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The eienientary theory of Abelian groups with m-chains
of pure subgroups

by

Andreas Baudisch (Berlin)

Abstract. An m-chain of pure subgroups is a chain %l = [, = ... s%,) of Abelian groups
such that %U; is pure in Uy,. These m-chains will be considered in an elementary language of group
theory with additional predicates denoting the subgroups ;. The well-known results of Szmielew:
(elimination of quantifiers, decidability) will be extended for the elementary theory of m-chains.
These results are used to get the decidability of the L(aa)-theory of Abelian groups.

1. Introduction. An m-chain of pure subgroups of an Abelian group 2, (short:
m-chain) is a chain 9 = [, =..c%,] of Abelian groups such that 9; is pure
in A,. Let m be a fixed natural. We consider m-chains

i = [,c..c%,] and B =[Bc..cB,].
By convention ¥y = {0}, By = {0}. f(xy, -, X)) = 2. kix;is a k-term iff k; are
- 1<€ig]

integers with [k;}<k. To work in the group &,/C,_ réspectively ¢,/C _, we use
the notations

(F gy s x) = O)mod€,_; and (P f(¥y, o, X))mod €, .

DernimioN 1.1, 4%, B, 4y, ..., 4, by, ..., b)) is the following set of con-
ditions: )
(1) For every r with 0<r<m and every k-term f(x;, ...; X;)

Ak (f (@, a) =0)mod¥,_, iff BE(fibys,....h) = 0)modB, .
(2) For every r with 0<r<m, every p'<k, and every k-term f (X1, «.e5 %)
@k (p'| f(ag, . a))modA,_y  iff  BE(p] f(By, ... b))modB, ;.

It %, 8, a4, ..., a, by, ..., b, are known we write 4, only. Remark that 4, =4,
for k<h.
' We define arecursive function z(k) such that:
5
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TreoREM 1.2. Let R = [, .., ] and B = [B,<...=B,] be two m-chains
of pure subgroups such that W /N, _; and BB, _, have the same Szmiclew invariants.
Then for every a1 €N, (b €B,) A,,(k)(ﬁ, B,ay, .., 8, by, ..., by) implies the
existence of some by, €B,, (resp. a,., € W,) such that

Ak@t, 8, Qyy ey Uy by ey bigy)

This theorem extends the elimination procedure of Szmielew [12] for the ele-
mentary theory of Abelian groups. It follows the decidability of the elementary
theory of m-chains with predicates denoting the pure subgroups.

Remark that the theory of Abelian groups with an additional predicate de-
noting a subgroup ([3], [9]4[10]) and the universal theory of lattices of pure sub-
groups of Abelian groups [11] are undecidable.

Furthermore Theorem 1.2 is used to extend the Szmielew results to the
L(aa)-theory of Abelian groups. The decidability of the L(aa)-theory of Abelian
groups is shown. This continues [2]. The L(aa) results are obtained by Eklof and
Mekler independently [6]. '

2. Preliminaries. Let p, ¢ be primes, h, i, j, k, I, m, n, r, 5, t, u be naturals exept
in terms Zk; x; where the k; denote integers. x and 1 are used for cardinals. By a groups

we understand always an additively written Abelian group. Let k% be the subgroup -

of all ka with a € 2, and [K]2 be the subgroup of all ¢ with ka = 0. {0} is used to

denote the trivial group (or subgroup) containing “0” only. If a,, ..., a;e U let

{ay, ..., a;} be the subgroup of U generated by a,, ..., a;. @ denotes the direct sum

and (@A)* the A-fold direct sum of 9. Let £(p") be the cyclic group of order p”,

&(p™) the group of type p®, and £, the additive subgroup of all rationals a/b
where pb.

Define for every Abelian group A:

Li(p,n, A) = sup{d: there is a subgroup of ¥ isomorphic to (@f(p"))‘}.
Lo, n, W) = (i, n, Ajp'W).

La(p, n, N) = sup{4: there is a direct summand of 9 isomorphic to

(@t
_ Jo, if there is some m with 2 k Vx(mx = 0),
Ll2) bt {1, otherwise. ‘

Then the L-Szmielew invariants of 2 are defined by

G, m®W ={p,n, Wnw for 1<ig3
and

LED = L)
They are described by the following Szmielew basic sentences:

G k) =3x o xl A (ox = 0a2" ) A (T kx, =0)),
i Cokipendes 1STSK
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txp, n, k) ;3x1 xk(/t\pn_llxl/\ )

.........

Cg(P: n, k) ; axl e xk(/‘\ (pxi = OApn_I‘xi)A ¢ /\ S.—l(p"*lsziﬁkklx») 2

weapkteens) €
where S is the set of all (ky, ..., ki) # €0, .., 0) with 0<k, <p, {i(m) = Vx(mx = 0).
Remark that % and B bave the same L-Szmielew invariants iff they fulfil the

same Szmielew basic sentences. % k {H(p, n, k) iff {[(p,n, W=k. Notice the fol-
lowing useful lemma:

. m—1
Lemva 21 @) [12] (o, n, W) = Lp,m, W+ j; {3(p,J, W Sfor m>n

and 1<i<2.

(ii) [7] If B is a pure subgroup of W then [(p, n, M = {(p,n, B)+Lip, n, AB)
for 1<i<3. -

Let K,, be the class of all m-chains. The elementary theory AG,, of K,,,. is for-
mulated in the language L,, with a function symbol “+* for the group operatx.o.n and
unary predicates P(1<i<m) where P; denotes the pure subgroup U, of %, in the
m-chain [¥; S...c,,]. Then K,, is EC, in L,,. L =1L, is the ordinary elementary
language of group theory. Outside of L,, we use Py(x) =x= 0 and P, (x) =x=x

Let LY be the extension of L, by the following definitions: “0” is a new con-
stant uniquely determined by Vy(y+0 = ?1).

x—z =y§y+'z‘== X,
1| M. -
PlreI@Ey =2,
x= y)modP,gElz ePyx =y+2),
(px)modP, & Iydze P(p'y+z = x).

Let AG?. be the corresponding elementary theory. As usual =, denotes elemer'lui}:y
equivalence with respect to L,,. The L,,-basic sentences are defined to be'the Szmielew
basic sentences for the factor groups P;.4/P; (0<j<m) formulated in L,,.

3, Elimination of quantifiers. In this chapter we define n(k) and prove
Theorem 1.2.

Lemma 3.1, Let ¥ and 8 be m-chains of pure subgroups, ay, ..., 4 € Wy, and
by, ., b,€B,, such that A,‘(Qir, B, g5 e» a1y bay ey by).  Furthermore as.s:ume
kB, = {0}, kﬂm‘= {0}, and Cg‘ (PoJ> W/ W) = (52, J>Biea/B) Sfor 0<i<m
and p'ik. Then for every ai., € Uy, (resp. by, €B,,) there is some

biyq €B,(d, €N, such that AR, B, ay, saqig, by s Bria)

Proof. If k€ = {0} then ¢ = 0 iff p'|c for every p’|k. Therefore it is possible to
assume w.Lo.g. k =p®. The lemma will be proved for every @jq€ UNU,_y
and every byy; €BNB,—; O<r<m, .y = 8., = @) "by induction on.r. The
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case r = 0 is trivial. Suppose that the assertion is proved for r—1. First let us consider
the following case:

(*)  There is some p*-term f(x,, .., x,) such that (@,,., = f(ay, ..., a))mod ¥, _,.
Then w.l.o.g. f(ay, ..., a) = 0 and the assertion follows from the induction
hypothesis.

In the general case induction on A where (p*"(a;,;) mod¥,_, is used. The case
h =0 is clear by (x). Assume if (p" *|a;, )mod ¥, ~1 Yesp, (p""“lbp,l)mod%,,.1
the’ assertion is proved.

Now the situation (p*""*|a;,,)mod o,_, but (0" " Yay,)mod ¥, will be
considered. By induction on rw.l.0.g. p*™*"!|a;,, ;. By the induction about / w.1o. g.
Pay =a;, for some j, with 1<j,</ because (p" *pay, )mod®,_,. If
("M —f(ay, .., a))mod A, _, for some p-term f(x,, <., %) then by the
induction on 4 and (x) there is some b;,, with the desited properties. Therefore
w.lo.g (77" Yo, ~f(ay, ., a))mod U, _; for every p™-term f(x;, ..., x).

Now it is sufficient to find some b;,, €%, such that pb,, , = bjos P by
and (5" ¥byy; —f (by, ..., b)) modB,_; for every p™-term F(x15 ey xp).

By 4y there is some b’ €%, with p* 7|0’ and pb’ = b,,. If

(7" 48" ~f (by, ..., b)) modS, _,
for every p’-term f(x;, ..., x;) there is nothing to do. Otherwise assume
(0" ~fobys .., BY)mOdSB, _, .

thcan assume w.l.o.g. (p*7"|b")modsB,_, . Otherwise by induction on r w.Lo.g.
p: {6'=f(by, ..., b). This would imply LG, . b) and- therefore

" Yay,y—f(ay, ., ). Then you could replace ay,.; by apq—f1ay, ..., @)
and &' by b’ —f(by, ..., b). :
Now by induction on & there is some o’ € U, such that

48,8, a,, ..., a,a, by, ..., b, ).

Then  pa;y; = pd/, P'"""I{I’ and  (p""a)mod®¥,_,. pay,, =pa’ implies
iy = @' +c with pc = 0, p" "¢, and (p*~"fc—f (ay, ..., a))mod A, _, for every
p-term  f(xy,..,x). Therefore w.lo.g. pay,, =0, 2", and

(P’ "fay —f (ay, .., a))mod %, _, for every p*-term Sy sx). Use 4, &, by
to denote elements of /2, ; resp. B,/B,_,.

Let tg the ;;nammal natural (>0) such that there are ,, ..., &, &[] {a, .., a}
with p¢; = 0, p*~*~{z;, and p*~* 3 ivi
. PE p |¢;, and p *1<;st€ij for any nontrivial /; - tupel (k,, ..., ki,
with 0<k;<p. The existence of @y, implies

$a(p,s—h, B,/B,_)) = Li(p, s—h, WA, _)>1, .

Then there is some by, , € B,/%, 1 With pByy =T, p™* 115, and P'""al’b:-
=5y, ..., b)) for every p™term £ (xy, ..., x,). Let b* be an element of B, such that
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P E % s in By 1. Since B,_, is a pure subgroup there is some d e 8,_, such that
P = p**d, Then by, = p"*~1(b* ~d)is an eclement of by, With pby,y =0
and p*~*~Yb,, . Therefore by, has the desired propertics. B

DEFINITION 3.2. For every natural k let k¥ be the lowest common multiple of
all j with 0<j<k.

DEFINITION 3.3. Let n(k) be n(k, m) where n(k,r) is defined for 0<r<m by
induction on r such that

n(k,r)=>nk,r—1), and =n(k,0) = 2UkS .
Now assume r3>1. For k™ define u(k, f, u) by inductionon Y s; if u = ]:[p:‘:
i

ulk,r, 1) = n @k, r-1).

For every prime p i'(k, r, p) = p(p(2k,r, 1), r, 1). Since p'(k, r, p) does not depend
on p and u(k, r,u) depends on Y. s, only it is possible to define:
i

pk,r,w) = p(p'e, r,p), r,up)  for - plu.

Then nik, r) = plk, r, k%°). Remark p(k, r,u)>pk, r, v) if vju. ‘

TrrporeM 1.2. Let 9 = [A, €...cN,] and B = (B, =...8B,] be two m-chains
of pure subgroups such that WU, _, and B,/B,_, have the same Szmielew invariants.
Then for every ayyy € Wy (Brar €By) A, B, ay, ..., a1, by, .o, by) implies the
existence of some by, €B,, (resp. ayy, €W,) such that

A, B, a1, s Ay By ey Bray)

Proof. Let a;,, be an element of AN\, _, (resp. by, ; € B\B,_,) for some r
with 0<r<m (¥_,; = & = B_,). By induction on r it will be proved that

Ax(k,r)(ﬁ’ ﬁ) Ay ey ay, bl 3 veey bl)
implies the existence of some by € B, with AL, B, @y, e, Grpgsbyyoees Brag)-
By definition it is n(k, r)<n(k). If r = O there is nothing to do. Assume for r—1
that the asgertion is true.

Case 1. (k%"qy, # f(dy, .., @))mod ¥, _, for every kD -term £ (%, «.r s X1)
This condition implies (g(ay, ..., a) # uay,)mod ¥, _, for every Isterm
g(%1, -.rr X)) and 0<|u|<k. Let €, be a pure subgroup of €,. Then €,/hC,—C;+
+hE,/h€, is a pure subgroup of &,/hC, under the natlgal embegding. Thcrgforf
it is possible to consider the m-chains /A%l = [A,<..c¥,] and B/AB
=[8, =...cB,] where &, 9, /4Y, and B,5B,/1B,. Let h be k" and use &, and b, to
denote the images of a, in $i/A%L resp. of b; in B/hB. Then kOdykPd) = o0,
KO(®B/k°8) = 0, and A,/N,_, and B,/B,_; have the same Szmielew invariants.

Since 7(k, N=kD A,0@ k%, B/kPS, 4, .., &, by, ..., b is fulfilled. Then
by Lemma 3.1 there is some: b;., such that

A0S 9Bk g, Gyy iy Bpars Bys s bii).
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Let b* be an element of 5,,, inB,. Then 4,(H, B, a;, ..., drus, by, e, b1, B () is
fulfjlled. Let G(kD‘(QI,/‘lI ~1)) be the number of. elements f(d,,..,d) in
kB2, ) where f(xy, ..., x;) is a kkP-term,

By assumption card (k7*(20,/2,,))>0. Since ,/,_, and B,/B,_, have the
same Szmiclew invariants card (kP*(,/%,_ ) = card (k°*(B,/B,_))<w or
card (k7(8,/8,,))> o. Furthermore 8(k™*(U,/9N,..,)) = O(k™*(B,/8B,.,)) by Ay
and n(k, r)>2kk5. Therefore there is some k7’0 & B, such that "

(KB’ 5 f(by, oorr b)—Kk"b¥)modB,_,  for every kkD-term £ (xy, ..., X)) .

Ifbyq = b*+ k"%’ then (b;4, = b*)mod (k“B) and (g (b, , ..., by # uby4,)modB,_,
for every k-term g(xy, ..., x;) and 0<[u|<k. It follows

Ak(sﬁ: iﬁ’ Qs ey dpags bl; ey bH-l) .
Case 2. There is some u with k™" such that
(1) (f(@y, r @) = uay,)mod¥,_;  for some Kk -term f(xy, ..., x)).

Rememl:er n(k,r) =nk,r, k?’) and p(k,r,w)2pulk, r,v) if olu. In (1) let u
be ];'[ pt, then p;<k. For u[k™” it is sufficient to show the following by induction

on 2‘: s, (short: Q-inducﬁon):
(2) Let ajq €, (resp. byyq €B,) be an element fulfilling (1). Then
Au(k,r,u)(gi’ Qg, al, ceey d,, bl’ ~7 bl)
implies the existence of some by, €8B,, (a4, € U,) such that
vAk(QA[a 2’%: Ay eeey Arigs bl: e bl+1) .

The case u = 1 follows from the induction hypothesis about r because u(k, r l)v
'>n(2kzkm » r—1). Now assume u> 1 and that for every vju with v<u the asserti;n,(Z)
is true. Let p be a prime with plu. Then p<k and k>1. Since u(k,r,w)
= u(y’(k, r;p),r, u/p) by wu-induction we can confine us to the case T

(1) payyy = a, for some j, with 1<j, <!/ and:
Au'(k,r,p)(gt: ﬁr Ay eeny Oy blv seey bl) *

Consider some equation

3 U, Q ] y oin i | i
) sf-lte::nl, filay, oy @))mod¥,_, with plu;, O<u,<k, and 1%y ey %)

Then 1 = u; s, +ps, with |s|<k and therefore

@y = s filay, s a)+s;,0;,)mod A, _, .

Th.at means (a,.+1 =g(ay, ..., @))mod A,_; where g(xl, s X)) is some 2k term.:
Using u-induction and u'(k, r,p)2ulk, r; 1) (2) is proved. '
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Therefore it is possible to confine us to the case that (3) is not fulfilled for any
k-term fi(Xg,..,%) and any u; with O<u, <k and pfu,. As shown above
(brs1 # g(By, s b))modB,_,  for every 2k3term  g(xy, ..., X)) ~ implies
(g byy # S1(bys s by))mod®B, ., for every k-term f;(xy, ..., x;) and every 1<uy <k
with piu,. Therefore it is sufficient to get some by, € B, with pbyyy = by,
(b141 # gy, ..n, b))modB,_, for every 2k*-term g (xy, ..., x;), and fulfilling 4, (2).
To ensure 4, (2) we consider 9/k™4l and B/k™"B as above. Let &, and §; be the images
of a, in W/kP" & resp. of b, in B/k"'B. By Lemma 3.1 there is some %1+, such that
@) A B, BT B, By, s e, Bay s Braa) ‘
(W, r,p)=k™"). If b’ € B, is some element of By4( thenpb’ = b, -k d for some
de®B,. Theiefore b* = b'—(k“’/p)d e B, has the properties (b* = b’)mod(kmﬁ)
and pb* = b;,. Then (4) implies

) Ao@UkD &, BKOB, dy, ..., iy, by, -y By, b¥) where 4, and b; are the
cotresponding images of a; resp. b;. -

If now (b* # g (by, s by )modB,.., for every 2k>-term g (xy, .--» x;) then by, = b*
has the desired properties. Otherwise assume (* = go(by1s vy by))mod®B,_, where
GoXy, «ns Xp) is @ 2k*-term. Since pi(k, r,p)zu(uk, r, 1),r,1) it is possible to
apply u-induction to b*. You get some a* such that

(6) Ay(zk,r.l)(ats g, Qs e @y a*’ b1 303 bb b*) .

Then pay,, = pa* = a;, and therefore a,,4 = &*+c¢ with pc = 0. ce ¥%,. By (5)
(6* = golby, - b))mod B,_, implies (&141 = go(@s, - a))mod 9, _ ;. Since by (6)
(a* = g?(?xv woa))mod &, _, it follows (@* = dpyy)mod 9A,_;. Therefore
(k"|c)ymod %, _,.

CIf (¢ =g'(ay, ..., a))mod ¥, for some 4k*-term g'(%y,..., %) then
(@141 = a*+g'(@y, ..o» a) = g'"(@y, s Q> a*))mod ¥, where G (X gy ey Xgp X) 18
a 4k2-term. By u-induction the assertion follows from (6). Otherwise let s be the
masximal patural such that p*<k. @, b are used to denote the image of a in AUy
resp. of b in B,/8,_,. Then &e [p1(p*(¥/Y _y)) with & # ¢ (@, ..., @) for every
4k>-term g (%, , .., xp)- Since y'(k, r, p)=p4k* by Ay, B, @y ey 1, by s B)
the number 0 of elements g (X , ..., %;) where g (x;, ..., X)) is a 4k*-term is the same in
[P)(p' (/%)) and [p]("(B/B,-p)). Then there is some d € [p)(p"(B/B,-1))
with d  g(By, ..., b)) for every 4k>-term g(x;, ..., xp). Otherwise you would get
g = pHPstLBAB-0 But since {y(p,s+1, W/W,_y) = L(p, s+1,%,/%8,_,) this
contradicts the existence of c.

Now let d’ € B, be some element with p*d’ = d. Since 8,_, is a pure subgroup
there is some ¢ €B,_, with p**le’ = p**'d'e€®B, ;. Then d = pild’'—e’) has the
following properties: pd =0, p’ld, and (d # g®y; s b))modsB,._, for every
4k3-term g (xy, wr X)) since (d =p°d)mod®,_,. Define by = b*+d. Since
k9d by (5 A, B, a, b, bug) () I fulfilled. Furthermore
Phiyy = by, and (Bryy # g (81, wer b))modB,_; for every 2k3-term g (xy, -5 XD)-
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To prove this assume (B, =g,(b,, ..., b))modB, , for some 2k>-term
91(*1, ...y X)), Since (b* = go(by, ..., b))modB,_; then
. (d = g1y, .., B)—go(dy, ..., bx))mOdSBn-—l
where (g;—go)(xy, .., %) is a 4k*term. This contradicts the construct‘ion. ]
CoROLLARY 3.4. Let Wbe [U, ...< ], B be [B, <...=8B,], and Wy = {0} = B,,.
If W, 4/N,; and B, /B, have the same Szmielew invariants O<gi<m) then A = L B.
COROLLARY 3.5. Every sentence of L, is equivalent relative to AG,, to a Bolean
combination of L,-basic sentences.
COROLLARY 3.6. For every sentence ¢ of L, fulfilled in some m-chain there are m

direct sums §; of finitely many groups 3(p"), 3(™), and 3, such that ¢ is true in
U c.cU,] where Wy = @ G,
1<ysi
COROLLARY 3.7. AG,, is décidnble.

Furthermore AG,, admits elimination of quantifiers in the following sence:

COROLLARY 3.8. Every formula of LY, is equivalent relative to AG} to a Boolean
combination of L,-basic sentences and atomic Sormulas of LY.

4. The L (aa)-theory of Abelian gronps. The basic investigations of the logic L (aa)
are done by Barwise, Kaufmann, and Makkai in [1]. They proved Completeness
and Compactness. As well known in L(ad) the generalized quantifier Q, “There
exist uncountably many” is definable. To define L(aa) — Ehrenfeucht games
(€, 6,) let €; and €, be arbitrary relational structures. As in the elementary
case I';(€;, €,) is a game for two players I and I about » rounds:

Player I begins every round and decides at first whether he plays an element —
round or an cub — round. Consider the mth round: :

Element round. Player I takes an element ¢ € §;. Then II has to choose an
element ¢§_,e €;_,.

Cub-round. Player I takes an element X7 of the cub-filter of €, and then II
takes an element X3_; of the cub filter of €5 ;. Now player I takes an element Cry
of X3, and at last II has to choose an C7' of X7 Player II wins I'™(G,, €,) iff
2(c¥) = ¢7 is a partiell isomorphism with respect to the relations of the underlying
language and the predicates P/ denoting the choosen C{in €, and ¢} in Q,.

TrBoREM 4.1 [8]. If player 1L has a winning strategy for every n in I'3%€,, €,)
then € =,C,. .

Let AG(aa) be the L(aa)-theory of Abelian groups. If you want to describe
Ci(p, n, Ay with help of the elementary language L {dp,n, Wk (for 1<igI) is
expressible only. In the case of L(«a) it is further possible to define {ip,n, W0,
and to refine {,(2). The L(aa)-invariants are the following:

(%, n, ) = Lo, n, Waw, for 1<i<,
LW = L), and
a 0, AE 110, x(m[x) for some m
L(aa) - 1 >
& {1, otherwise. .
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In [2] is proved the essential part of
LemMa 4.2. The following are equivalent:
@ A E Q4 (mlx). -
(ii) There are subgroups © and B of W such that A = BOHE, card(B)<w,,
and mG = 0,
(iii) There is some countable subgroup B of W such that m(YB) = 0.
To formulate the L (aq) - invariants we define the following L{aa)-basic sentences:

ed(p,m, k) = (Hp,m, k) for 1<i<3,

{3 m) = Lim),
cll'(au)(p, n, @) = qasﬂx(x gsapxesan(p”?! Ix)mods) .

(In L(aa) this is equivalent to Q,x(px = 0Ap"~!|x).)
L2 (p, n, ;) = aas3x((p"~*|x)mods A (p"¥x)mods) ,
e p, n, w;) = aasAx(px € s A (P" L|x)mods A (p"¥x)mods) ,

{5 ) = aasVx(mx € s).

(By Lemma 4.2 this equivalent to 71Qq x(m]|x).)

LemMma 4.3. @) For 1<i<3 Ak t5Yp, n, 0,) iff (F)p, n, W ;.

(i) Uk 59 m) for some m iff L2(W) = 0. .

(iii) U and B have the same L(aa)-invarients iff they fulfil the same L(aa)-basic
sentences. . .

THEOREM 4.4. Two Abelian groups are L{ac)-equivalent iff they fulfil the same
L(aa)-basic sentences.

COROLLARY 4.5. Every sentence of L(ad) is equivalent relative to AG(aq) to
a Boolean combination of L(ad)-basic sentences.

COROLLARY 4.6. Every L(aa)-sentence fulfilled in some Abelian group is true if*z
a direct sum of finitely many groups (®3 (i (©3 ()™, (®©3,)" where A, is
finite or w;.

COROLLARY 4.7. AG(aa) is decidable. ’ '

THEOREM 4.8. For every L{aa)-formula ¢ (%) with free element variables only there
is a Boolean combination of L\aa)-basic sentences and atomic formulas of L* equivalent
to @(X) relative to AG*(aa). ] ‘

To prove Theorems 4.4 and 4.8 let % and B be two Abelian gro.ups with the
same L (aa)-invariants (or equivalently that fulfil- the same L(ae)-basic sentences).
Furthermore let @ = {ay, ..., @), and b= {by, ..., b,y be l;-tupels of elements
of % resp. of B that fulfil the same open formulas ¢ (x;, -, x,,).of L*.

Let L’ be the group language with a ternary relation “+”». Using Theo_x:em 4.1
it will be shown that (¥, 3) =p)(B,b). But then (U, ) =puu(®B,b), and
Theorems 4.4 and 4.8 are proved. ! :
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Consider I'®*((, @), (B, b)). Using Theorem 1.2 player II can play in such
a way that after /, element-rounds and m cub-rounds he has the following situation X:

LetIbe i+l aly sy, ., ay€ Y, by 4y, ..., b;€B be the choosen elements, and
Uy oo, L, =AU, By, .., B, =B be the choosen subsets in the cub-rounds.
* 1) %; and B, are countable subgroups of U resp. B, and U, ..U, <Y,
8,<..X8,<3B. :

2) If {5(2) = {s(B) = 0 then {(AW/A,) = {,(B/B,) = 0. Otherwise

C4(“]Ij+ i Q’[j) = C,;(SB,.,. 1/231) =1
and
La(WA,) = La(B)B,) = 1.
If Li(p,n, W = {(p,n, B)<w, then

, {ip,m, er_7+1/911) ={p,n, SB,i+1/931) =0
for 1<j<m and
L, n, WA,) = {(p,n, BB,)=0.
Otherwise

{ip,n, uj+1/g[j) ={p,n, %j+1/BJ) =
and

Ci(p’ n, QI/‘-HM) = Ci(P’ ns%/%m)k= @y .

3) Ay ([Y; €. SN, U], [ByS...=B,B], @y, w0, by, ., b)),

To finish the proof it will be shown that II can ensure ¥ in the next round. First
assume it is an element-round. By X 1) [, ..U, =] and [8,=..8,=8]
are (m-+1)-chains of pure subgroups where B, and A, have the same Szmielew
invariants. By ¥ 2) furthermore A;.1/W; and B, /B, for 1<j<m and A/N,, and
B/B,, have the same Szmielew invariants. If player I chooses w.Lo. g dp eU
then Z 3) implies by Theorem 1.2 the existence of some byy s such that

Apn-u-1 ([ Wy .. €W, U], [B,...98,8], 4, ..., g byy e, bryy)

(¥, a), (B8, I;)) is in the situation ¥ again. Now assume w.l.o, g player I has
choosen X in the cub filter of . Then II chooses the following element ¥ of the
cub filter of B:

1. Case m = 0. Then ¥ = {®,: b,, ..., b e%B,,B, is a countable elementary
subgroup of B, {(p,n,B/B) =0 if {(p,n,B)<w,, and {4(BB) =0 if
{s(B) = 0.

2. Case m>0. Then Y= {8B,,,,: B, S84 1, by, e b €By 1y, B,,.1 18 a coun~
table elementary subgroup of B, and {,(p, 7, B,41/8,) = o if {(p,n, B)>w,}.

After I has choosen some 8B,,., of ¥ II can find some elementary subgroup
Wiy of Ain X with the properties described in the definition of ¥. It follows that
(¥, a), (B, b)) is again in the situation 5. W
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