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Ideals on the real line and Ulam’s problem -
by

Andrzej Pele (Warszawa)

Abstract, We prove that if {Sy: ne o} is a family of 2®-complete fields of sets such that
Sy CP(2%), {x} €Sy for xe2? and Sy # PQ®) then U Sy PQ2%).

The proof uses techniques due to A. Taylor and E Grzegorek and the following key lemma:
if ICP(22) is a 2%-complete ideal then [PQ2?)/I|>2%,

0. Introduction. We shall be concerned with ideals and measures on the set of
reals. An ideal will always mean a non-trivial ideal containing singletons.
By a measure we shall understand a ¢-additive function m: F—<0,1) such
that FcP(X), m({x}) =0 for xeX and if m(@) =0 and bcaq then be F and
m(b) = 0. We also require m(X) = 1.

In Section 1 we discuss the caldlnahty of P(2®)/I where I is an w,-complete
ideal. It is proved that |P(2°)/|>2° when I is 2°-complete. If 2 = 2% for some
uncountable %, then we show an ;-complete ideal J such that |PQQV)MJ| = 2°.
Some corollaries are also proved.

In Section 2 we prove the main. result, mentioned in the abstract.

In Section 3 we discuss the so-called representation problemp and give a counter-
example to the converse of a theorem from [6].

1. The cardinality of P(2°)/1.

PropoSITION 1.1, Let %#<2° and let IcP (%) be an co1 -complete ideal. Then
[P ()T =27,

Proof. Straightforward. B

Turorem 1.2, (V). Let IcP(2%) be a 2°-complete ideal. Then |PQ2°)1]>2°.

Proof, We consider two cases.

1. Iis not 2%-saturated. There are 2° disjoint sets outside J. All sums belong to
different classes, so in this case |[P2%)/I| = 22°.

2. Iis 2®-saturated. In this case we shall use the technique of gemeric ultra-
powers, See [3] for the details.

We view the universe as the ground model and denote it by M. We consnder

(%) After completing this paper the author learned that Theorem 1.2 was already known
(for 2®-complete w,-saturated ideals) to K. Kunen.
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the Boolean extension given by the algebra B = P(2°)/I. B is complete since I is
2%-complete 2%-saturated. We shall prove that B has cardinality greater than
@M = x.

In the generic extension M [G] we consider an ultrapower modulo G consisting
of equivalence classes of functions belonging to M with domain . Since G is M-com-
plete, the usual fundamental theorem holds.

I is x-saturated, and hence this ultrapower is well founded (cf. [3]). By Mo~
stowski’s contraction theorem we can identify it with its transitive collapse N = M[G].
‘We have the canonical elementary embedding j: M — N. Denote j(x) = A

Since M E|2°| =%, we have N [2°] = 4. We have (2°"< ()", and
hence M[G] E [2°]>|4]. B is x-saturated; so cardinals >x in M and in M[G] are
the same.

Consider now an arbitrary function f: % —s x belonging to M. The transitive
collapse of the class of this function is an element of A. By a well-known combina-
torial theorem there are at least x* almost disjoint functions f: % — . (f and g are
almost disjoint iff [{a<x: f(0) = g(®)}] <x). Bach such function determines a dif-
ferent class and a different element of N. Hence we have shown a subset of 1 of
cardinality »*. M[G] F [2°[>x"; in other words, (2°)"t 5",

On the other hand, )" I<(IB|")™. If |B|<x, then (2“1 (*)™. But
in view of M E2° = »x we have (x*) = x, which gives a contradiction. Hence
[PQ2)I}>2° &

The following remark is due to E. Grzegorek:

ProPOSITION 1.3, If 2* = 2% for a certain uncountable %, then there is an
,-complete ideal T=P(2”) such that [P(2°)/I| =

Proof. We take 4<=2% ]4| = w, and an wl-complete ideal J=P(A4). Let
I={Xc2": XnAdel}.

Iis an w,-complete ideal. There are at most 2!4! equivalence classes, and hence the
conclusion holds. B .

We show some applications of the above results.

THEOREM 1.4. The following are equivalent:

(1) Con(ZFC + there exist cardinals x<JA such that % carries a % -complete
wy-saturated ideal and A carries a A-complete w,-saturated ideal +2°<);

(i) Con(ZFC+MA+2 carries a 2°-complete ,-saturated ideal I and an
wy-complete w,-saturated ideal J such that |P(2°)/I| # [P = 2%),

Proof. (i) — (ii). We want to get a generic extension of the ground model M s.t.
MIG]F MA4-2° = ). The theorem of Solovay and Tennenbaum cannot be used
directly since we do not know whether VE<A[2°<)).

Hence we first add A gemeric reals by a ccc forcing. In the extension
M[H,]F2° = A carties a 2°-complete o -saturated ideal and x<2® carries
a x-complete w;-saturated ideal (see [8]). By a theorem of Prikry (sée [3]), the con-
dition of Solovay and Tennenbaum is satisfied in this model. We can get a ccc ex-
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tension M [H][H,] where MA+2° = 1 holds. This is the desired model M[G].
The proof of Proposition 1.3. gives the ideal J.

(ii) — (i). The model M[G] k 2% = 1 carries a A-complete w,-saturated ideal.
It cannot be the first such cardinal, because it carries also the ideal J (which is not
A-complete). We take as % the first cardinal carrying an ,-complete w,-saturated
ideal, ®

Similarly (adding Solovay reals) we can prove:

THeorReM 1.5. The following are equivalent:

(1) Con (ZFC + there exist real-valued measurable cardinals x<X such that
2°<A);

(i)i) Con (ZFC+2° carries a 2°-additive measure m and a measure n such that
[P@Q°YL,| # [P/, = 2°).

2. Ulam’s problem on sets of measures. The following question was raised by
S. Ulam [cf. [1], [10]): Let % be less than the first measurable cardinal. What is the
minimal number A4 of two valued measures p,: a<A4 s.t. every X'« is measurable
with respect to at least one of them?

Erdds and Alaoglu have proved that if there is no w;-completé w,-saturated
ideal I<P(x), then A>w (see [1]).

The case we shall be concerned with in this section is » = 2% What is the
sitnation if 2° is large, e.g. real-valued measurable? In this case the theorem of
Erdds and Alaoglu gives no information. The main result of this section is

THEOREM 2.1. For every countable family of 2°-additive two-valued measures u,
defined on S, <P (2%) there is an X =2® non-measurable with respect to any of them.

A Boolean algebra B is said to be separable iff it contains a countable dense
set (in the forcing sense). An ideal JcP(X) is said to be separable iff P(X)/I is
separable.

Theorem 1.2 gives:

THEOREM 2.2, If IcP(2°) is a 2°-complete ideal, then I is not separable..

Proof. Assume I is separable. It is clear that I is w,-saturated. Hence P(2%)/1
is a complete algebra. I cannot have atoms, since it would yield a two-valued measure
on P(2%). Hence P(2°)/I is isomorphic to Bor/I, where Bor denotes the family of
Borel subsets of 2° and J, the ideal of meager sets. The cardinality of this algebra
is 2°, This contradicts Theorem 1.2. B

The proof of a theorem in Taylor [10] gives, in view of Theorem 2.2, the fol-
lowing

THEOREM 2.3. For every countable family of 2°-complete ideals I,=P(2”) there
exists a family {a,: k € 0}<P(2°) of pairwise disjoint sets s.t. a, ¢ \J I, for all k € o.

HEw
The question whether the above follows from Theorem 2.2 was suggested to us
by E. Grzegorek.
Before proving Theorem 2.3 we shall finish the proof of Theorem 2.1.
1*
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Let {u,* new} denote any family of two-valued 2“-additive measures and

I, = {X<2°: p(X) =0} I, are‘%‘”—complete ideals. By Theorem 2.3 there is

a, pairwise disjoint family {a,: k € 0} outside |J Z,. We claim that all these sets are
neo

non-measurable with respect to any measure p,. g,(a) = 0 is impossible since
@ é U I, and g,(a;) = 1 is impossible since in this case u,(a,) = 0 for m # k. B

new

It remains to prove Theorem 2.3.

Proof (essentially due to Taylor [10]):

An ideal =P (X) is said to be nowhere wy~saturated iff [|4d = {B=X: BnAeI}
is not w,-saturated for any 4eP(X)—1.

LemMA 1. Let Q=P(P(2%) be a countable set of nowhere w,-saturated ,~com-
plete ideals. Then there exists a pairwise disjoint family {as: é<w}<P(2%)— U Q.
Proof. The argument of Erdds and Alaoglu works (cf. [1] and [10]). B

LEMMA 2. If Q is a countable set of 2°-complete w,-saturated ideals I,,CP(Z )
then there exists a pairwise disjoint family {a,: ne 0}cP2%)—) Q.
Proof. Let Q = {I,: ne w} and I = (\ I,. I is w,-saturated. For each new

Hew
let o7, be a maximal collection of sets in I,—I that are almost disjoint (modlr),

Then |,|<w; so 4, =) &, €1,. Hence B, = 2°—4,¢ 7 and I, = I| B,. Since
{B,: n>0} is not a dense set for I|B, (because this ideal is 2°-complete),
we can choose Coc B, s.t. Co¢ I and for each n>0 BY = B,—~Co ¢ L If C; has
been defined and for each n>>j we have B} ¢ I, then we can choose Cp.; =B,y s.t.
Ceq ¢1 and for each n>j+1 Bi*' = Bj—C;,, ¢ I (Otherwise I|B., which
is 2%-complete would be separable). This yields a pairwise disjoint family
{C,: new} s.t. C,eP(B,)—I for each n e w. Since C, ¢ I, for each n, we can find
a pairwise disjoint partition {C;': me o} of C, s.t. Cyy ¢ I,. (Otherwise we would
get a two-valued measure on P(2%). Now {a,: me w} defined by a,={) C, is

meo

the desifcd family.

Let us now return to the proof of Theorem 2.5. We have our given set
0 = {I,: ne w} of 2°-complete ideals. We define: '

Qo = {Ie Q: I is nowhere w,-saturated},
Qy = {Ie Q: there is an 4,6 P2°)—1I s.t. I|4; is w;-saturated},
Q, = {Il4;: Ie Qy}.
By Lemma 1 we get a pairwise disjoint family {¥,: a<w,}cP2°)~U Q,.
For any Je Q, at most one ¥, can satisfy 2°— ¥, e J. Hence there is a y<w, s.t.

for any Je @, 2°~Y,¢J. Let 4= ¥,, B=2°~Y,. Then 4¢Q,, B¢ Q,
and AnB =0

Applying Lemma 2 to {J|B: Je Q,} yields a pairwise disjoint partition
{B,: new} of B s.t. for each new B,eP(2°)~) Q,=P(2*)~{) Q,. Similarly,
. if we apply Lemma 1 to {I|4: Ie Qp}, we obtain a pairwise disjoint partition
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{4,: ne o} of As.t., for eachne w, 4, € P(2*)~{J) Q. The family {4, U B,: ne o}
satisfies the conclusion of Theorem 2.3. B -

Now the proof of Theorem 2.1. is complete.

Theorem 2.1 together with a result of Grzegorek (see [2], Theorem 3) gives
the following

TueOREM, 2.6, Let {S,: new} be a family of 2°-complete fields of sets s.t.
S,=P2%), {x}€S, for xe2® and S, % P(2%). Then U S, # P(2°).

new

3, The representation problem. The follewing will be referred to as the represen-
tation problem. Let FoP(X) be a o-algebra and < F an ideal. Does there exist

a function f: F— F such that: P
F) = x(modl), if x = y(modI) then f(x) = f(3), f(©) = ﬁ f&x) =X,
» flavp) =f@uf®), [f@and)=[f(@nfb).

Such a function f is called the solution of the problem (F,I).

The following theorem is proved in [6].

TuEorEM 3.1, Let F<P(X) be a o-algebra and I<F an ideal. If I is |F|I|-com-
plete, then (F,I) has a solution.

Using the results of Section 1, we shall produce a counterexample to the converse
of Theorem 3.1, In order to do it we need a classical result due to von Neumann and
Maharam (see [4]):

THEOREM 3.2. Let F<P(X) be a o- algebra and m a measure on F. Then (F, I,,)
has a solution.

We come back to Theorem 3.1. If nothing is required about the o-algebra F,
then it is easy to give a counterexample to the converse of this theorem in ZFC.
Actually there exist o-algebras F with a measure m defined on F s.t. F<P(2”) and
|\F/I|>2%: I, is not |F/I,|-complete and (F,I,) has a solution by Theorem 3.2.

A. more interesting problem arises if we want F to be P(2°).

THEOREM 3.3. No w,-complete ideal IcP(2°) is |P(2°)/I|-complete.

Proof. Let I« P(2%) be an w,-complete ideal. If I is not 2”-complete, then I is
not |P(2°)/I|-complete in view of Proposition 1.1. If I is 2°-complete, then it is
not |P(2°)/I|-complete in view of Theorems 1.2, H

THEOREM 3.4. Let m be a o-additive measure on P(2”) and I the ideal of null sets.
Then I is not |P(2°)/I}-complete but (P(2),I) has a solution.

Proof. Apply Theorems 3.2 and 3.3. &
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Sur une propriété des fonctions de deux variables
par

Zbigniew Grande (Elblag)

Résumé. Dans I'article [1] O’Malley a démontré que toute fonction f: [0, 1] = R étant sur-
passement continue est de premiére classe de Baire et a la propriété de Darboux. Dans cet article on
introduit les trois différentes définitions de la continuité surpasse des fonctions réelles de deux
variables et on examine si cettes propriétés impliquent la premiére classe de Baire et la propriété
de Darboux définie par Mi§ik dans larticle [2].

Dans larticle [1] O’Malley a introduit la définition suivante:

. (1) Let f be a measurable real-valued function defined on [0, 1]. Let (a, b) be
any open interval and E = {x: f(x) € (a, b)}. Then f is preponderantly continuous
if, for every x € E, we can find a 8 = 6(x, (a, b))>0 such that m(En I)im(I)>}%
for all interval I containing x with O<m(I)<$8. (Here m denotes Lebesgue
measure.)
et a démontré le théoréme suivant:

THEOREM. If f is preponderantly continuous on [0, 1] (according to (1)), then f is
Baire 1, Darboux.

Dans cet article j’établis des théorémes analogues concernant les fonctions de
deux variables.

DEFNITION 1. Désignons par R Pespace des nombres réels et par R* I'espace
produit Rx R. On dit qu'une fonction mesurable (au sens de Lebesgue) f: R* — R
a.la propriété:

(P,) lorsqu’il existe pour tout point 4 € R? et pour tout intervalle ouvert (a, b)
contenant f(4) un nombre positif § = 8(4, (a, b)) tel que

my(S(A, 1) fH((a, BY))ima(S(4, 1)> 3

pour tout 0<r<d8, ol m, désigne la mesure de Lebesgue dans Iespace R et
S(4,r) = {XeR*: (4, X)<r} et g désigne la distance euclidienne dans R?;

(P,) lorsqu’il existe pour tout point A € R* et pour tout intervalle (a, b) 3/ (4)
un nombre positif § = (4, (a, b)) tel que

liminfm,(S (4, r) 0 f~*((a, B)))/ma(S (A4, )> % ;
r=0
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