>¢ and A5 | 4%;. Therefore there
n

must be some 7; € N so that I(4f,,) > eforeacha<w,. Suppose n,, ..
verifying I(Ap,, ... n2)>¢ for each a<aw,.

., Ny obtained

For each a<w,, we have that AR s U At,,...mom- Therefore there must

be agam some my.; € N so that I(A[,,i_m,,,k,,,k“])>a for each a<w,.

So the construction is complete.

Since in particular (A[,,, ,,,k])k is a decreasing sequence in & and I(4f,, . md) > E
for each k € N, we find that ﬂ Aly.....m1# 9. But, by 1.12, this set is contained in the

result of the scheme (Ac),m, which is therefore also nonempty.

ExampLE I1. Let (£, &) be a paved set such that & is semi-;;ompact and stable
under finite union and finite intersection. If N = {@}, then (E, #, N) has pro-
perty (S).

_Proof. We define 7 on 2F by taking I(©) = 0and I(4) = 1if A # ©. Cleatly I'is
an &-capacity. We obtain a special case of Example I.
The following example is of different nature.

ExampLE III. Let (E, &) be a paved set such that & is stable under countable
union and countable intersection. Let M be a class of subsets of E, such that:

1. M is a o-ideal.

2. If (A)e<w, is decreasing in &, then there is some f<w; so that 4,\4, e N
whenever a>17.

Then (E, &, N) has property (S).

Proof. Let for each ¢ € #* a transfinite system (43),<q, of subsets in £* = &
be given, such that (1), (2), (3) of Proposition 2.3 are satisfied. There exists n <o,
so that AINA;e M for each ce #* and a>x. Remark that |J (ANATTDeN. If

ceR*

Al ¢ 9, then there is x in A} not belonging to {J (4\AZ*™Y). By induction on k we

ceRt
construct a sequence (1), of integers satisfying x e A},
Since x € A" and x ¢ 45\4

.m for each ke N.
4*1 we obtain that xe A"“c U 4. Thus there
n
is ny e N with xe 4],.
Suppose 7y, ..., n, obtained such that xe 4}, . Since x ¢ A% AL

we obtain xe Al < U A, .mone Thus there is 7., € N with xe A!

Bhyeeasli ik + 12
completing the constructxon. )

In particular x e A,?l,,,_,,,,‘ for each k e N. Hence x belongs to the result of the
scheme (42),.4.

The following example reduces as well to (1) as to (III):

ExaMPLE IV. Let (E, &, u) be a probability space and take
N = {A<E; pH4) = 0} .
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Then (E, &, M) has property (). Also the following example, which is an appli-
cation of (III), is worth to be mentioned.

ExampLe V. Let E be a separable metric space, & the Baire o-algebra and $t the
class of first category sets. Then (E, &, %) has property (S).
" PROPOSITION 2.5. Assume (E, &, %) with property (§) and let (K, A7) be
a paved set such that A is semi-compact and stable under finite intersection. "Let
n: ExK— E be the projection and consider 17 (M) = {A<ExK; n(d)e n}.
Then (ExK, & x A ,n~ (W) has property (S).

Proof. First, remark that (Ex K, &x & ,n~*()) is basic. For each ce #*,
let (4%),<n, be a transfinite system of subsets of E x K satisfying (1), (2), (3) of 2.3.
Then the subsets 7(4%) of E also satisfy (1), (2), (3) of 2.3, with rcspect to the
paving &. Suppose there is v e A so that ) n(42) # @. Since ﬂ (A2 = n(ﬂ A )

c<vy
by 1.8, we see that also (40).cs4 has a nonempty result. Otherw1se Ageﬂ l(‘J’()

for some a<wjy.

The next result requires the following lemma, which is more technical than
basically difficult

PROPOSITION 2.6. Assume (E, &, W) with property (S). Let for each keN

and (¢y, ..., cp) € (BN a set W, in & and a transfinite system Vs oeducar O
subsets of E be given, so that following properties are satisfied:
L Wepoe® Wit if €1<dys o> 6e<hs
2. Wepner© Wesncnr
3 V= Peraons
4 Vi Ve i 0<B,
50 Ve = Ln) V(‘::;_,n),c;....,ck = &J weie=15(ChsM) »
6. V:,T 1,ckc Vercus

Then one of the following 2 alternatives must occur

1. Ve M for some d<w,.

2. There is a sequence (V) in N such that () Wyttt 7 a.
k

Proof. The Cantor enumeration of Nx IV induces a map

R— U A e (@dly o, A,

where the number k|, of complexes is of course only dependent on el This map
is extended to Z* by taking ko = 1 and dg = @.
For each ¢ e #*, we define

0 11
Ae = Wy,..dhe and  A¢ = Vyu__ dkie

o

if >0.

We show that the conditions (1), (2), (3) of 2.3 are verified.
(1) To see that the scheme (A2),cq on &is regﬁlar, take ¢, ¢’ € & with ¢’ <c".
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Then ko <k oo and di<dg, ...,
and 2. ,

(2) This follows immediately from properties 3 and 4.

(3) Assume ce %* and |¢| = r. We distinguish 2 cases

Case L. k, = k. There is some k = 1, ..., k, so that d}, = d} if | # k and
dt, = (d¥, n), whenever ne N. We find

atl _ atl _ et at1
Ac = k,.l) Vdé....,(d’:,n),.‘.,u’a" = U le‘,,n,.u.d’::‘,"ﬂ = U Acn CU Ac.n
n

df,""<_da",'f". We only have to apply properties 1

Case IL k,yy = k,+1. Then d}, = d} if 1<I<k, and d¥** = n, whenever
neN. We obtain

X1 atl
A Vd dk,q(: V,p

i

dk"a = U le, ,dkr'” = U Ac,n .

Smce (E, &, ./V ) possesses (5), either dg e A" for some a< ou1 or there is ve,/V with
ﬂ AV|r # @. Remark that A5 = Vj. If ve &, then there is a sequence (v*); in A

such that dyj,<v* whenever r & N and k<k,. If k € N is fixed, then there exists 7 € N
with k<k, and v'|k<dy, for each I=1, ..,k Theh Aj, = W‘,llr,"_,,,,vkrl-,c f'“lk--n-\"‘ik'
This completes the proof.

THEOREM 2.7. Assume (E, &, N) with property (S) and (K, s )a paved set such
that A is semz-compact and stable under finite intersection. We consider the pr ofections
m: Ex K**' — ExK* and p,: Ex K*— E. For each k € N, let (X{),<uy be a trans:
Sinite system of subsets of ExK*, so that following properties are sansﬁed

1. X7 is (& x A*)-analytic in ExK¥,

2. Xio XE if a<p,

3. Xit emd Xira)-

Assume py(X7) ¢ N for each d<w,. Then there exist x € E and (y,‘)k in K" such
Ihat (X, V15 s ) E XY Jor each ke N.

Proof. Let X} be the result of a regular scheme (Y")ce & on 6’ x:)i’ For cach
Ic eN and (cy,..., ) € (%‘*) define ‘

Wt = pk( n (Y:. K*7h)

'and ,
» . . o

01, weie = D) (1-01 (Yl(cl) X Kk‘l) ﬂ X:) .

The reader will easily make out that (1) — (6) of Proposmon 2.6 are verified,
Hence there are 2 possibilities: :
I. There is a<w; such that ¥g —pl(X,)e‘ﬁ
1L There is asequence (V) in 4" such that ﬂW,,x,,‘. ,vu", c,ontams some po,mt

3 — Fundamenta Mathematicae CXII
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. x )
x € E. Therefore (Y.‘,xl.‘(x)x K"_') # @ for each k € N. By the semi-compactness
1=1

of the paving ¥ on KV = I;IK,‘, we get

ﬂ ﬂ (Yoplx) x HK,,.) = ﬂ (ﬁ ) X leK"‘)) #* 0
and thus contains a point (yy), of l;IKk. For each integer /, we have
(xlyls'“i}'l)EQ Y:'|RCXI0)

completing the proof.

We pass to the following ﬁxst corollary

ProposiTION 2.8. If (E, &, 9&) has property (S), then also (E, .yl(n!’), N) has
property (S).

Proof. Let for each ce #* a transfinite system (4%),<,, of subsets of E be
given, satisfying

L (A,),.. is a regular scheme on &/ (d’)
2. A*o4f if a<p,
3. A‘“::U A(”)

Take K= N and let & = {@} U {{n}; ne N}, which is a compact paving on X,
stable under finite intersection. For each keN and ac‘<‘ @, we define
Xi={(x,0)€E x K¥; x e A%}, which clearly satisfy the co.ndxtlons m, 2, 3
of 2.7. Therefore we have one of the following 2 possibilities:

1. There is a<a, so that p,(X%) e 9. But 45" < U 45 = p,(X7), implying

Au-l‘l eN.

11, There is x € E and ve 4 such that (x, vlk)eXk for each ke N. Then
xe() A,[,‘ and thus in the result of the scheme (A). 4. So the proof is given.
Lok '

THEOREM 2.9. Assume (E, &, ) with property (S) and let (4,), be a sequence
in o (&) such that (\ A, = ©. Then there is a sequence (B,), in 8* so that A,< B, Jor

each n and (\ B,e N.

Proof. Each set 4, is the result of a regular scheme on & with index i, Let
K = A and A = 4, which is a compact paving on K, stable under ﬁmte inter-
section. For each keN and e<o;, we define Xj= ﬂ{(x L

(O x)>a}, which again satisfy the conditions (l), (2)l 3 ot 2.7 (cfr. 1.21).
Thus there are 2 alternatives:

I. There is a<®, so that pt(X‘)eﬂt If we let B, = {xe& L(x)>a+1},
then B, belongs to -¢* and 4,cB,. Moreover () B, = ) N{xeE; Av,e N such
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that i,(v,, X) >0} =
of M.

IL There is x € E and a sequence (v*), in 4 so that (x, V%, ..., %) € X? for each

keN. Letne N be fixed. We find that (v}, ..., v¥), x)>0 for every k € N, implying

x € A4,. Hence x () 4,, which is a contradiction.
n

{x € E; 3ve 4 such that (x, v) & X3} = p,(XD), thus a member

In particular, we obtain the Novikov separation result (see [24)):

PROPOSITION 2.10. Let (E, &) be a paved set where & = &~ is semi-cothact.
If (4,), is a sequence in o (8) such that (\ A, = @, then there is a sequence (B,),

in &% so that A,<B, for each n and (\ B, = @

111 Applicaﬂons in section theory.

A. Classes of sefs. The starting point will be a pavcd set (X, X) such-that:
1. XeXx. .
2. X is stable under finite union and finite intersection.
3. X is bianalytic (i.e. ¥<bot (X)).
Let further M be a class of subsets of X satisfying
4. M is a o-ideal.
5. 1f A€M, then there is Be N A X* so that AcB.
6. (X, X, M) has property (S). .
DEerINITION 3.1, If & is a class of subsets of X, we'let #’ consist of the AcX
such that there is Be # with- 44Be N, It is clear that (F'Y = F'.

PropoSITION 3.2. If A€ X', then there exist B, Ce bst (¥) ‘satisfying B< A,
AcC and ANBe®R, C\4eN.

Proof. Take A, eX so that A44; eRN and.consider De % A X* with
AA4,cD. 1t is easily seen that B = A4,\D and C = 4, U D satisfy. . kR

PROPOSITION 3.3. (X X, W) has property (S).

Proof. It is clear that (X, X', N) is basic. It follows from 3.2 that if (AC)L., « 1S
a regular scheme on X', then there is a regular scheme (B.),¢2 on b (X) such that
B.=A; and ANB,e® for each ce #. Hence D = | (A\B,) is still a member’

of 9. Let ¢ and j be the indices of the schemes (4,)..# and (B,),.a respectively. By
induction and using 1.21, we see that {x e X; i(¢, x)>a, J J(e, x)<a} is contained
in D for each ¢ € #* and a <o,. Since, by 2.8, also (X, b (¥), ) has property S),
there are 2 possibilities:
1. The scheme (B,)..# and hence certainly (4.).,4 have a nonempiy resulf.
2. There is a<w, so that {xeX; j(x)>u}eN. Since

{xeX; i)>a}c{xeX; j(x)$a} uD

3
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also
{xeX; i(x)>a}eN.
So the. proof is complete.

PROPOSITION 3.4. (¥')* = (¥)".

Proof. 1. Since X' (¥*) and (X¥*)' is stable under countable union and count-
able intersection, (¥')*c(¥*)'.

2. Define & = {4 € X*; {A}’c(%')*} ‘which of course contains X. Moreover &
is ‘stable under countable union and ¢ountable intersection. We give the details for
the intersection, ‘the argament for the union being similar.

Let thus (4,), be a sequence in &, 4 = ﬂ A, and B some set in {A}’ If for

each n we take B, = [4,\(A\B)] LU (B\4), then B, is in {4,}' and hence in (¥')*.
Thus also B = ﬂ B, is in (X")*. So we proved that 4 € . Therefore ¥* =¥, implying

‘that (X*)' C(QE’)"‘

The following is left as an exercise for the reader.

PROPOSITION 3.5. (X)) = AL (X)'.

PROPOSITION 3.6. bt (X)) = bt () = (X*). L

Proof. It follows from 3.5 that ba/ F)cb(# (X)) = bt (X).'If A€ bst (X)),
then A e of (X)), X\A4e o (¥) and we obtain B, Ce(X)* =(X*) so-that 4B,
X\Ae=C and B CeN, applying 3.3 and 2.9. Since B\A=B n C, also 4 e (¥*).
Finally (¥*)'cbs/ (X)', since X is bianalytic.

We let M = M(X, X, N) be the o-algebra bot (X).

DBFINITION3 7.1f Yis aPolish (a.e. a complete metric space which is separable),
let By denote its Borel field. The o-algebra By is the union of the classes F, and also
‘the union of the classes G, (d<cw;), whete:

(i) F, is the family of the closed sets and Gy of the open sets in Y.

(if) The sets of the family F, are countable intersections or unions of sets belong-
ing to F, with a< B according to whether § is even or odd. The sets of the family G,
are countable unions or intersections of sets belonging to- G, with < f according
to whether f§ is even or odd.

The families F, with even indices as well as the families G, with odd indices
form the multiplicative class o, the families ¥, with odd indices and the families G,

with even indices the additive class a (for more details, we refer to [21], p. 345). .

Welet ' =2(X,7Y)={AdxF; Ac¥ and F closed in ¥}
PROPOSITION 3.8. MRBy = P*.
Proof. This follows from the fact that M = (¥')*, By = F¢ and monotonicity
arguments. ‘
Let AcXx Y, xe X and ye Y. Define
Ax) ={yeY; x,y)ed} and A(Q)=
Such sets will be called sections of 4.

{xeX; (x,y)e}d}.
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From 3.8, we dedgcc the following result ’

PROPOSITION 3.9, If A€ MQBy, then the sections A(x), where x is taken in X,
are of bounded Baire class.
" DemnrTION 3.10. For each a<wy, let ¥, =F,(X,Y) be the class of those
Ae MR®ABy such that 4(x) is an F,-set for each xe X and 7, = F (X, Y) the
class of the 4 € M@By such that 4(x) is a G,-set for each x € X. Hence T, = c%,.

Proposition 3.9 can be reformulated.as following

PROPOSITION 3.11. MBBy = U &, = U 7.

a<my a<wy .

DEENITION 3,12, For each a<w,;, we introduce a class #, = #,(X, ¥) and
a class ¥, = ¢, (X, Y) as follows:

) Fo=F and ¥y = Ty

(i) The sets of the family #, are countable intersections or unions of sets
belonging to &, with a<p according to whether B is even or odd.

The sets of the family %, are countable unions or intersections of sets belonging
to %, with w<p according to whether § is even or odd.

By induction, we verify that &, = ¢#,: :

Itis easily seen that #,=%, and b7, for all oc<w1 In fact the followmg
deep property holds

THEOREM 3.12. #, = &%, and 9, = T, for each a<w.

Proof. We remark that M is a o-algebra on X satisfying M = bt (M). Then
the. theorem - follows from recent. results in descrlptlve set theory obtained by
A. Louveau (see [22]). . o

The following proposition is easily established. by 1nductlon

PROPOSITION 3, 13. Let (X,), be a sequence of disjoint sets in M. If a<ow; and
(A,), s a sequence in & , (resp.9,), then also A-= | [4, n (X, x Y)]isin F (resp. %,).

: ,, ‘

DEFINITION 3.14. & = &(X, ¥) will be the class of the subsets 4 of XxY 50
that A(x) € %@y for each xe X and there exxsts Be MRBy satlsfymg ndd B) e N.

Obv1ously we have’

PROPOSITION 3.15. '@ is- a o-algebra.

DEFINITION 3.16. If AcX XY, then A*cXx ¥ is defined by .Zf"(x)
where ~ denotes the closure .operation.

. The following description of A° will be useful. If y € ¥ and >0, then B(y, £)
is the open ball with midpoint y and radius e. Let now (y,), be a dense sequence
in Y. If for each ne N and ke N we take X,z = mxld ~ (X% B(3,, 1/k))], then

= (’) 9,(Xv,kXB(yn: 1/"))‘

PROPOSITION 3.17. Let AcXx Y and suppose my(d)e N If a<aw; and the
section A(x), where x is taken in X, are F, (resp. G,) sets, then A € F, (resp. 9,).

Proof. It is clearly enough to prove only the first property. We proceed induc-

A”('xi
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tively on a. If « = O, then every section A4 (x) of 4 is closed and hence A = A’ Since

for every ne N, ke N the set X,,e R, Ae MR3Hy and hence Ae Fy Now let

the property be true for every a<p and assume A(x) an F, set for each x e X.

Clearly there is a sequence (4,), of subsets of X'x ¥ such that nx(d,) = ny(A) for

each n, the set A,(x) is in |) &, for each n and each xe X and A = N 4, if f is
a<p n .

even, A = | 4, if § is odd.
Let ne N be fixed. If for each a<f we take X, , = {x€X; A4,(x) is precisely

an F, set}, then 4,, = 4, n (X,,x ¥) & #,, by induction hypothesis. It follows
from 3.13 that A, = U A, € F;. Hence also A € F;, which completes the proof.

PROPOSITION 3. 18 Let AeS. Then Aec MRy if and only if the sections
A(X), where x is taken.in X, are of bounded Baire clgss.

Proof. The “only if” part is precisely 3.9.- Assume A € &, then there exists
some B e M@Ay such that n,(4 4 B) e N. If the sections A (x) are of bounded Baire
class, then; again by 3.9, this is also true for the sections (AN\B)(x) of A\B and
(B\A4)(x) of B\A. It follows from 3.17 that A\B and B\4 are members of MRFy.
Hence 4 = (B\(B\A)) U (A\B) e MR%y.

We ‘introduce of = o (X, Y) as the class of #(X, Y)-analytic subsets of
XxY. ‘Fro'm 3.8 and the fact that of = of*, we obtain immediately

PropOSITION 3.19. MOFycA (X, Y)

The following result is similar to 3.17.

. ProrosITION 3.20. Let AcXx Y and suppase ny(A) € 9. If the section A(x)
is analytic-in Y for each xe X, then Ae .

Proof. Foreach x € X, A(x) is the result of a Souslin scheme (F)).o2 on the
paving of the closed subsets of Y. For each ce &, define F,c X x ¥ by F(x) =
if x € ny(4) and F.(x) = O if x¢ nx(4). By 3.19, we find that F, € #,. Because A is
the result of the scheme (F)..a and 1.14, we find e o.

"PROPOSITION 3.21, (X, V)= (X, T).
Proof. Let A€ @ and take Bec MRBy satisfying ny(44B)e N. Since

B, = B [(X\rnx(44B))x Y] e MR@Fy,
_ Ay = A A [ngAAB)x Y] e 4 (X, )
by 3.20 and A 2 B, U 4,, it follows that 4 e (X, Y).
" B. Separation results. In this section, we will apply the general separation the-

orems obtained in the preceding chapter to more concrete situations. We start with
the following well-known fact.

PROPOSITION 3.22..Every Polish space is homeomorphic to a Gy-subset of
[0, 13, where [0,1] is the unir-interval.

A proof can be found in [26], Ch. L :

We assume Y a fixed Polish space. By 3.22, Y is homeomorphic to.a G; subset
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of a compact metric space K. Let " be the paving on K consisting of the closed sets,
which is of course compact.

PROPOSITION 3.23. If (4,), is a sequence of analytic subsets of Y such that
ﬂ Ay = B, then there is a sequence (B, in By satisfying A,<B, for each n and

ﬂB“

Proof. Y can clearly be assumed a G, subspace of K. Since (d,), is also
a sequence of & -analytic subsets, we obtain by 2,10 a sequence (By), in # satisfying
A, B, for each n and ﬂ B, = 9. We only have to take B, = B, n Y.

In the remainder of this section, we assume (X, X, 9%) satlsfymg 1) —(6)
of ITI, A.

PROPOSITION 3.24. If Ae o (X, V), then nx(4) € (X))

Proof. It is clear that ¥ can be assumed a G, subset of K. Because 4, considered
as subset of X' x K, is X' x A -analytic, m,(A) is ¥'-analytic, by 1.15.

PROPOSITION 3.25. If (4,), is @ sequence in (X, Y) such that ﬂ A, =9,
then there is a sequence (B,), in M@y with A,= B, for each n and nx(ﬂ B)e 91

Proof. Again we may assume Y a Gj subset of K. Remark that each set. A is
X' x A -analytic. Since by 3.3 and 2.5, (X'x K, ¥’ x ", n7}(9)) has property (S),
2.9 yields us a sequence (B.), in (¥’ x #)* = M@ A, so that 4, B, for each n and
nx(( B)) € M. If we take B, = By n (X' x Y), the required sequence (B,), is obtained.

THEOREM 3.26. If (4,), is a sequence in d (X, Y) such that N\ 4, = O, then

‘there is a sequence (B, in &(X, Y) with: A,c B, for each n and NB, =0

Proof. By 3.25, there is a sequence (B;), in MRy such that 4, < B, foreach n
and N = nx((\ B!) e 9t. Applying 3.23, we find on the other side for each x & X

a sequence (B"),, in #y satisfying 4,(x) = B} for each n and (\ B = &. The sets B, are

introduced by taking B,(x) = By(x) if x¢ N and B(x) B if xe N. Because
nx(Bad B)) =N, each set B, belongs to S(X, ¥) and it follows from the constructxon
that 4,c B, for each n and ﬂB = @,

The following 2 corol]arjes are straightforward
PROPOSITION 3.27. Disjoint sets in o (X, Y) can be separated by sets in G(X Y).
ProrosITION 3.28. bt (X, ¥) = (X, ).

C. Stable mappings. We still assume (X, ¥, 3) with properties (1) —(6) of I11, A.

_From 3.29 to 3.36, ¥ and Z will be fixed Polish spaces and . De €(X, Y).

DEFINITION 3.29. A mapping ¢: D — X'xZ will be called stable; if ny o ¢ = mx
(¢ preserves the first coordinate).
Obviously ¢ is determined by mz ¢, which we denote by ¢s:
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" DigINTION 330, Let @: DX xZ be a stable mapping. We will say that
¢ is measurable if ¢ is 6(X Y)—~8&(X, Z) measurable.

" PropOSITION 3.31. A stable map @: D— XxZ is measurabla if and only if
@, D= Z is S(X, Y)—~B, measurable.

Proof. 1. Suppose ¢ measurable. Since n;: XxZ—Z is &(X,Z)~%;
measurable it follows that ¢, is WX, )%, measurable.

.2, Assume now ¢, is S(X, Y)~%; measurable. First we verify that ¢ is
S(X, Y)- M®H; measurable. Take then 4 e S(X, Z) and consider Be MR,
satlsfymg nx(AAB) € N. Clearly

' nx( ~1(d) 4o~ 1(B))=my(4 4 B)
and furthermore
¢7'(4) (x) @7 (AN ) e By

Hence (p”l(A) eS(X, ).

DmNITION 3.32.1fp: D> X xZ is a stable mappmg, then the graph of ¢ will

be the set I'(0) = {(x, 7, ¢s(x,3); (,5) e D}.

PROPOSITION 3.33. If @: D— XxZ is stable -and measurable, then -I'(p) is

a membei of S(X, YxZ).

" Proof. Let y: DxZ—ZxZ be given by ¥(x,y,2) = ((pz(x ¥, 2). Then V is
S(X, YxZ)- QZ®QBZ measurable. Indeed, n;: DXxZ—Z is S(X, YXZ)~-%,
measurable and 7yxy: DxZ— D'is S(X, YxZ)~&(X,Y) measurable. The
diagonal A of Z xZ belongs to #,®%,, since it is closed. The fact that
T'{p) = y~'(4) completes the proof.

ProposITION 3.34. If ¢ D — X xZ is stable and measurable and A e (X Y),

then oA~ D)e (X, Z).

Proof. We may assume Y a Gj-subset of a compact metric space 2" with paving
" of its compact subsets. Let & be the paving on-Z consisting of the closed. sets. By

3.33, I'(p) € B(X, Y'xZ) and hence, by 3.21, I'(p) n (AxZ)e (X, Yx Z). Since
F(cp) N (A4 xZ) considered as subset of X'xK xZ is X' X x & -analytic, we
-obtain; by 1.15, that (4 N D) = nxxy(l‘(ga) I} (AxZ)) is X' x & -analytic. Thus
oA .n:D)ye AL(X, Z).:

DerINITION 3.35. We will say that a stable.map ¢: D—X xZ i§ continyous

provided the partial map (¢,)y: .D()— Z is continuous for each xe X,

PROPOSITION 3.36, Iff De M@By and ¢: D— X'xZ is a stable, measurable
and continuous map, then @ is MRBy— MRA, measurab/e

Proof. Let B be a2 member of M@®A,. Applying 3.18, we oaly have to show
that: the 'sections ¢™(B)(¥) = ((¢#,)s) *(B(x)) are of bounded. Baire class. But

this follows ifamedidtely from 3.9 and the ‘fact that each (¢,), is continuous.

= = Qbviously; the following c¢omposition results hold: . .
ProrosiTION 3.37. Let Y, Z, W be Polish spaces, De G(X, ¥), Ee (X, Z),
@: D— XxZ:amd Y E— X x W mappings so that ¢ (D)< E. If ¢ and y are stable,
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then o @'is steble. If morcover @ and vy are measurable (continuous) then alse o ¢
is measurable (continuous).

PROPOSITION 3.38. If Y is a Polish space and A o (X Y), then there e,\zst
a set D in Fo(X, N) and a continuous map @: N — ¥ so that ¢(D(x)) = A(x)
or each xe X.

Proof. Let 4 be the result of a regular scheme (M, x F.),.q on 2(X, Y). It is
casily seen that we may assume F, # @, F,oF, if c¢<d and diam F,<1/|c|, where
the diameter is taken with respect to a complete metric. Obviously the set

D=0 NWMxH)=N U MxH)
v e<vy k |é|=k

N F., Wthh is

c<y
a unique point of Y. It is clear that ¢ is continuous. Moreover

Dx)={ves; xe M,
e<v

and hence ¢(D(x)) = |J () F., which is precisely 4(x). -

veD(x) e<v
" Our next aim is to establish the following result

PROPOSITION 3.39. If Y is a Polish space and Ae &(X, Y), then there exists
a set DeFo(X, W) and an injective, stable, measurable and continuous map
@: D— X'XY onto A.

We need the following ]emma »
ProposiTioN 3.40. Let (Y,), be a sequence of Polish spaces and let ¥ = H Y,.

We consider for each ne N a member D, of M@Hy,. Then the subset D of X xY
deﬁne(l by D(x) = H D,(x) belongs to MRBy.

Proof. It is easily verified that for‘each n the set
D, = {(\* NeXxY; (x,y)e Dy}
is a member of i’)l@.%y Since D = ﬂ D,, the proof is clear.

The main step in the proof of 339 is the following

PROPOSITION 3.41. Let D be the cluss of subsets A of X x Y with tl1e property
that there is a set De F (X, &) and an injective, stable, measurable and continious
map ¢: D— X'x Y satigfying ¢ (D) = A. Then:
1. @ is stable under countable dt'sj’oint union.

2. 9 is stable under countable intersection.

" Hence @ n cD is stable under countable union.

Proof. It is clear that in the definition of 2 above, the space A can be replaced
by a homeomorphic Polish space.

1. Let (4,), be a sequence of disjoint members of &. For each n, we obtain
a set D, in #Fo(X, A,) and an injective, stable, measurable and continuous map
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@,: D,— X x Y satisfying @,(D,) = 4,. Obviously D =U D, is a member of

n
Fo(X, A). Define ¢ on D by taking @|D, = ¢,. Then @ satisfies the required
properties and has image U 4,.

2. Let (4,), be a sequence of members of 9. For each n, let D, e F (X, 4)
and ¢@,: D,— Xx Y an injective, stable, measurable and continuous map so that
0D, = A,. Let § = 4™, From 3,40 we know that the subset D of X% S defined
by D(x) = [] D,(x) belongs to M@Hs and hence to Fo(X, S). We consider the

map @: B — Xx Y given by 63(x,5) = (@n2(x, s if 5= (5 Using 3.31,
we see that @ is measurable and continuous. If 4 is the diagonal of Y¥, then
D= (@) {(Xx4)eSX,S) and hence De FoX, S), since D(x) is closed in
B() foreach x € X. Let 11 4 — Y be the canonical isomorphism and @: D — Xx Y
the stable map given by ¢, = 10 (¢,|D). It is easily checked that ¢ is injective,
measurable and continuous. We also verify that ¢(D) = () A4,. Because S and 4

are homeomorphic, the proof is complete. o

PROPOSITION 3.42. If Y is Polish, then every member of By is the continuous
injective image of a closed subset of N ‘

Proof. We refer to [12], p. 247, Th. 79 or [26], Ch. L.

Proof of 3.39. Let @ be as in 3.41. It is enough to prove 3.39 if 4 € M By
and if 4 e S(X, Y) with my(4) € N, since every element of & (X, Y) is the disjoint
union of such sets. ¢ ,

1. From 3.42, it follows that #(X, ¥)< 2 and hence also #(X, Y)=2 n cZ.
Therefore MPBy=D n cD, thus certainly MIFy=D.

2. Assume now A€ &(X, Y) and ny(4) € N. Again by 3.42 there exist for
each xe X a closed subset D* of 4 and a continuous injective map ¢*: D*— Y
onto A(x). Let D(x) = D* if xeny(d) and D(x)=0 otherwise. Define
¢: D> XxYby olx,v) = (x, 9*(3). Clearly, by 3.17, De Fo(X, A) and ¢ is
an injective, stable, measurable and continuous mapping with image 4.

This completes the proof.

We will now pass to the proof of a converse result, namely

THEOREM 3.43. Let Y, Z be Polish. If De &(X, Y) and ¢: D— XxZ is an
injective; stable and measurable mapping, then (D) € (X, Z).

PROPOSITION 3.44. Let Y by Polish and (A,), a sequence of mutually disjoint
elements of (X, Y). Then there is a sequence (B,), of mutually disjoint members of
&(X, Y) such that A,<B, for all neN.

Proof. Since 4, and A, are disjoint for m # n, 4, and UzA,, are disjoint

; >

members of & (X, Y). By 3.27 we can find disjoint sets B, and C; in &(X, Y) such
that 4, B, and |) 4,=C;. We can then separate similatly 4, and | 4, by sets B,
nz2 n=3
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and C, in &(X, Y) such that B,=C; and C,=C,. Repeating this, we complete
the proof.

Proof of 3.43. By 3.39 and 3.37, we may assume Y = 4. For every ce &,
define E, = ¢(D n (X'x A,)), which is a member of o7 (X, Z) by 3.34. The scheme
(Eo)cea is regular and since ¢ is injective, E, N E,.. = @ if |¢'} = |¢”’] and ¢’ $ ¢”".
Applying 3.44, we obtain a regular scheme (B,),.» on &(X,Z) so that E.cB_and ,
B.n B, =@ if |c'| = |c¢"| and ¢" # ¢ For each ce®&, let C,= {(x,v,2)
e Xx A xZ; c<v and (x, z) € B,}, which clearly belongs to S(X, # % Z). Hence
also™* =0 U C,is in X, /' xZ).

k |c|=k
It is easily seen that I'(¢)c=I™*.
If xeX, zeZ, then I'(x,z) = {ve #"; (x,2)e () B,} and thus consists of
N e<v

at most one point of 4. Furthermore

Wxxz([:*)z Uns.=n U B,

v c<v k- [e|=k

and therefore in €(X, Z). Since I'(p) € (X, # xZ) by 3.33, the set
T 2T\ (9)) = Tix e o(T*)N0 (D)

is a member of & (X, Z). It follows that (X x Z)\¢{(D) belongs also to o (X, Z)
and thus, by 3.34 and 3.28, ¢(D)e 8(X, 2).

An obvious corollary of 3.43 is Kuratowski’s isomorphism theorem:

PRrOPOSITION 3.45. If Y, Z are Polish, De®y and ¢: D — Z is infective and
Borel measurable, then ¢(D)e#,.

For a slightly different proof of 3.45, the reader is referred to [16].
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Generalized Archimedean fields and logics
with Malitz quantifiers

by

J. Cowles (Laramie, Wy.)

. Abstract. A characterization of Archimedean fields in a particular interpretation of the logic
with Malitz quantifiers suggests a generalization of such fields. The theory of the real closed version
of these generalized Archimedean fields in other interpretations of the Malitz quantifier is found
to allow elimination of quantifiers. . )

. The reader should be familiar with the model theory of first order logic. Some
lgnowledge of . ultrapowers, for example, is assumeéd. The notation is for the most
part similar to that used in [1] or [2]. Gothic letters range over structures with the
corresp011ding Latin letters denoting their universes: 4 denotes the universe of oA, B}
denotes the universe of B;, etc. Cardinals are initial von Neumann ordinals. Write
Card (4) for the cardinality of 4, P for the set of positive integers, Q for the set of
rational numbers, and R for the set of real numbers.

Logics with Malitz, quantifiers. For each positive integer #. and each infinite
cardinal , the logic 2! is obtained by adding a new quantifier Q" which binds
distinct variables and the following formation rule to those of first order logic:
If ¢ is a formula and if the variables X, , ..., , ate distinct, then 0"y, ..., x, @ is also
a formula. The logic 2% is obtained from first order logic by adding all the quan-
tifiers Q" together with the corresponding formation rules.

The interpretation of the quantifier Q" depends on the cardinal x:

A l:ac Q"xl’ () xn‘/’[‘;]

just in case there is a subset I of A such that (i) Card() = x and (ii) whenever
a@y,...,a, are distinct elements of , then A F, ¢ [ay/x1s.e, @fxy, @]. Here the notation
indicates how each of the variables xy, ..., X, is to be interpreted and 4 is an inter-
pretation of the free variables in Q", ..., X, ¢:

The logic 2. coincides with the logic with the cardinal quantifier, “There.exist x
many ...”. For n»2, the logics 2y, and 232 are referred to as logics with Ramsey
quantifiers because of the similarity between their semantics and the well-known


GUEST




