

The elementary theory of Abelian groups with m-chains of pure subgroups

by

Andreas Baudisch (Berlin)

Abstract. An m-chain of pure subgroups is a chain $\mathfrak{A} = [\mathfrak{A}_1 \subseteq ... \subseteq \mathfrak{A}_m]$ of Abelian groups such that \mathfrak{A}_i is pure in \mathfrak{A}_m . These m-chains will be considered in an elementary language of group theory with additional predicates denoting the subgroups \mathfrak{A}_i . The well-known results of Szmielew (elimination of quantifiers, decidability) will be extended for the elementary theory of m-chains. These results are used to get the decidability of the L(aa)-theory of Abelian groups.

1. Introduction. An m-chain of pure subgroups of an Abelian group \mathfrak{A}_m (short: m-chain) is a chain $\mathfrak{A}=[\mathfrak{A}_1\subseteq\ldots\subseteq\mathfrak{A}_m]$ of Abelian groups such that \mathfrak{A}_i is pure in \mathfrak{A}_m . Let m be a fixed natural. We consider m-chains

$$\hat{\mathfrak{A}} = [\mathfrak{A}_1 \subseteq ... \subseteq \mathfrak{A}_m] \quad \text{and} \quad \hat{\mathfrak{B}} = [\mathfrak{B}_1 \subseteq ... \subseteq \mathfrak{B}_m].$$

By convention $\mathfrak{A}_0 = \{0\}$, $\mathfrak{B}_0 = \{0\}$. $f(x_1, ..., x_1) = \sum_{1 \le i \le l} k_i x_i$ is a k-term iff k_i are integers with $|k_i| \le k$. To work in the group $\mathfrak{C}_m/\mathfrak{C}_{r-1}$ respectively $\mathfrak{C}_r/\mathfrak{C}_{r-1}$ we use the notations

$$(f(x_1,...,x_l) = 0) \mod \mathbb{C}_{r-1}$$
 and $(p^s | f(x_1,...,x_l)) \mod \mathbb{C}_{r-1}$.

DEFINITION 1.1. $\Delta_k(\widehat{\mathfrak{A}}, \widehat{\mathfrak{B}}, a_1, ..., a_l, b_1, ..., b_l)$ is the following set of conditions:

(1) For every r with $0 < r \le m$ and every k-term $f(x_1, ..., x_l)$

$$\hat{\mathfrak{A}} \models \big(f(a_1,\ldots,a_l)=0\big) \bmod \mathfrak{A}_{r-1} \quad \text{iff} \quad \hat{\mathfrak{B}} \models \big(f(b_1,\ldots,b_l)=0\big) \bmod \mathfrak{B}_{r-1} \; .$$

(2) For every r with $0 < r \le m$, every $p^i \le k$, and every k-term $f(x_1, ..., x_l)$

$$\widehat{\mathfrak{A}} \models \left(p^{j} \mid f(a_{1}, ..., a_{l})\right) \mod \mathfrak{A}_{r-1} \quad \text{iff} \quad \widehat{\mathfrak{B}} \models \left(p^{j} \mid f(b_{1}, ..., b_{l})\right) \mod \mathfrak{B}_{r-1}.$$

If $\hat{\mathfrak{A}}$, $\hat{\mathfrak{B}}$, $a_1, ..., a_l, b_1, ..., b_l$ are known we write Δ_k only. Remark that $\Delta_k \subseteq \Delta_h$ for $k \le h$.

We define a recursive function $\pi(k)$ such that:

5*

TATE BANDON DESCRIPTION OF BANDONS AND BEING

149

THEOREM 1.2. Let $\widehat{\mathfrak{A}} = [\mathfrak{A}_1 \subseteq \ldots \subseteq \mathfrak{A}_m]$ and $\widehat{\mathfrak{B}} = [\mathfrak{B}_1 \subseteq \ldots \subseteq \mathfrak{B}_m]$ be two m-chains of pure subgroups such that $\mathfrak{A}_r | \mathfrak{A}_{r-1}$ and $\mathfrak{B}_r | \mathfrak{B}_{r-1}$ have the same Szmielew invariants. Then for every $a_{l+1} \in \mathfrak{A}_m$ $(b_{l+1} \in \mathfrak{B}_m)$ $\Delta_{n(k)}(\widehat{\mathfrak{A}}, \widehat{\mathfrak{B}}, a_1, \ldots, a_l, b_1, \ldots, b_l)$ implies the existence of some $b_{l+1} \in \mathfrak{B}_m$ (resp. $a_{l+1} \in \mathfrak{A}_m$) such that

$$\Delta_k(\hat{\mathfrak{A}}, \hat{\mathfrak{B}}, a_1, ..., a_{l+1}, b_1, ..., b_{l+1})$$
.

This theorem extends the elimination procedure of Szmielew [12] for the elementary theory of Abelian groups. It follows the decidability of the elementary theory of m-chains with predicates denoting the pure subgroups.

Remark that the theory of Abelian groups with an additional predicate denoting a subgroup ([3], [9]+[10]) and the universal theory of lattices of pure subgroups of Abelian groups [11] are undecidable.

Furthermore Theorem 1.2 is used to extend the Szmielew results to the L(aa)-theory of Abelian groups. The decidability of the L(aa)-theory of Abelian groups is shown. This continues [2]. The L(aa) results are obtained by Eklof and Mekler independently [6].

2. Preliminaries. Let p, q be primes, h, i, j, k, l, m, n, r, s, t, u be naturals exept in terms $\Sigma k_i x_i$ where the k_i denote integers. \varkappa and λ are used for cardinals. By a groups we understand always an additively written Abelian group. Let $k\mathfrak{A}$ be the subgroup of all ka with $a \in \mathfrak{A}$, and $[k]\mathfrak{A}$ be the subgroup of all a with ka = 0. $\{0\}$ is used to denote the trivial group (or subgroup) containing "0" only. If $a_1, \ldots, a_l \in \mathfrak{A}$ let $\{a_1, \ldots, a_l\}$ be the subgroup of \mathfrak{A} generated by a_1, \ldots, a_l . \oplus denotes the direct sum and $(\oplus \mathfrak{A})^{\lambda}$ the λ -fold direct sum of \mathfrak{A} . Let $\xi(p^n)$ be the cyclic group of order p^n , $\xi(p^\infty)$ the group of type p^∞ , and ξ_p the additive subgroup of all rationals a/b where $p \not > b$.

Define for every Abelian group A:

 $\zeta_1(p, n, \mathfrak{A}) = \sup_{n \in \mathbb{N}} \{\lambda: \text{ there is a subgroup of } \mathfrak{A} \text{ isomorphic to } (\oplus \xi(p^n))^{\lambda}\}.$

$$\zeta_2(p, n, \mathfrak{A}) = \zeta_1(p, n, \mathfrak{A}/p^n\mathfrak{A}).$$

 $\zeta_3(p, n, \mathfrak{A}) = \sup_{Df} \{\lambda : \text{ there is a direct summand of } \mathfrak{A} \text{ isomorphic to } (\oplus \xi(p^n))^{\lambda}\}.$

$$\zeta_4(Q) = \begin{cases} 0, & \text{if there is some } m \text{ with } \mathfrak{A} \models \forall x (mx = 0), \\ 1, & \text{otherwise.} \end{cases}$$

Then the L-Szmielew invariants of A are defined by

$$\zeta_i^L(p, n, \mathfrak{A}) = \zeta_i(p, n, \mathfrak{A}) \cap \omega \quad \text{for} \quad 1 \leq i \leq 3$$

and

$$\zeta_4^L(\mathfrak{A}) = \zeta_4(\mathfrak{A}) .$$

They are described by the following Szmielew basic sentences:

$$\zeta_1^L(p,n,k) = \exists x_1 \dots x_k (\bigwedge_i (px_i = 0 \land p^{n-1}|x_i) \land \bigwedge_{\langle \dots, k_i, \dots \rangle \in S} \neg (\sum_{1 \le i \le k} k_i x_i = 0)),$$

$$\zeta_{2}^{L}(p, n, k) = \exists x_{1} \dots x_{k} \left(\bigwedge_{i} p^{n-1} | x_{i} \wedge \bigwedge_{\langle \dots, k_{l}, \dots \rangle \in S} \neg (p^{n} | \sum_{1 \leq i \leq k} k_{i} x_{i}) \right),$$

$$\zeta_{3}^{L}(p, n, k) = \exists x_{1} \dots x_{k} \left(\bigwedge_{i} (p x_{i} = 0 \wedge p^{n-1} | x_{i}) \wedge \bigwedge_{\langle \dots, k_{l}, \dots \rangle \in S} \neg (p^{n} | \sum_{1 \leq i \leq k} k_{i} x_{i}) \right),$$

where S is the set of all $\langle k_1, ..., k_k \rangle \neq \langle 0, ..., 0 \rangle$ with $0 \leq k_i < p, \zeta_4^L(m) = \forall x (mx = 0)$.

Remark that $\mathfrak A$ and $\mathfrak B$ have the same L-Szmielew invariants iff they fulfil the same Szmielew basic sentences. $\mathfrak A \models \zeta_i^L(p,n,k)$ iff $\zeta_i^L(p,n,\mathfrak A) \geqslant k$. Notice the following useful lemma:

LEMMA 2.1. (i) [12] $\zeta_i(p, n, \mathfrak{U}) = \zeta_i(p, m, \mathfrak{U}) + \sum_{j=1}^{m-1} \zeta_3(p, j, \mathfrak{U})$ for m > n and $1 \le i \le 2$.

(ii) [7] If $\mathfrak B$ is a pure subgroup of $\mathfrak A$ then $\zeta_i(p,n,\mathfrak A) = \zeta_i(p,n,\mathfrak B) + \zeta_i(p,n,\mathfrak A/\mathfrak B)$ for $1 \le i \le 3$.

Let K_m be the class of all m-chains. The elementary theory AG_m of K_m is formulated in the language L_m with a function symbol "+" for the group operation and unary predicates $P_i(1 \le i < m)$ where P_i denotes the pure subgroup \mathfrak{A}_i of \mathfrak{A}_m in the m-chain $[\mathfrak{A}_i \subseteq \mathfrak{A}_m]$. Then K_m is EC_d in L_m . $L = L_1$ is the ordinary elementary language of group theory. Outside of L_m we use $P_0(x) = x = 0$ and $P_m(x) = x = x$.

Let L_m^* be the extension of L_m by the following definitions: "0" is a new constant uniquely determined by $\forall y (y+0=y)$.

$$x - z = y \underset{\text{Df}}{\Leftrightarrow} y + z = x,$$

$$p^{n}|x \underset{\text{Df}}{\Leftrightarrow} \exists y (p^{n}y = x),$$

$$(x = y) \text{mod } P_{i} \underset{\text{Df}}{\Leftrightarrow} \exists z \in P_{i}(x = y + z),$$

$$(p^{n}|x) \text{mod } P_{i} \underset{\text{Df}}{\Leftrightarrow} \exists y \exists z \in P_{i}(p^{n}y + z = x).$$

Let AG_m^* be the corresponding elementary theory. As usual \equiv_{L_m} denotes elementary equivalence with respect to L_m . The L_m -basic sentences are defined to be the Szmielew basic sentences for the factor groups P_{j+1}/P_j $(0 \le j < m)$ formulated in L_m .

3. Elimination of quantifiers. In this chapter we define $\pi(k)$ and prove Theorem 1.2.

Lemma 3.1. Let $\widehat{\mathfrak{A}}$ and $\widehat{\mathfrak{B}}$ be m-chains of pure subgroups, $a_1, ..., a_l \in \mathfrak{A}_m$, and $b_1, ..., b_l \in \mathfrak{B}_m$ such that $\Delta_k(\widehat{\mathfrak{A}}, \widehat{\mathfrak{B}}, a_1, ..., a_l, b_1, ..., b_l)$. Furthermore assume $k\mathfrak{B}_m = \{0\}$, $k\mathfrak{A}_m = \{0\}$, and $\zeta_3^L(p,j,\mathfrak{A}_{l+1}/\mathfrak{A}_l) = \zeta_3^L(p,j,\mathfrak{B}_{l+1}/\mathfrak{B}_l)$ for $0 \le i < m$ and $p^l|k$. Then for every $a_{l+1} \in \mathfrak{A}_m$ (resp. $b_{l+1} \in \mathfrak{B}_m$) there is some

$$b_{i+1} \in \mathfrak{B}_m(a_{i+1} \in \mathfrak{A}_m)$$
 such that $\Delta_k(\hat{\mathfrak{A}}, \hat{\mathfrak{B}}, a_1, ..., a_{i+1}, b_1, ..., b_{i+1})$.

Proof. If $k\mathfrak{C} = \{0\}$ then c = 0 iff $p^s|c$ for every $p^s|k$. Therefore it is possible to assume w.l.o.g. $k = p^s$. The lemma will be proved for every $a_{l+1} \in \mathfrak{A}_r \setminus \mathfrak{A}_{r-1}$ and every $b_{l+1} \in \mathfrak{A}_r \setminus \mathfrak{A}_{r-1}$ $(0 \le r < m, \mathfrak{A}_{-1} = \mathfrak{B}_{-1} = \varnothing)$ by induction on r. The

case r = 0 is trivial. Suppose that the assertion is proved for r-1. First let us consider the following case:

(*) There is some p^i -term $f(x_1, ..., x_l)$ such that $(a_{i+1} = f(a_1, ..., a_l)) \mod \mathfrak{A}_{r-1}$. Then w.l.o.g. $f(a_1, ..., a_l) = 0$ and the assertion follows from the induction hypothesis.

In the general case induction on h where $(p^{s-h}|a_{l+1}) \mod \mathfrak{A}_{r-1}$ is used. The case h=0 is clear by (*). Assume if $(p^{s-h}|a_{l+1}) \mod \mathfrak{A}_{r-1}$ resp. $(p^{s-h}|b_{l+1}) \mod \mathfrak{B}_{r-1}$ the assertion is proved.

Now the situation $(p^{s-h-1}|a_{l+1}) \mod \mathfrak{A}_{r-1}$ but $(p^{s-h}/a_{l+1}) \mod \mathfrak{A}_{r-1}$ will be considered. By induction on r w.l. o.g. $p^{s-h-1}|a_{l+1}$. By the induction about h w.l. o.g. $pa_{l+1}=a_{j_0}$ for some j_0 with $1 \le j_0 \le l$ because $(p^{s-h}|pa_{l+1}) \mod \mathfrak{A}_{r-1}$. If $(p^{s-h}|a_{l+1}-f(a_1,...,a_l)) \mod \mathfrak{A}_{r-1}$ for some p^s -term $f(x_1,...,x_l)$ then by the induction on h and (*) there is some b_{l+1} with the desired properties. Therefore w.l. o.g. $(p^{s-h}/a_{l+1}-f(a_1,...,a_l)) \mod \mathfrak{A}_{r-1}$ for every p^s -term $f(x_1,...,x_l)$.

Now it is sufficient to find some $b_{l+1} \in \mathcal{B}_r$ such that $pb_{l+1} = b_{j_0}$, $p^{s-h-1}|b_{l+1}$, and $(p^{s-h} \not b_{l+1} - f(b_1, ..., b_l)) \mod \mathcal{B}_{r-1}$ for every p^s -term $f(x_1, ..., x_l)$.

By Δ_k there is some $b' \in \mathfrak{B}_m$ with $p^{s-h-1}|b'$ and $pb' = b_{j_0}$. If

$$(p^{s-h} \not \downarrow b' - f(b_1, ..., b_L)) \mod \mathfrak{B}_{r-1}$$

for every p^s -term $f(x_1, ..., x_l)$ there is nothing to do. Otherwise assume

$$(p^{s-h}|b'-f_0(b_1,\ldots,b_l)) \operatorname{mod} \mathfrak{B}_{r-1}$$
.

We can assume w.l.o.g. $(p^{s-h}|b') \mod \mathfrak{B}_{r-1}$. Otherwise by induction on r w.l.o.g. $p^{s-h}|b'-f(b_1,\ldots,b_l)$. This would imply $p^{s-h-1}|f(b_1,\ldots,b_l)$ and therefore $p^{s-h-1}|a_{l+1}-f(a_1,\ldots,a_l)$. Then you could replace a_{l+1} by $a_{l+1}-f(a_1,\ldots,a_l)$ and b' by $b'-f(b_1,\ldots,b_l)$.

Now by induction on h there is some $a' \in \mathfrak{A}_r$ such that

$$A_k(\hat{\mathfrak{A}}, \hat{\mathfrak{B}}, a_1, ..., a_l, a', b_1, ..., b_l, b')$$
.

Then $pa_{l+1} = pa'$, $p^{s-h-1}|a'$ and $(p^{s-h}|a') \mod \mathfrak{A}_{r-1}$. $pa_{l+1} = pa'$ implies $a_{l+1} = a' + c$ with pc = 0, $p^{s-h-1}|c$, and $(p^{s-h}/c - f(a_1, ..., a_l)) \mod \mathfrak{A}_{r-1}$ for every p^s -term $f(x_1, ..., x_l)$. Therefore w.l.o.g. $pa_{l+1} = 0$, $p^{s-h-1}|a_{l+1}$, and $(p^{s-h}/a_{l+1} - f(a_1, ..., a_l)) \mod \mathfrak{A}_{r-1}$ for every p^s -term $f(x_1, ..., x_l)$. Use \overline{a}_i , \overline{c}_i , \overline{b}_f to denote elements of $\mathfrak{A}_r/\mathfrak{A}_{r-1}$ resp. $\mathfrak{B}_r/\mathfrak{B}_{r-1}$.

Let l_1 be the maximal natural $(\geqslant 0)$ such that there are $\bar{c}_1, ..., \bar{c}_{l_i} \in [p]\{\bar{a}_1, ..., \bar{a}_l\}$ with $p\bar{c}_i = \bar{0}$, $p^{s-h-1}|\bar{c}_i$, and $p^{s-h} \not | \sum\limits_{1 \leqslant j \leqslant l_1} k_j \bar{c}_j$ for any nontrivial l_1 -tupel $\langle k_1, ..., k_{l_i} \rangle$ with $0 \leqslant k_j < p$. The existence of a_{l+1} implies

$$\zeta_3(p, s-h, \mathfrak{B}_r/\mathfrak{B}_{r-1}) = \zeta_3(p, s-h, \mathfrak{A}_r/\mathfrak{A}_{r-1}) > l_1$$
.

Then there is some $\overline{b_{l+1}} \in \mathfrak{B}_r/\mathfrak{B}_{r-1}$ with $p\overline{b_{l+1}} = \overline{0}$, $p^{s-h-1}|\overline{b_{l+1}}$, and $p^{s-h}/\overline{b_{l+1}} - f(\overline{b_1}, ..., \overline{b_l})$ for every p^s -term $f(x_1, ..., x_l)$. Let b^* be an element of \mathfrak{B}_s such that

 $p^{s-h-1}b^*$ is in $\overline{b_{l+1}}$. Since \mathfrak{B}_{r-1} is a pure subgroup there is some $d \in \mathfrak{B}_{r-1}$ such that $p^{s-h}b^* = p^{s-h}d$. Then $b_{l+1} = p^{s-h-1}(b^*-d)$ is an element of $\overline{b_{l+1}}$ with $pb_{l+1} = 0$ and p^{s-h-1}/b_{l+1} . Therefore b_{l+1} has the desired properties.

DEFINITION 3.2. For every natural k let k^{\square} be the lowest common multiple of all j with $0 < j \le k$.

DEFINITION 3.3. Let $\pi(k)$ be $\pi(k, m)$ where $\pi(k, r)$ is defined for $0 \le r \le m$ by induction on r such that

$$\pi(k,r) \geqslant \pi(k,r-1)$$
, and $\pi(k,0) = 2kk^{\square}$.

Now assume $r \ge 1$. For $u | k^{\square^2}$ define $\mu(k, r, u)$ by induction on $\sum_i s_i$ if $u = \prod_i p_i^{s_i}$:

$$\mu(k, r, 1) = \pi(2k^2k^{\square^2}, r-1).$$

For every prime $p \mu'(k, r, p) = \mu(\mu(2k, r, 1), r, 1)$. Since $\mu'(k, r, p)$ does not depend on p and $\mu(k, r, u)$ depends on $\sum s_i$ only it is possible to define:

$$\mu(k, r, u) = \mu(\mu'(k, r, p), r, u/p) \quad \text{for} \quad p|u.$$

Then $\pi(k, r) = \mu(k, r, k^{\square^2})$. Remark $\mu(k, r, u) \geqslant \mu(k, r, v)$ if v|u.

THEOREM 1.2. Let $\widehat{\mathfrak{N}} = [\mathfrak{U}_1 \subseteq ... \subseteq \mathfrak{N}_m]$ and $\widehat{\mathfrak{B}} = [\mathfrak{B}_1 \subseteq ... \subseteq \mathfrak{B}_m]$ be two m-chains of pure subgroups such that $\mathfrak{V}_r/\mathfrak{V}_{r-1}$ and $\mathfrak{B}_r/\mathfrak{B}_{r-1}$ have the same Szmielew invariants. Then for every $a_{l+1} \in \mathfrak{V}_m$ ($b_{l+1} \in \mathfrak{B}_m$) $\Delta_{\pi(k)}(\widehat{\mathfrak{V}}, \widehat{\mathfrak{B}}, a_1, ..., a_l, b_1, ..., b_l)$ implies the existence of some $b_{l+1} \in \mathfrak{B}_m$ (resp. $a_{l+1} \in \mathfrak{V}_m$) such that

$$\Delta_k(\hat{\mathfrak{A}}, \hat{\mathfrak{B}}, a_1, ..., a_{l+1}, b_1, ..., b_{l+1})$$
.

Proof. Let a_{l+1} be an element of $\mathfrak{A}_r \setminus \mathfrak{A}_{r-1}$ (resp. $b_{l+1} \in \mathfrak{B}_r \setminus \mathfrak{B}_{r-1}$) for some r with $0 \le r \le m$ ($\mathfrak{A}_{-1} = \emptyset = \mathfrak{B}_{-1}$). By induction on r it will be proved that

$$A_{\pi(k,r)}(\hat{\mathfrak{A}}, \hat{\mathfrak{B}}, a_1, ..., a_l, b_1, ..., b_l)$$

implies the existence of some $b_{l+1} \in \mathfrak{B}_m$ with $\Delta_k(\widehat{\mathfrak{U}}, \widehat{\mathfrak{H}}, a_1, ..., a_{l+1}, b_1, ..., b_{l+1})$. By definition it is $\pi(k, r) \leq \pi(k)$. If r = 0 there is nothing to do. Assume for r-1 that the assertion is true.

Case 1. $(k^{\square^2}a_{l+1} \neq f(a_1, ..., a_l)) \mod \mathfrak{N}_{r-1}$ for every kk^{\square^2} -term $f(x_1, ..., x_l)$. This condition implies $(g(a_1, ..., a_l) \neq ua_{l+1}) \mod \mathfrak{N}_{r-1}$ for every k-term $g(x_1, ..., x_l)$ and $0 < |u| \le k$. Let \mathfrak{C}_1 be a pure subgroup of \mathfrak{C}_2 . Then $\mathfrak{C}_1/h\mathfrak{C}_1 \stackrel{\sim}{\leftarrow} \mathfrak{C}_1 + h\mathfrak{C}_2/h\mathfrak{C}_2$ is a pure subgroup of $\mathfrak{C}_2/h\mathfrak{C}_2$ under the natural embedding. Therefore it is possible to consider the m-chains $\mathfrak{N}/h\mathfrak{N} = [\mathfrak{V}_1 \subseteq ... \subseteq \mathfrak{V}_m]$ and $\mathfrak{S}/h\mathfrak{N} = [\mathfrak{V}_1 \subseteq ... \subseteq \mathfrak{V}_m]$ where $\mathfrak{V}_r \stackrel{\sim}{\leftarrow} \mathfrak{V}_r/h\mathfrak{V}_r$, and $\mathfrak{V}_r \stackrel{\sim}{\leftarrow} \mathfrak{V}_r/h\mathfrak{V}_r$. Let h be k^\square and use \tilde{a}_i and \tilde{b}_j to denote the images of a_i in $\mathfrak{N}/h\mathfrak{N}$ resp. of b_j in $\mathfrak{S}/h\mathfrak{B}$. Then $k^\square(\mathfrak{N}/k^\square\mathfrak{N}) = 0$, $k^\square(\mathfrak{S}/k^\square\mathfrak{N}) = 0$, and $\mathfrak{V}_r/\mathfrak{N}_{r-1}$ and $\mathfrak{V}/\mathfrak{N}_{r-1}$ have the same Szmielew invariants.

Since $\pi(k,r) \geqslant k^{\square} \Delta_{k^{\square}}(\hat{\mathfrak{A}}/k^{\square}\hat{\mathfrak{A}},\hat{\mathfrak{B}}/k^{\square}\hat{\mathfrak{B}},\tilde{a}_{1},...,\tilde{a}_{l},\tilde{b}_{1},...,\tilde{b}_{l})$ is fulfilled. Then by Lemma 3.1 there is some \tilde{b}_{l+1} such that

$$\varDelta_{k^{\square}}(\hat{\mathfrak{A}}/k^{\square}\,\,\hat{\mathfrak{A}}_{l},\hat{\mathfrak{B}}/k^{\square}\,\,\hat{\mathfrak{B}}_{l},\tilde{a}_{1},...,\tilde{a}_{l+1},\tilde{b}_{1},...,\tilde{b}_{l+1})\,.$$

Let b^* be an element of \tilde{b}_{l+1} in \mathfrak{B}_r . Then $\Delta_k(\hat{\mathfrak{A}}, \hat{\mathfrak{B}}, a_1, ..., a_{l+1}, b_1, ..., b_l, b^*)$ (2) is fulfilled. Let $\theta(k^{\square^2}(\mathfrak{A}_r/\mathfrak{A}_{r-1}))$ be the number of elements $f(\bar{a}_1, ..., \bar{a}_l)$ in $k^{\square^2}(\mathfrak{A}_r/\mathfrak{A}_{r-1})$ where $f(x_1, ..., x_l)$ is a kk^{\square} -term.

By assumption $\operatorname{card}(k^{\square^2}(\mathfrak{A}_r/\mathfrak{A}_{r-1})) > \theta$. Since $\mathfrak{A}_r/\mathfrak{A}_{r-1}$ and $\mathfrak{B}_r/\mathfrak{B}_{r-1}$ have the same Szmielew invariants $\operatorname{card}(k^{\square^2}(\mathfrak{A}_r/\mathfrak{A}_{r-1})) = \operatorname{card}(k^{\square^2}(\mathfrak{B}_r/\mathfrak{B}_{r-1})) < \omega$ or $\operatorname{card}(k^{\square^2}(\mathfrak{B}_r/\mathfrak{B}_{r-1})) > \omega$. Furthermore $\theta(k^{\square^2}(\mathfrak{A}_r/\mathfrak{A}_{r-1})) = \theta(k^{\square^2}(\mathfrak{B}_r/\mathfrak{B}_{r-1}))$ by $A_{\pi(k)}$ and $\pi(k,r) \ge 2kk^{\square}$. Therefore there is some $k^{\square^2}b' \in \mathfrak{B}_r$ such that

$$(k^{\square^2}b' \neq f(b_1, ..., b_l) - k^{\square}b^*) \mod \mathfrak{B}_{r-1}$$
 for every kk^{\square} -term $f(x_1, ..., x_l)$.

If $b_{l+1} = b^* + k^{\square}b'$ then $(b_{l+1} = b^*) \mod (k^{\square} \widehat{\mathfrak{B}})$ and $(g(b_1, ..., b_l) \neq ub_{l+1}) \mod \mathfrak{B}_{r-1}$ for every k-term $g(x_1, ..., x_l)$ and $0 < |u| \le k$. It follows

$$\Delta_k(\hat{\mathfrak{A}}, \hat{\mathfrak{B}}, a_1, ..., a_{l+1}, b_1, ..., b_{l+1})$$
.

Case 2. There is some u with $u|k^{\square^2}$ such that

(1) $(f(a_1, ..., a_l) = ua_{l+1}) \mod \mathfrak{A}_{r-1}$ for some kk^{-2} -term $f(x_1, ..., x_l)$.

Remember $\pi(k,r) = \pi(k,r,k^{\square^2})$ and $\mu(k,r,u) \geqslant \mu(k,r,v)$ if v|u. In (1) let u be $\prod_i p_i^{s_i}$, then $p_i \leqslant k$. For $u|k^{\square^2}$ it is sufficient to show the following by induction on $\sum s_i$ (short: u-induction):

(2) Let $a_{l+1} \in \mathfrak{A}_m$ (resp. $b_{l+1} \in \mathfrak{B}_m$) be an element fulfilling (1). Then

$$\Delta_{\mu(k,r,\mu)}(\hat{\mathfrak{A}},\hat{\mathfrak{B}},a_1,...,a_l,b_1,...,b_l)$$

implies the existence of some $b_{l+1} \in \mathfrak{B}_m$ $(a_{l+1} \in \mathfrak{A}_m)$ such that

$$\Delta_{k}(\hat{\mathfrak{A}}, \hat{\mathfrak{B}}, a_{1}, ..., a_{l+1}, b_{1}, ..., b_{l+1})$$
.

The case u=1 follows from the induction hypothesis about r because $\mu(k, r, 1) \ge \pi(2k^2k^{\square^2}, r-1)$. Now assume u>1 and that for every v|u with v<u the assertion (2) is true. Let p be a prime with p|u. Then $p \le k$ and k>1. Since $\mu(k, r, u) \ge \mu(\mu'(k, r, p), r, u/p)$ by u-induction we can confine us to the case

(1') $pa_{l+1} = a_{j_0}$ for some j_0 with $1 \le j_0 \le l$ and

$$\Delta_{\mu'(\mathbf{k},\mathbf{r},\mathbf{p})}(\hat{\mathfrak{A}},\hat{\mathfrak{B}},a_1,...,a_l,b_1,...,b_l)$$
.

Consider some equation

(3) $(u_1 a_{l+1} = f_1(a_1, ..., a_l)) \mod \mathfrak{A}_{r-1}$ with $p \nmid u_1, 0 < u_1 \le k$, and $f_1(x_1, ..., x_l)$ k-term.

Then $1 = u_1 s_1 + p s_2$ with $|s_i| \le k$ and therefore

$$(a_{l+1} = s_1 f_1(a_1, ..., a_l) + s_2 a_{l_0}) \mod \mathfrak{A}_{r-1}$$
.

That means $(a_{l+1} = g(a_1, ..., a_l)) \mod \mathfrak{A}_{r-1}$ where $g(x_1, ..., x_l)$ is some $2k^2$ -term. Using u-induction and $\mu'(k, r, p) \geqslant \mu(k, r, 1)$ (2) is proved.

Therefore it is possible to confine us to the case that (3) is not fulfilled for any k-term $f_1(x_1, ..., x_l)$ and any u_1 with $0 < u_1 \le k$ and $p \not | u_1$. As shown above $(b_{l+1} \ne g(b_1, ..., b_l)) \bmod \mathfrak{B}_{r-1}$ for every $2k^2$ -term $g(x_1, ..., x_l)$ implies $(u_1b_{l+1} \ne f_1(b_1, ..., b_l)) \bmod \mathfrak{B}_{r-1}$ for every k-term $f_1(x_1, ..., x_l)$ and every $1 \le u_1 \le k$ with $p \not | u_1$. Therefore it is sufficient to get some $b_{l+1} \in \mathfrak{B}_r$ with $pb_{l+1} = b_{lo}$, $(b_{l+1} \ne g(b_1, ..., b_l)) \bmod \mathfrak{B}_{r-1}$ for every $2k^2$ -term $g(x_1, ..., x_l)$, and fulfilling $A_k(2)$. To ensure $A_k(2)$ we consider $\hat{\mathfrak{A}}/k^{\square 2}\hat{\mathfrak{A}}$ and $\hat{\mathfrak{B}}/k^{\square 2}\hat{\mathfrak{B}}$ as above. Let \tilde{a}_l and \tilde{b}_l be the images of a_l in $\hat{\mathfrak{A}}/k^{\square 2}\hat{\mathfrak{A}}$ resp. of b_l in $\hat{\mathfrak{B}}/k^{\square 2}\hat{\mathfrak{B}}$. By Lemma 3.1 there is some \tilde{b}_{l+1} such that

(4) $\Delta_{k^{\square}}^{\mathsf{c}}(\hat{\mathfrak{A}}/k^{\square^2}\,\hat{\mathfrak{A}},\,\hat{\mathfrak{B}}/k^{\square^2}\,\hat{\mathfrak{B}},\,\tilde{\tilde{a}}_1,\,...,\,\tilde{\tilde{a}}_{l+1},\,\tilde{\tilde{b}}_1,\,...,\,\tilde{\tilde{b}}_{l+1})\,.$ $(\mu'(k,r,p)\geqslant k^{\square^2}). \text{ If } b'\in\mathfrak{B}_r \text{ is some element of } \tilde{\tilde{b}}_{l+1} \text{ then } pb'=b_n+k^{\square^2}d \text{ for some }$

 $(\mu(k,r,p)\geqslant k')$. If $b'\in \mathcal{D}_r$ is some contained of (l+1) and (l+1) an

(5) $\Delta_{k} \square (\hat{\mathfrak{A}}/k^{\square} \hat{\mathfrak{A}}, \hat{\mathfrak{B}}/k^{\square} \hat{\mathfrak{B}}, \tilde{a}_{1}, ..., \tilde{a}_{l+1}, \tilde{b}_{1}, ..., \tilde{b}_{l}, \tilde{b}^{*})$ where \tilde{a}_{i} and \tilde{b}_{j} are the corresponding images of a_{i} resp. b_{j} .

If now $(b^* \neq g(b_1, ..., b_l)) \mod \mathfrak{B}_{r-1}$ for every $2k^2$ -term $g(x_1, ..., x_l)$ then $b_{l+1} = b^*$ has the desired properties. Otherwise assume $(b^* = g_0(b_1, ..., b_l)) \mod \mathfrak{B}_{r-1}$ where $g_0(x_1, ..., x_l)$ is a $2k^2$ -term. Since $\mu'(k, r, p) \geqslant \mu(\mu(2k, r, 1), r, 1)$ it is possible to apply u-induction to b^* . You get some a^* such that

(6)
$$\Delta_{\mu(2k,r,1)}(\hat{\mathfrak{A}},\hat{\mathfrak{B}},a_1,...,a_l,a^*,b_1,...,b_l,b^*)$$
.

Then $pa_{l+1} = pa^* = a_{j_0}$ and therefore $a_{l+1} = a^* + c$ with pc = 0. $c \in \mathfrak{A}_r$. By (5) $(\tilde{b}^* = g_0(b_1, \dots, b_l)) \mod \widetilde{\mathfrak{A}}_{r-1}$ implies $(\tilde{a}_{l+1} = g_0(a_1, \dots, a_l)) \mod \widetilde{\mathfrak{A}}_{r-1}$. Since by (6) $(\tilde{a}^* = g_0(a_1, \dots, a_l)) \mod \widetilde{\mathfrak{A}}_{r-1}$ it follows $(\tilde{a}^* = \tilde{a}_{l+1}) \mod \widetilde{\mathfrak{A}}_{r-1}$. Therefore $(k^{\square}|c) \mod \mathfrak{A}_{r-1}$.

If $(c=g'(a_1,\ldots,a_l)) \mod \mathfrak{A}_{r-1}$ for some $4k^2$ -term $g'(x_1,\ldots,x_l)$ then $(a_{l+1}=a^*+g'(a_1,\ldots,a_l)=g''(a_1,\ldots,a_l,a^*)) \mod \mathfrak{A}_{r-1}$ where $g''(x_1,\ldots,x_l,x)$ is a $4k^2$ -term. By u-induction the assertion follows from (6). Otherwise let s be the maximal natural such that $p^s\leqslant k$. \overline{a} , \overline{b} are used to denote the image of a in $\mathfrak{A}_r/\mathfrak{A}_{r-1}$ resp. of b in $\mathfrak{B}_r/\mathfrak{B}_{r-1}$. Then $\overline{c}\in [p](p^s(\mathfrak{A}_r/\mathfrak{A}_{r-1}))$ with $\overline{c}\neq g(\overline{a}_1,\ldots,\overline{a}_l)$ for every $4k^2$ -term $g(x_1,\ldots,x_l)$. Since $\mu'(k,r,p)\geqslant p4k^2$ by $\Delta_{\mu'(k,r,p)}(\widehat{\mathfrak{A}},\widehat{\mathfrak{A}},a_1,\ldots,a_l,b_1,\ldots,b_l)$ the number θ of elements $g(\overline{x}_1,\ldots,\overline{x}_l)$ where $g(x_1,\ldots,x_l)$ is a $4k^2$ -term is the same in $[p](p^s(\mathfrak{A}_r/\mathfrak{A}_{r-1}))$ and $[p](p^s(\mathfrak{B}_r/\mathfrak{B}_{r-1}))$. Then there is some $\overline{d}\in [p](p^s(\mathfrak{A}_r/\mathfrak{B}_{r-1}))$ with $\overline{d}\neq g(b_1,\ldots,b_l)$ for every $4k^2$ -term $g(x_1,\ldots,x_l)$. Otherwise you would get $\theta=p^{\xi_1(p,s+1,\mathfrak{B}_r/\mathfrak{B}_{r-1})}$. But since $\zeta_1(p,s+1,\mathfrak{A}_r/\mathfrak{A}_{r-1})=\zeta_1(p,s+1,\mathfrak{B}_r/\mathfrak{B}_{r-1})$ this contradicts the existence of c.

Now let $d' \in \mathfrak{B}_r$ be some element with $p^sd' = \overline{d}$. Since \mathfrak{B}_{r-1} is a pure subgroup there is some $e' \in \mathfrak{B}_{r-1}$ with $p^{s+1}e' = p^{s+1}d' \in \mathfrak{B}_{r-1}$. Then $d = p^s(d'-e')$ has the following properties: pd = 0, $p^s|d$, and $(d \neq g(b_1, ..., b_l)) \mod \mathfrak{B}_{r-1}$ for every $4k^2$ -term $g(x_1, ..., x_l)$ since $(d = p^sd') \mod \mathfrak{B}_{r-1}$. Define $b_{l+1} = b^* + d$. Since $k^{\square}|d$ by (5) $A_k(\mathfrak{A}, \mathfrak{B}, a_1, ..., a_{l+1}, b_1, ..., b_{l+1})$ (2) is fulfilled. Furthermore $pb_{l+1} = b_{l0}$, and $(b_{l+1} \neq g(b_1, ..., b_l)) \mod \mathfrak{B}_{r-1}$ for every $2k^2$ -term $g(x_1, ..., x_l)$.

To prove this assume $(b_{l+1} = g_1(b_1, ..., b_l)) \mod \mathfrak{B}_{r-1}$ for some $2k^2$ -term $g_1(x_1, ..., x_l)$. Since $(b^* = g_0(b_1, ..., b_l)) \mod \mathfrak{B}_{r-1}$ then

$$(d = g_1(b_1, ..., b_l) - g_0(b_1, ..., b_l)) \mod \mathfrak{B}_{r-1}$$

where $(g_1-g_0)(x_1,...,x_l)$ is a $4k^2$ -term. This contradicts the construction.

COROLLARY 3.4. Let $\hat{\mathfrak{A}}$ be $[\mathfrak{A}_1 \subseteq ... \subseteq \mathfrak{A}_m]$, $\hat{\mathfrak{B}}$ be $[\mathfrak{B}_1 \subseteq ... \subseteq \mathfrak{B}_m]$, and $\mathfrak{A}_0 = \{0\} = \mathfrak{B}_0$. If $\mathfrak{A}_{i+1}/\mathfrak{A}_i$ and $\mathfrak{B}_{i+1}/\mathfrak{B}_i$ have the same Szmielew invariants $(0 \le i < m)$ then $\mathfrak{A} \equiv_{L_m} \mathfrak{B}$.

COROLLARY 3.5. Every sentence of L_m is equivalent relative to AG_m to a Bolean combination of L_m-basic sentences.

Corollary 3.6. For every sentence φ of L_m fulfilled in some m-chain there are mdirect sums \mathfrak{C}_i of finitely many groups $\mathfrak{Z}(p^n)$, $\mathfrak{Z}(p^\infty)$, and \mathfrak{Z}_p such that φ is true in $[\mathfrak{U}_1 \subseteq ... \subseteq \mathfrak{U}_m]$ where $\mathfrak{U}_i = \bigoplus \mathfrak{C}_i$.

COROLLARY 3.7. AG, is decidable.

Furthermore AG_m admits elimination of quantifiers in the following sence: COROLLARY 3.8. Every formula of L_m^* is equivalent relative to AG_m^* to a Boolean combination of L_m-basic sentences and atomic formulas of L_m^{*}.

4. The L(aa)-theory of Abelian groups. The basic investigations of the logic L(aa)are done by Barwise, Kaufmann, and Makkai in [1]. They proved Completeness and Compactness. As well known in L(aa) the generalized quantifier Q_1 "There exist uncountably many" is definable. To define L(aa) — Ehrenfeucht games $\Gamma_n^{aa}(\mathbb{C}_1,\mathbb{C}_2)$ let \mathbb{C}_1 and \mathbb{C}_2 be arbitrary relational structures. As in the elementary case $\Gamma_n^{aa}(\mathfrak{C}_1,\mathfrak{C}_2)$ is a game for two players I and II about n rounds:

Player I begins every round and decides at first whether he plays an element round or an cub — round. Consider the mth round:

Element round. Player I takes an element $c_i^m \in \mathcal{C}_i$. Then II has to choose an element $c_{3-i}^m \in \mathbb{C}_{3-i}$.

Cub-round. Player I takes an element X_i^m of the cub-filter of \mathfrak{C}_i , and then II takes an element X_{3-i}^m of the cub filter of \mathfrak{C}_{3-i} . Now player I takes an element C_{3-i}^m of X_{3-i}^m and at last II has to choose an C_i^m of X_i^m . Player II wins $\Gamma_n^{aa}(\mathbb{C}_1,\mathbb{C}_2)$ iff $\chi(c_1^m) = c_2^m$ is a partiell isomorphism with respect to the relations of the underlying language and the predicates P^{J} denoting the choosen C_1^{J} in \mathfrak{C}_1 and C_2^{J} in \mathfrak{C}_2 .

THEOREM 4.1 [8]. If player II has a winning strategy for every n in $\Gamma_n^{aa}(\mathbb{C}_1,\mathbb{C}_2)$ then $\mathbb{C}_1 \equiv_{aa} \mathbb{C}_2$.

Let AG(aa) be the L(aa)-theory of Abelian groups. If you want to describe $\zeta_i(p, n, \mathfrak{A})$ with help of the elementary language $L \zeta_i(p, n, \mathfrak{A}) \geqslant k$ (for $1 \leqslant i \leqslant 3$) is expressible only. In the case of L(aa) it is further possible to define $\zeta_i(p, n, \mathfrak{A}) \geqslant \omega_i$ and to refine $\zeta_4(\mathfrak{A})$. The L(aa)-invariants are the following:

$$\zeta_{1}^{L(aa)}(p, n, \mathfrak{A}) = \zeta_{i}(p, n, \mathfrak{A}) \cap \omega_{1} \quad \text{for} \quad 1 \leq i \leq 3,$$

$$\zeta_{4}^{L(aa)}(\mathfrak{A}) = \zeta_{4}(\mathfrak{A}), \text{ and}$$

$$\zeta_{5}^{L(aa)}(\mathfrak{A}) = \begin{cases} 0, & \mathfrak{A} \models \neg Q_{1}x(m|x) \text{ for some } m, \\ 1, & \text{otherwise.} \end{cases}$$

In [2] is proved the essential part of

LEMMA 4.2. The following are equivalent:

- (i) $\mathfrak{A} \models \neg Q_1(m|x)$.
- (ii) There are subgroups \mathbb{C} and \mathbb{B} of \mathbb{X} such that $\mathbb{X} = \mathbb{B} \oplus \mathbb{C}$, $\operatorname{card}(\mathbb{B}) < \omega_1$, and $m\mathfrak{C}=0$.
 - (iii) There is some countable subgroup \mathfrak{B} of \mathfrak{A} such that $m(\mathfrak{A}/\mathfrak{B}) = 0$.

To formulate the L(aa)-invariants we define the following L(aa)-basic sentences:

$$\zeta_{i}^{L(aa)}(p,n,k) = \zeta_{i}^{L}(p,n,k) \quad \text{for } 1 \leq i \leq 3,$$

$$\zeta_{4}^{L(aa)}(m) = \zeta_{4}^{L}(m),$$

$$\zeta_{1}^{L(aa)}(p,n,\omega_{1}) = \underset{Ps}{aas} \exists x (x \notin s \land px \in s \land (p^{n-1}|x) \bmod s).$$

(In L(aa) this is equivalent to $Q_1 x(px = 0 \land p^{n-1}|x)$.)

$$\begin{split} \zeta_2^{L(aa)}(p,n,\omega_1) &= aas \exists x \big((p^{n-1}|x) \bmod s \wedge (p^n \not\mid x) \bmod s \big), \\ \zeta_3^{L(aa)}(p,n,\omega_1) &= aas \exists x \big(px \in s \wedge (p^{n-1}|x) \bmod s \wedge (p^n \not\mid x) \bmod s \big), \\ \zeta_5^{L(aa)}(m) &= aas \forall x (mx \in s). \end{split}$$

(By Lemma 4.2 this equivalent to $\neg Q_1 x(m|x)$.)

LEMMA 4.3. (i) For $1 \le i \le 3$ $\mathfrak{A} \models \zeta_i^{L(aa)}(p, n, \omega_1)$ iff $\zeta_i^{L(aa)}(p, n, \mathfrak{A}) \ge \omega_1$.

- (ii) $\mathfrak{A} \models \zeta_5^{L(aa)}(m)$ for some m iff $\zeta_5^{L(aa)}(\mathfrak{A}) = 0$.
- (iii) $\mathfrak A$ and $\mathfrak B$ have the same L(aa)-invariants iff they fulfil the same L(aa)-basic sentences.

THEOREM 4.4. Two Abelian groups are L(aa)-equivalent iff they fulfil the same L(aa)-basic sentences.

COROLLARY 4.5. Every sentence of L(aa) is equivalent relative to AG(aa) to a Boolean combination of L(aa)-basic sentences.

COROLLARY 4.6. Every L(aa)-sentence fulfilled in some Abelian group is true in a direct sum of finitely many groups $(\oplus \mathfrak{Z}(p^n))_{\lambda_1}$, $(\oplus \mathfrak{Z}(p^\infty))^{\lambda_2}$, $(\oplus \mathfrak{Z}_p)^{\lambda_3}$ where λ_i is finite or ω1.

COROLLARY 4.7. AG(aa) is decidable.

THEOREM 4.8. For every L(aa)-formula $\varphi(\vec{x})$ with free element variables only there is a Boolean combination of L(aa)-basic sentences and atomic formulas of L* equivalent to $\varphi(\vec{x})$ relative to AG*(aa).

To prove Theorems 4.4 and 4.8 let A and B be two Abelian groups with the same L(aa)-invariants (or equivalently that fulfil the same L(aa)-basic sentences). Furthermore let $\vec{a} = \langle a_1, ..., a_{l_i} \rangle$, and $\vec{b} = \langle b_1, ..., b_{l_i} \rangle$ be l_1 -tupels of elements of \mathfrak{A} resp. of \mathfrak{B} that fulfil the same open formulas $\varphi(x_1,...,x_h)$ of L^* .

Let L' be the group language with a ternary relation "+". Using Theorem 4.1 it will be shown that $(\mathfrak{A}, \vec{a}) \equiv_{L'(aa)}(\mathfrak{B}, \vec{b})$. But then $(\mathfrak{A}, \vec{a}) \equiv_{L^{\bullet}(aa)}(\mathfrak{B}, \vec{b})$, and Theorems 4.4 and 4.8 are proved.

Consider $\Gamma_n^{aa}((\mathfrak{A}, \vec{a}), (\mathfrak{B}, \vec{b}))$. Using Theorem 1.2 player II can play in such a way that after l_2 element-rounds and m cub-rounds he has the following situation Σ :

Let l be l_1+l_2 , al_{l_1+1} , ..., $a_l \in \mathfrak{A}$, b_{l_1+1} , ..., $b_l \in \mathfrak{B}$ be the choosen elements, and \mathfrak{A}_1 , ..., $\mathfrak{A}_m \subseteq \mathfrak{A}$, \mathfrak{B}_1 , ..., $\mathfrak{A}_m \subseteq \mathfrak{B}$ be the choosen subsets in the cub-rounds.

1) \mathfrak{A}_j and \mathfrak{B}_j are countable subgroups of \mathfrak{A} resp. \mathfrak{B} , and $\mathfrak{A}_1 \leqslant ... \leqslant \mathfrak{A}_m \leqslant \mathfrak{A}$, $\mathfrak{B}_1 \leqslant ... \leqslant \mathfrak{B}_m \leqslant \mathfrak{B}$.

2) If
$$\zeta_5(\mathfrak{A}) = \zeta_5(\mathfrak{B}) = 0$$
 then $\zeta_4(\mathfrak{A}/\mathfrak{A}_1) = \zeta_4(\mathfrak{B}/\mathfrak{B}_1) = 0$. Otherwise

$$\zeta_4(\mathfrak{A}_{i+1}/\mathfrak{A}_i) = \zeta_4(\mathfrak{B}_{i+1}/\mathfrak{B}_i) = 1$$

and

$$\zeta_4(\mathfrak{A}/\mathfrak{A}_m) = \zeta_4(\mathfrak{B}/\mathfrak{B}_m) = 1.$$

If $\zeta_i(p, n, \mathfrak{A}) = \zeta_i(p, n, \mathfrak{B}) < \omega_1$ then

$$\zeta_i(p, n, \mathfrak{A}_{i+1}/\mathfrak{A}_i) = \zeta_i(p, n, \mathfrak{B}_{i+1}/\mathfrak{B}_i) = 0$$

for $1 \le j < m$ and

$$\zeta_i(p, n, \mathfrak{A}/\mathfrak{A}_m) = \zeta_i(p, n, \mathfrak{B}/\mathfrak{B}_m) = 0.$$

Otherwise

$$\zeta_i(p, n, \mathfrak{A}_{j+1}/\mathfrak{A}_j) = \zeta_i(p, n, \mathfrak{B}_{j+1}/\mathfrak{B}_j) = \omega$$

and

$$\zeta_i(p, n, \mathfrak{A}/\mathfrak{A}_m) = \zeta_i(p, n, \mathfrak{B}/\mathfrak{B}_m) = \omega_1$$

3)
$$\Delta_{\pi^{n-1}\mathbf{a}(1)}([\mathfrak{A}_1 \subseteq ... \subseteq \mathfrak{A}_m \subseteq \mathfrak{A}], [\mathfrak{B}_1 \subseteq ... \subseteq \mathfrak{B}_m \subseteq \mathfrak{B}], a_1, ..., a_l, b_1, ..., b_l).$$

To finish the proof it will be shown that II can ensure Σ in the next round. First assume it is an element-round. By Σ 1) $[\mathfrak{A}_1\subseteq\ldots\subseteq\mathfrak{A}_m\subseteq\mathfrak{A}]$ and $[\mathfrak{B}_1\subseteq\ldots\mathfrak{B}_m\subseteq\mathfrak{B}]$ are (m+1)-chains of pure subgroups where \mathfrak{B}_1 and \mathfrak{A}_1 have the same Szmielew invariants. By Σ 2) furthermore $\mathfrak{A}_{j+1}/\mathfrak{A}_j$ and $\mathfrak{B}_{j+1}/\mathfrak{B}_j$ for $1\leqslant j < m$ and $\mathfrak{A}/\mathfrak{A}_m$ and $\mathfrak{B}/\mathfrak{B}_m$ have the same Szmielew invariants. If player I chooses w.l.o.g. $a_{l+1}\in\mathfrak{A}$ then Σ 3) implies by Theorem 1.2 the existence of some b_{l+1} such that

$$\Delta_{\pi^{n-i_1-i_1}(1)}([\mathfrak{U}_1\subseteq\ldots\subseteq\mathfrak{U}_m\subseteq\mathfrak{U}],[\mathfrak{B}_1\subseteq\ldots\subseteq\mathfrak{B}_m\subseteq\mathfrak{B}],a_1,\ldots,a_{l+1},b_1,\ldots,b_{l+1})$$

 $\Gamma_{a}^{aa}((\mathfrak{A},\vec{a}),(\mathfrak{B},\vec{b}))$ is in the situation Σ again. Now assume w.l.o.g. player I has choosen X in the cub filter of \mathfrak{A} . Then II chooses the following element Y of the cub filter of \mathfrak{B} :

- 1. Case m=0. Then $Y=\{\mathfrak{B}_1\colon b_1,...,b_l\in\mathfrak{B}_1,\mathfrak{B}_1\text{ is a countable elementary subgroup of }\mathfrak{B},\ \zeta_i(p,n,\mathfrak{B}/\mathfrak{B}_1)=0\ \text{ if }\ \zeta_i(p,n,\mathfrak{B})<\omega_i,\ \text{ and }\ \zeta_4(\mathfrak{B}/\mathfrak{B}_1)=0\ \text{ if }\ \zeta_5(\mathfrak{B})=0.$
- 2. Case m>0. Then $Y = \{\mathfrak{B}_{m+1}: \mathfrak{B}_m \subseteq \mathfrak{B}_{m+1}, b_1, ..., b_l \in \mathfrak{B}_{m+1}, \mathfrak{B}_{m+1} \text{ is a countable elementary subgroup of } \mathfrak{B}, \text{ and } \zeta_l(p, n, \mathfrak{B}_{m+1}/\mathfrak{B}_m) = \omega \text{ if } \zeta_l(p, n, \mathfrak{B}) \ge \omega_1\}.$

After I has choosen some \mathfrak{B}_{m+1} of Y II can find some elementary subgroup \mathfrak{A}_{m+1} of \mathfrak{A} in X with the properties described in the definition of Y. It follows that $\Gamma_n^{aa}((\mathfrak{A},\vec{a}),(\mathfrak{B},\vec{b}))$ is again in the situation Σ .

References

- J. Barwise, M. Kaufmann and M. Makkai, Stationary Logic, Ann. Math. Logic 13 (1978), pp. 171-224.
- [2] A. Baudisch, Elimination of the quantifier Q_x in the theory of Abelian groups, Bull. Acad. Polon. Sci. 24 (1976), pp. 543-551.
- [3] W. Baur, Undecidability of the theory of Abelian groups with a subgroup, Proc. Amer. Math. Soc. 55 (1976), pp. 125-128.
- [4] A. Ehrenfeucht, An application of games to the completeness problem for formalized theories, Fund. Math. 49 (1961), pp. 129-141.
- [5] P. C. Eklof and E. R. Fischer, The elementary theory of Abelian groups, Ann. of Math. Logic 4 (1972), pp. 115-171.
- [6] and A. H. Mekler, Stationary logic of finitely determinate structures, Ann. Math. Logic 17 (1979), pp. 227-270.
- [7] М. И. Каргаполов, Об элементарной теории абелевых групп, Алгебра и Логика 1 (1963), pp. 26-36.
- [8] J. H. Makowski, Elementary equivalence and definability in stationary logic, preprint (1977).
- [9] В. И. Мартьянов, О теории абелевых групп с предикатами, выделяющими подгрупп, и операциями эндоморфизмов, Алгебра и Логика 14 (1975), pp. 536-543.
- [10] А. М. Слободской, Э. И. Фридман, О теориях абелевых групп с предикатами, выделющими подгрупп, Алгебра и Логика 14 (1975), pp. 572-576.
- Неразрешимые универсальные теории решеток подгрупп абелевых групп, Алгебра и Логика 15 (1976) pp. 227-234.
- [12] W. Szmielew, Elementary properties of Abelian groups, Fund. Math. 41 (1955), pp. 203-271.

Accepté par la Rédaction le 1. 2. 1979