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o(A4;, 4;)<}r;. Désignons par r, la distance du point 4, & ensemble fermé Q

(ferfné .dans.le cercle S;) et remarquons que le cercle ouvert S, = S(d,, 1) Q, N S :

N’Ials, il existe dans la frontiére du cercle S, un point A5 e Q e;’ cf)ntra(;’ ti "

d’aprés le lemme 1, avec la propriété (P,) de la fonctio; f ! e
De la méme fagon on obtient le théoréme suivant:

THEOREME 3. Si une fonction mesurable f: R?
) . :R*—Ral j
a également la propriété de Darboux. @ 1o propricié () eli

Remarque. Il existe une fonction f: R* — R approximativement continue

id?xtxc ayant les propriétés (P,) et (P3)) qui n’est pas connexe, c’est-3-dire telle qu’il
xiste un ensemble connexe P<R? pour lequel I'image f(P) n’est pas connexe
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Non standard interpretations
of higher order theories

by

Pawel Zbierski (Warszawa)

’

Abstract. We prove the existence of some types of nonstandard interpretations of higher order
arithmetic (or higher order set theory) in itself.

Section 0. Classifying interpretations. Interpteting a theory in itself or in another
theory is one of most basic tools in foundational research. There is a number of
papers devoted to general theory of interpretations. In Szczerba [8] and Pinter [7]
it is proved that some logical and model theoretical notions are preserved under
interpretations satisfying suitable conditions. In Szezerba and Setti [9], we find an
algebraic characterization for a functor from the class of models of T} to the class
of models of T}, to be determined by an interpretation of T in 7. Here we turn our
attention to the problem of classification of interptetations according to semantical
notions preserved. We do this in the case of nth order arithmetic 4, or some con-
sistent extensions of A4,. Similar results hold in the case of nth order set theory M,
(see Marek and Zbierski [4]). We distinguish the following classes of interpretations:

(1) B-interpretations or standard interpretations. These are interpretations
preserving well-orderings. More precisely, for an interpretation I let ‘" denote the
formula cotresponding to p under I Then I is a B-interpretation if the formula

I(x) & Bord'(x) — Bord (%)

is provable (in the theory in which we interpret), where Bord(x) stands for “x is

a well-ordering”.

(¥ k-p-(or k-standard) interpretations. We assume I1<k<n and then the
interpretations are those which preserve well-orderings up to the kth type, but for
some x of type k+1 we have

b I(x) & Bord'(x) & T1Bord(x) .

Standard (k-standard) interpretations preserve natural numbers. Hence
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(3) . Non w-interpretations (or w-nonstandard interpretations). Those under
which the natural numbers are (provably) nonstandard.

Examples of f-interpretations are constructible sets and the ramified analytic
hierarchy. They were extensively studied in Gandy [1], Marek [2], Marek and
Mostowski [3], Vetulani [10], Zbierski [11].

In Zbierski [12] we prove the existence of a standard interpretation of the second
order arithmetic (with choice) in arithmetic without choice. As a corollary we derive
that the system of second order arithmetic with w-rule (or f-rule) is not finitely
axiomatizable.

In this paper we prove the existence of interpretations of classes (2) and (3).
In Section 1 we briefly describe the system A4, and related notions; in Section 2 we
recall the interpretation by trees. In Section 3 we prove the existence of an internal
w-nonstandard interpretation of 4, plus the axiom of constructibility. Finally, in
Section 4, we prove that for each 1 <k<n there is a k-standard interpretation of 4,
in A4, plus there is a f-model of 4,. As was remarked earlier, all these results hold
with 4, replaced by M,.

There are, of course, other classifications of interpretations. For instance, if X
is a class of formulas, then I is called a K-interpretation if all formulas in K are
absolute in 1. It is known that f-interpretations of 4, coincide with I} -interpreta-
tions (see Mostowski [5]). We shall not pursue this matter here.

Section 1. The system 4,,. We briefly describe the theory 4, and related notions.
More details about 4, or M, can be found in Marek and Zbierski [4] and Zbier-
ski [11].

The first order language of A4, contains unary predicates Sy, ..., S,, for types
(S'(x) stands for “x is a natural number” and S,(x) for “x is a set of numbers eic.);
two terary predicates for addition and multiplication of numbers and a binary
one € — for membership. The axioms of 4, are: Peano axioms relativized to S,
comprehension and choice schemata in each type S, 2<k<n, the axiom asserting
that the umiverse splits into a disjoint union of types Sy, ..., S, and axioms

. x€Y& Spp1(¥) — S(x) for I<gk<n.
Structures (models) of A4, are represented in the form
M= <S¥’ ey Sr]l”, +M9 'M: 8M> »

where the reduct (S, -+, M is a structure (model) of Peano arithmetic. Fach
structure M is isomorphic to one with standard membership: we put

; F) =xforaeS¥; f@) ={f(): x"a},
for ae S and, similarly, extend f to higher types. Note that if M is definable, so
is f(M).

The formulas

1.1 Ja[S,a& x e a]; Fa, b[S )& bea&kxeb] ..
define the types S,_y, S,-2, ..., respectively.

icm

Non standard interpretations of higher order theories 177

Thus, all types are determined by the highest one.

The pairing functions J, are definable at each type S,. Thus, every set M in
Si+1 determines a family consisting of S, ,-sets M, where M™ = {y:J(x, ¥) e M}
and x runs over Sy. Iterating the singleton operation definable in A4, we see that
each type S, 2<k<n, contains a definable copy of natural numbers. Hence, the
symbol M ™, for nin Sy, is meaningful and M can be treated as a countable family.
In particular, some M of the highest type can be understood as codes for structures
of 4, denoted also by M. Namely, SM consists of all M s, Jower types are defined

‘with help of formulae (1.1) and M@, M™ are codes for addition and multiplication:

we assume that M@ and M arise from «, b (a, b in S,) by iterating the singleton

- n—1 times. Then 4 and b split into ternary relations are addition and multiplication,

Thus, M is a code for a structure with standard membership if all the determined
relations are non-empty. In a similar way, we may define codes for structures with
non-standard membership. We shall not deal with details, since this coding procedure
is commonly known. . )

Assume that the formal language has been godelized in 4,. We let the letters p, ¢
run over (Gddel numbers of) formulas of A4,.

As shown in Mostowski [5), there is a formula of A4, expressing the satisfaction
relation M k plai, ..., 4], where M is a (code of) structure of 4,,, p—a Godel number
of a formula and g, ... a,-elements of a structure (coded by) M. It follows that there
are formutas of 4, saying: “M” is a code of a model of 4,; “M is a ff-model”, etc.

Section 2. Trees. In the theory 4, some higher rank sets can be encoded with the
help of trees. A similar technique works also in the case of higher order set theory,
see Marek [2] and Marek and Zbierski [4]. We recall below the basic notions of this
technique.

A tree ¢ (denoted also <,) on an infinite set X is a partial ordering with
Dm() <X having the following properties:

(i) There is a greatest element denoted by w(t).
(ii) The set of successors of an element x is linearly ordered by <,, for all
x & Dm(t).

(i) Bach nonempty subset of the domain of # has both maximal and minimal
elements.

From this definition it follows that each element x & Dm(z), x 5 #(¢), has
exactly one immediate successor (denoted by x*), for each x there is a minimal
(in 1) clement y<,x and each nonminimal x has (possibly many) immediate pre-
decessors, .

To each tree ¢ we assign a set Z(¢) by means of the following inductive con-
ditions: :

Z({t,x) = @, for minimal x,

Z(t, %) = {Z(t,y): y* ==},
Z() = Z(t, w(®).

for nonminimal x,


GUEST


178 ) P. Zbierski

One can easily see that the family {Z(¢): t is a tree on X} coincides with the family
H(|X|*) of all sets of hereditary cardinality less than |X|*.

Furthermore, there is a relation r(¢, s, x, y) (where ¢, s are trees and x, y are
elements of domains of ¢ and s, respectively) defined by the inductive condition:

r(t,s, %, = Yulu® =x — ot =y&r@t,s,u, )]} &
&EVo{ot =y — Julut = x&r(t,s,u,v)]}.
A (generalized) isomorphism of ¢, s is defined by
ts i r(t, s, W), W)
‘We also put
tes it [yt =w@&r(t, s, w(@),»)].

One shows that tos iff Z(t) = Z(s) and te s iff Z(z) € Z(s). Moreover, = is an equiv-
alence congruent with .

All the above notions can be defined in 4,. Thus there are formulas T, I, E
of A4, defining trees and relations =~ and &, respectively. In particular, we have

MET[t] if tis a trec on P...P(w),
n—2 N
MEIlt,s] iff ix~siff Z(@) = Z(s), .
MEE[t,s] iff tesiff Z(t)eZ(s).

Let ZFC, denote the fragment of ZFC set theory obtained from ZFC by deleting
* the power set and assuming its first n—2 steps (i.e., there exists a P ... P(w)). One
——
-2
adopts also the choice schema "
Vx),3p — F£(¥Yx),Ap[Foc(f) &y = f()&p] for an arbitrary formula p.

The theory ZFC, thus defined is interpretable in A4, we interpret sets as trees,
€ as E and the equality = as I (hence the interpretation of equality is nonstandard).
Let p” be the formula of 4, corresponding to p under this interpretation.
We have
. 4,k p"  for all p in ZFC,
and :
A, (V= HUZ),

where V= H(I;]_,) means: each set has hereditary cardinality less than I\ ,.

Analogous results hold also in the case of higher order set theory M, replacing 4,
The interpreted theory ZFC, is then enriched by the axiom “there is a family which
is inaccessible in the sense of Tarski”.

Section 3. w-nonstandard interpretation. In this section we show that some con-
sistent extension of 4, bas an internal w-nonstandard interpretation. We add to A,

e ©
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a suitable form of the axiom of constructibility. In such an extension it is possible
to define a proper nonprincipal ultrafilter over natural numbers. The interpretation
in question is then obtained by defining the ultrapower construction.

Obviously, the main case of intetest is 7 = 2, i.e. the second order arithmetic.
First, we do this in set theory. Hence let Z denote ZFC, plus V = HCL (all sets are
constructible and hereditarily countable).

LemMaA 3.1. There is a formula F of Z defining in Z a proper, nonprincipal ultra-
Silter over o, l.e. the following formulas are provable in Z:

F(x)—xsw; FER)E&EF@)—FHxny);
F)&xsyco — F(); F) v F(o\x) ;
F(w); "F({n}) foradlneo.
Proof. Let C, denote the ath constructible set. Since the family
B = {o\{n}: new}
is definable in Z, there is a formula ¢(x) expressing the following:
“ycP(w) and B U has finite intersection property”.
Now let (o, f) be ‘
Fne(f) & Dm(f)so&Rg(f)sa& o({Cm: ne Dm(f)} v{C:H&
&Vp<a[f¢Ref — 10({Cre: ne Dm(f)} v {C} v {CN].

And pext let ¥(a,f) be
Yo, /)& YBeRe (B, f nwxf).

Now let F(x) be the formula
o, fIx = Co &Y (@, /)]

Thus the formula F(x) expresses the inductive process in which at each stage
we add the first constructible set which forms with the previously chosen sets and' the
sets o\{n} a family with finite intersection property. Hence F deﬁnes‘a maximal
family of constructible subsets of @ with finite intersection pr.operty. Since V = L
is assumed in Z, this family is an ultrafilter and the lemma is provc‘ad.

According to the ultrapower construction we fix the following formulae:

U(f) s Fre(f)&Dm(f) = o,
e(f,g) is x{FH& Vnlnex =f(m)eg®l},
i(f,g) is Ix{F)&VYnlnex = fm) =gmi}.

The next lemma expresses the fact that 7 is an equivalence congruent with e.
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LemMA 3.2. The following formulas are provable in Z:

i) i =ie.f); if,9&ilg, ) — i(f,h);
ifyg)&e(f, ) — elg, h); i(f,9)&eh,g) > eh,f).

For each formula p of Z let p¥ be the formula obtained from p by relativizing
all variables to U and replacing each occurrence of € and = by e and i, respectively.
The following lemma is an instance of the %.o§ theorem:

Lemma 3.3. For every formula p(xy, ..., x;) (with the free variables indicated)
the following holds:

ZEp Ly o f) = I{F@ & Valne x = p(£i), .., A} -

Proof. By induction on the length of formula p. Treating the quantifier case,
we use the choice schema of Z to find a suitable function.
As an immediate corollary we obtain

THEOREM 3.4, The triple U = (U, e, i) is an nonstandard interpretation of Z in Z.
Proof. Indeed, from Lemma 3.3 we obtain Z I pY, for each theorem pofZ
ie. U= (U, e,i)is an internal interpretation of Z. There is a function-like for-

mula ¢ which to each x assigns the constant function with valye X, i.e. the following
holds:

Z+VxAlyep,
ZrVx,y{o > UO) & Vnly(m) = x1} .

Thus "¢ defines an elementary embedding in the obvious sense. Indeed, from
Lemma 3.3 we obtain the following schema:

.

ZEo(x,y)& . & 005, 1) — [P, s 1) = P31, w0y X)),
: for all p(xy, ..., x;) .

Let c,. be a constant function with value x and d the diagonal, d(n) = n..We immedi-
ately see that Z - Vn[e,< Y d], which proves that U = (U, e, i} is an w-nonstandard
interpretation.

Note that the nonstandard interpretation of equality in U can be replaced by
the identity. Indeed, since V = L is assumed in Z, we may choose, in a definable
way, one element from each i-equivalence class.

Now consider again the system of second order arithmetic. Let A be 4, plus
the consistent axiom (V = L)T (every tree is constructible). Interpret 4 in 4 in the
following way: first, interpret 4 in Z in a natural way, then Z in Z under U, then Z
in 4 under T.

More exactly, let ¢ and y be formulas of Z defining addition and multiplication
of numbers, respectively. We fix the following formulae of 4:

S¥x) is  (xeaw)’T,

SIx) is (xsw)'T,
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[,

xe*y is S&SiO&xepn™,
(x+y =2* is o(k,,9",
Gy =2* i Yx»2",
x=p* is (=",
Let (x> denote the sequence of the above formulas and let p* be the translation
of p under {x), The main result of this section is

THEOREM 3.5 The sequence of formulas () is an w-nonstandard interpretation

cof Ain A,

Proof. That () is an interpretation follows from Lemma 3.3 and the results
cited in Section 2. To see that it is w-nonstandard we define in A4 trees £, and # such
that ¢, encodes the constant function with value » and ¢ encodes the diagonal. Then
A Vnalt,<"T1] is easily checked by again using 3.3 and the lemma of Section 4
of Zbierski [11].

Section 4. ©-standard but f-nonstandard interpretations. In this section we shall
deal with interpretations of class (2), see Section O.

We fix the numbers 72 and 1<k <n. We shall define 2 k-standard and (k+-1)-
non-standard interpretation I, of 4, in a consistent extension denoted by A8, where
Al is A, plus the axiom: “there is a code for a countable B-model of 4,”. Since the
numbers k, # are fixed throughout this section, we put 4 = 4, and AP = A, From
the additional axiom it follows in 4 that there is a code M|, for the smallest f-model
of 4,. It is well known that the smallest §-model is uniquely determined and can
be characterized in different ways, e.g. in terms of a ramified analytical hierarchy,
se¢ Gandy [1], Marek and Mostowski [3], Vetulani [10] or constructible sets, Zbier-
ski [11]. We fix formulas

@1 @1s s Pn

defining the types Sy, ..., S, of the smallest f-model M (i.e. SM = {x: o (x)}.
These formulas involve a parameter M, (a code for M) but, for different codes, are
equivalent in 4”. A similar remark applies to all the formulas constructed in the
sequel. : . .

. The proof of existence of the interpretation I is obtained by formalization in 47
the Mostowski-Suzuki construction [6]. First, we shall fix some notation. We shall
use formal languages L, L*, L, where L is the language of the model M, i.e. L con-
tains the constants ¢, 1<<i<n; me ; L* in an extension of L by a new constant «
and L* is an extension of L* by additional constants e, We assume that all three
languages are — via Gddel’s procedure — defined in AP Thus, formulae are some
natural numbers. We use the same notation in L (resp. L*, L¥) as in the meta-
language, e.g. ~1p (for p in L) denotes the negation of p, the phrase “p is
3x[S,(x) & 4]” means that p is a formula of L having the indicated form, etc. The
sets of sentences of L, L* and L* are denoted by Sn, Sn* and Sn®, respectively.

2 — Fundamenta Mathematicae CXII
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We assume that the languages L, L*, L* are defined in 4’ in such a way that
SncSn*=Sn*. We fix a standard interpretation of constants of L in the smallest
model M (depending on the code M,) and use the symbol M, k p[a, ... a,], for p
in L, as satisfaction formula defined in 4%. Under this interpretation the c}’s denote
the elements of S}Y. We distinguish also constants denoted by b, from among
the ck’s denoting codes for consecutive natural numbers in the type Sy. Finally, let p,
be a definable enumeration of Sn such that p, is Bord(d).

We now state the following

LemMa 4.2. There are formulas ®o, @1 of A" such that A"+ 1Zdy(Z);
AP ¢ ®)(Z) — Z=Sn*; 4P F Vn3lud,; AP+ &,(n, u)— S,(n) & S, (), i.e. &, defines
a set of sentences of L*, &, defines a sequence u,. In addition, Z and u, have (provably
in A®) the following properties:

(D) Z is consistent and complete,
(i) if Mo kEp, peSn, thenpeZ, -

(iii) if peZ and p has the form Ax[S(x) & q], 1<i<k, then q (ck/x) is in Z, -

Jor a certain m (i.e. Z is S,-closed for all 1<i<k).

(iv) the sentences b,,,,<g4 b,, are in Z for all n

Proof. Let W be the set of all well-orderings of the model M in ¥, ,. Of course:
W is definable in A4°. Let W, (s, 7, X, ..., X,) be the formula of A° describing the
following: (s, r are in W) & (xy > ...>x,-strictly decrease in r) & (s can be embedded
into r below x,). We shall define in 4” a set ¥ such that all sections Y™ are finite
subsets of Sn*. Then Z is defined as the union ) ¥™. The sets ¥ and numbers u,

are defined inductively according to the following conditions:
(R1) Y consists of Bord(d) and Sy, (d); u, is 0;

(R2) for n>0, p,e Y™ or —\p, e Y™;
if p,e Sn and M,k p,, then p,e Y™;
if p,& Y and p, has the form 3x[S,(x) & q], 1 <i<k, then glch/x)e Y™,
for some m; the sentence b, <, b,,_, is in ¥™;
(R3)  for n>0, the following holds:
Vse Wilre W{M, k y,[s,r, by, ..., b,] and (M, r) k AT}
In (R3) the symbol {M,, r) denotes a code for the model M expanded by anre W.
Now we introduce formulas of A* decribing this inductive process. The initial
condition (R1) is described by the formula P(X, u):
VelpeX =peSn&pis Bord(d) or p is Sy, ,(d)& u = 0].
To describe the inductive step from Y™ to Y®*1 and from u, to 4,4, We fix the
formula ¢(n, ¥, q,1):
Vse Wire W{Myk ¥,[s,r,(Dy, ..., (!),] and

(Mo, 1) F AY® and (M,,r) E g}.
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Clearly, all these notions are formalizable in 4%, In addition, one easily checks
that the following holds:

A rom, ¥, q,Dvem, ¥, 1,0,
4.3) A om, Y, q,1) — Wom+1,7Y,q,1x0,
AP Mo e Sla) — AmMy k (x = ctHal,
((N); is the jth term of the sequence mumber /; /%1’ is the number of

{Dos s Dns I)). Using (4.3) we see that the formula H(n, ¥,g) describing the
inductive step can be defined thus:

Vo{pe Y"V = pesnt & (pe Y™ v
V(P is puss and Mo Ep or @(n, ¥, prs2, GM)) v
V(P is T1pusy and T10(n, ¥, pyry, !7(”)))"
v(p is bg(n+1)<4bg(n) and g (n-+1) = min(p(n+1, ¥, pysy, G0 * 1)
1
or _I(/)(n: Yspn'lrl) g(n)) a‘nd
g+1) = min(p(a+1, ¥, 7Py, 500« D)) v
1
vig, i<k, m, x|(x—is a variable of L) and (p,s, is x[S,(x) & q]
and @(n+1, ¥, pyiy, Gfn+1)) and (p is g(ch/x)) ’
and Ym'<mo(n+1, ¥, g(cn/x), §(n+D))[} -
Now let I'(n, X, 4) be the formula
Y, gVi<n[P(YV,g(O)& H(, V, ) & X = YV & u = g(n)].
Using (4.3) and induction, we have:

A PV X, ul(n, X, 1),

4.4)
AP E VY, X, udIVp[P(n, X, W)&pe X — p<I].

Clearly, the set X and number u defined by I'(z, X, u) are the Y and u, as required
in (R2), (R3). Thus the formulae

Bo: Vp{peZ=peSn*&In, X, ull(n, X, ) &pe X]},
&,: AXT(n, X, 1)

define the required set Z and sequence u,, which finishes the proof.

We have to show yet that the set Z has provably in 4® a k-standard and
(k+1)-nonstandard model definable in A°. The definition of this model then de-
termines the required interpretation I, of 4 in 4”. The proof of existence of such
a model is obtained by formalization of the Henkin-Qrey construction.
ko4


GUEST


184 . : P. Zbierski

Let g, be a definable enumeration of the set Sn* and let Cn(Z, p) be the formula
of A° expressing: “p e Sn* and p is consistent with Z”.

LemMa 4.5, There is a function f, definable in A%, on Sn* whose values are con-
stants ¢, with 1<i<k, such that the following holds:

AP Yp,a[Cn(Z, P> Cn(Z,p& N TISHe)ve, =F(p)].
1<i<k

~ Proof. To each pe Sn* we assign (a code for) the sequence {g;,, ..., ¢;,,» of
all constants not in L* occurring in p. Then we fix variables x;,, ..., x;, which do not
occur in p. The variable corresponding to e, is denoted by x. Let p be the formula
obtained from p by substituting x;,, ..., Xx;,, for e;,, ..., ¢;,, -and quantifying all vari-
ables but x. The resulting function g(p) = p is recursive and we have:

AP+ Cn(Z,p) = Cn(Z, P) .
If 1Cn(Z, p & Syx)) for all 1 <i<k, then 4° F Cn(Z,p& |\ “15.x)),by predicate
calculus. If Cn(Z, p & Sy(x)) holds for a certain 1<i <kt stl}fe’;n also
Cn(Z,Ax[S(x) & 13]) :

holds and 3x[S(x) & p] is in Z, since Z is complete. By Lemma 4.2 p(cl/x) is in Z
for -a certain m, from which we infer Cn(Z, p& (¢, = ci)).

Thus we put £ (p) = ¢h, with the smallest such m. The function f is clearly
definable from Z and hence definable in 4”, which completes the proof.

LeMMA 4.6. There is a formula @, defining in A® a set Z¥ = Sn* having (provably
in A*) the following properties: Z* is consistent and complete, and contains Z; if Axq
is in Z*, then q(e./x)eZ¥, for a certain m; for all 1<i<k if Si(e,) € Z*, then
e, = c, is in Z%, for some n.

Proof, We define Z* as a union {J X®, where all X™s are finite sets = Sn* and

n
are defined inductively in 4* according to the following conditions: at the step n we
add to Y XY the sentence

j<n

A _ (n=1
@7 . T\ Sledve =7 (AXTY)

where f is the function from Lemma 4.5.

We add also the sentence g, or g, depending on, which is consistent with Z,
X"V and the already added sentence (4.7), with preference of g,. If a sentence of
the form dxp has been added, then we add also p(e,/x), where e, is the smallest
constant not yet used. Thus, the induction is similar to that in the proof of
Lemma 4.2 and it suffices to describe the inductive step I(z, X). Let us denote by X%
the set

X(.") %) {1(4\4 T1SHent 1)V Eyps ;f(/\ an))}k .

icm°
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The formula I{(n, X) can be defined thus:
Vo{ge X" P =geXPv(gis A Sfes) Ve
18Ik

=F(ANX™)v(q is gye, and Cn(Z U A X, ) v
v (g is T1gm4; and ICH(Z U A X, gui i)}V
v Ax, p, m[(x is a variable) and (g, is Ixp) 4
and Cn(Z v X%, q,4,) and (g is p(e,/x))
and (m = n;iln{em, does mot occur in A XN} -

Now, by induction, we obtain A"+ XV nI(n, X) and we put &, as

.

Vg{gez® = 3n, XYmI(m, X) & g X"}

Clearly, the set Z* has the required properties and the proof is finished.

Now, it is easy to define a model M* of Z*. The constants e,, e, are equivalent
if the sentence e, = e, is in z*,

Choosing one element from each equivalence class, we may assume that
e, # e, 2%, for n# m.

Formulae ¥, ..., y¥, where Y (m) is Sye,) € Z¥, define the types Sy, ..., S,
of M*. Similarly, we define +*, -¥, e*, Hence there is a definable code M for M*
and by induction we show ’

ArM¥ep=pez*.

Since Z¥* is S,~closed, there is a definable isomorphism /, of S¥* onto natural
numbers. We extend A, to all higher levels as described in Section 1.

We obtain the formulas ¥/, , ..., \, defining the ranges of &, ..., k,, respectively.
Since Z* is S;-closed, for 1<i<k we infer that 4° I ¥/, = @, for 1<i<k, where ¢;’s
are as in (4.1). We put I, = (fq, o, Yy, i.6. We interpret Sy, ey Sy 88 Wy, vy Wiy
respectively, and addition, multiplication and membership are standard.

THEOREM 4.8. T, is a k-standard and a (k-+1)-nonstandard interpretation of 4,
in Ab.

Proof. From the definition of I, it follows that we interpret the objects of
types <k as elements of the minimal f-model. Hence I is clearly k~-standard. That
it is (k+1)-nonstandard follows from Lemma 4.2.

References

[t] - R. O. Gandy, mimeographed notes, see also Boyd, Hensel, Putnam, On an intrinsic charac-
terization of the ramified analytical hierarchy, Trans. Amer. Math. Soc. 41 (1969), pp. 37-62.

21 W. Marek, On the metamathematics of the Impredicative Set Theory, Dissertationes Math, 97
(1973).


GUEST


186

131
[41
[5]
(61
7
[8]
9]
[10]
{11}

[12]

P. Zbierski

W. Marek and A. Mostowski, On the Models of ZF Set Theory Extendable to the Models
of KM Class Theory, Springer Lecture Notes, 499, Proc. of the Kiel Conf. 1974.

— and P. Zbierski, On higher order set theories, Bull. Acad. Polon. Sci. Sér. Sci. Math
Astronom. Phys. 21 (1973), pp. 97-103.

A. Mostowski, Formal System of Analysis based on an Infinitistic Rule of Proof in: Infinitistic
Methods, pp. 141-166, Warszawa 1961,

~and Y. Suzuki, On w-models which are not 8-models, Fund. Math. 65 (1969), pp. 83-93,
Ch. Pmter, to appear in Zeitschrift fiir Mathematische Logik.

L. W. Szczerba, Interpretability of Elementary Theories in: Logic, Foundations of Mathema-
tics and Computability Theory, Ed. Butts, Hintikka, pp. 129-145,

— and A. M. Setti, to appear.

Z. Vetulani, Hierarchies for the minimal B-models of the higher order arithmetics, preprint.
P. Zbierski, Models for higher order arithmetics, Bull, Acad. Polon. Sci. Sér. Sci. Math.
Astronom. Phys, 19 (1971), pp. 557-562.

— Axiomatizability of second order arithmetic with w-rule, Fund. Math. 100 (1978), pp. 51-57.

Accepté par la Rédaction le 29. 1. 1979

icm

Extensions normales de demi-groupes inverses
par

Mario Petrich (Montpellier)

Abstract. The concept of a normal extension of an inverse semigroup is formulated in analogy
to Schreier group extensions, and a general extension problem is posed. As a means of a study of
these extensions the normal hull is introduced. Certain properties of this hull concerning congruences
are established. The problem posed is then solved in two special cases. The paper is concluded by
the construction of the normal hull of the Reilly semigroup and of its centralizer of idempotents.

1. Infroduction et sommaire. Les demi-groupes inverse représentent un des
domaines de recherche les plus fructueux dans la théorie des demi-groupes. La
grande variété des résultats concernant la structure des demi-groupes inverses fait
qu’il est nécessaire d’avoir une théorie systématique qui couvrirait le plus grand
nombre possible de résultats déja existants. Une approche susceptible d’étre utile
dans cette direction est basée sur la notion d’extension normale d*un demi-groupe
inverse. Cela donne un autre point de vue concernant les congruences sur les demi-
groupes inverses, et représente une généralisation de la théorie de Schreier des exten-
sions des groupes.

Nous rappelons quelques définitions et un résultat concernant les congruences
sur un demi-groupe inverse dans le paragraphe 2. Dans le paragraphe 3, nous intro-
duisons la notion d’extension normale d’un demi-groupe inverse par un autre et
formulons un probldme général. Le paragraphe 4 contient la construction de 'enve-
loppe normale d’un demi-groupe inverse. Les résultats principaux se trouvent dans
le paragraphe 5: le premier concerne une propriété intéressante des congruences sur
Penveloppe normale, le deuxidme et le troisiéme donnent des constructions des
extensions normales dans deux cas particuliers. Le paragraphe 6 contient des con-
structions de I'enveloppe normale d’un demi-groupe de Reilly et du centralisateur
de ses idempotents.

2. Rappel. Soit S un demi-groupe. Si a, b & § sont tels que a = aba et b = bab,
alors b est un inverse de a. Un demi-groupe inverse est un demi-groupe dont tout
élément posséde un seul inverse (linverse de « sera noté a™*). Le demi-treillis des
idempotents de S sera noté Eg.

Une relation d’équivalence ¢ sur S régulidre & droite et & gauche est une con-
gruence; on définit le demi-groupe quotient Slg de fagon naturelle.
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