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that U not k 4 and B not k B. Consider then the w-model (2 +B)/P. Since it is
an w-model of HAS we have that
H+B)Y/DE(4VB).

However using Lemma 5.7 we see that it is not possible to find a bar B in (2 +B)/D
such that for all nodes k e B either 4 or Bis satisfied at k. But then (4 v B) is not true
in (A+B)/D.

Remark. It should be clear that similar methods could be applied to obtain
other common closure properties of intuitionistic systems.
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Set-valued mappings on metric spaces
by

Brian Fisher (Leicester)

Abstract. In this paper we consider a mapping F of a complete metric space (X, d) into the
class B(X) of nonempty, bounded subsets of X. For 4 in B(X) we define F4 = U Fa and for 4, Bin
B(X) we define 8(d4, B) = sup {d(a,b): ae 4,be B}. It is proved that l.f F maps B(X) into
B(X) and satisfies the inequality

8(Fx, Fy)<c.max{8(x, Fx), (y, Fy), 6(x, Fy), 6(y, Fx), d(x, )}
for all x, y in X, where 0<<c<1, then there exists a unique point z in X such that z € Fz and further
Fz = {z}.

In a paper by Kaulgud and Pai, see [3], they consider mappings F of a metric
space (X, d) into either b(X), the class of nonempty, closed and bounded subsets
of X, or Cpt(X), the class of nonempty, compact subsets of X, or 2% the class of
nonempty, closed subsets of X. The classes b(X) and Cpt(X) are given the Haus-
dorff metric D induced by the metric d. With F satisfying various conditions, they
prove a number of fixed point theorems for F, a fixed point being defined as a point z
in X for which z is in the set Fz. For example, they prove the following theorem in
which d(x, 4) with x in X and 4 in Cpt(X) is defined by

d(x, 4) = inf{d(x, A): ae d}.

TueoREM 1. Let F be a mapping of a complete metric space (X, d) into Cpt(X)
satisfying the inequality

D(Fx, Fy)<a,d(x, Fx)+a,d(y, Fy)+a;d(x, Fy)+a,d(y, Fx)+asd(x, )
for all x, y in X, where ay, ..., a,>0 and a‘1+...+a5<1. Then F has o fixed point
in X.

In the following we consider a mapping -F of a metnc space (X d) into B(X),
the class of all nonempty, bounded subsets of X. We define the function (4, B)
with 4, B in B(X) by -

5(A, B) = sup{d(a,b): ac 4,beB}.
If the set 4 consists of a single point a we write.
5(4,B) = 5, B)
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and if B also consists of single point b we write
V 6(A, B) = 8(a, b) = d(a, b).
1t follows easily from the definition of & that
'S(A,B) = 0(B,A)20 and &(4,B)<é(4, C)+4(C, B)

for 4, B, C in B(X).
Further, if 4 is any nonempty subset of X, we define the set FA by

FA ='\) Fa.

aed

‘We now prove the following theorem

THEOREM 2. Let F be a mapping of a completé ‘metric space (X, d) into B(X )
satzsfymg the mequalzty

(1) O (Fx, Fy)<cmax{3(x, Fx) 5(}’, Fy), 6(x, Fy), 5(y,Fx) dix, )} -

for all x, y in X, where 0<c<1. If F also maps B(X) into ttself, that is FA e B(X)‘

for A e B(X), then F has a unique fixed point z in' X and further, Fz = {2},
Proof. It follows from inequality (1) that if 4, B are any sets in B(X) then

8(Fa, Fb)<cmax {6 (a, Fa), 5(b, Fb), 5(a, F5), 3(b, Fa), d(a, b)} -

for all in A and b in B and so on taking the supremum over ¢ in 4 and b in B of
both sides of this inequality we have

(@  6(FA, FBY<cmax{5(4, FA), 5(B, FB), 5(4, FB), 5(B, FA), 5(4, B)}

for all 4, B in B(X), both sides being finite since we are supposing that F maps B(X)
into itself.

Now let x be an arbitrary point in X and ‘define the set F"x inductively by
' Frx = F(F™'x)
for n=2,3, .. Let us suppose that the sequence {§(F"x, Fx): n =1,2,..} is
unbounded. Then there exists some n>1 sucli that
) 5", Fx)> —— 3(x, Fx)
—
zmax{6(F'x, Fx): r=1,2, ..., n—1}.

Note that n>1, since if n = 1 we would have

(1—¢)6(Fx, Fx)>cé(x, Fx)
- 2eld(x, Fx)=5(Fx, Fx)
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which implies that &(Fx, Fx)>cd(x, Fx) where: as inequality (1) 1mphes that
8(Fx, Fx)<cd(x, Fx). It follows from inequalities (3) that
(1 =c)d(F"x, Fx)>cd(x, Fx)
>clé(x, F'x)—8(F'x, Fx)]
2eld(x, F'x)—6(F"x, Fx)]
for r=1,2,..,n and so .

@ S(F"x, Fx)>cmax {6(x, F'x): r = 1,2, ...,n}.
We will now prove that -
6 5(F"x, Fx)>cmax {8 (Fx, F'%): r,s = 0,1,2, ..., n}

where F°x = x and so .
S(F°x, FO%) = d(x,x) = 0.
For if not .
8(F"x, Fx)<cmax{§(F'x, F’x): r,5 =0,1,2,..,n}
<cemax{(F'x, Fx): r,s =1,2,..,n}
on using inequality (4). We can now apply inequality (2) indefinitely to these terms,

since whenever a term of the form &(x, F'x) appears, it can be omitted because of
mcquahty (4). This means that

5(F'x, Fx)<c*max{6(F'x, F’x): r,s = 1,2, ..,n}

for k=1,2,... and on letting k tend to infinity it follows that 6 (F"x, Fx) = 0,
giving a contradiction. Inequality (5) is thus proved. However, on using inequality ),
we now have ,
8(F*x, Fx)<cmax {5 (F"~x, F"x), 5(x, Fx), §(F"~*, Fx), (x, F"x}, S(F*"1x, x)}
<cmax{§(F'x, F’x): r,5s =0,1,2,..,n}
which is impossible because of inequality (4). This contradiction implies that the
sequence {§(F"x, Fx): n=1,2,..} is in fact bounded.
Thus since
§(Fx, F'x)<6(F'x, Fx)+6 (Fx, F'x
it follows that '
) M = sup{d(F'x, F'x): r,s = 0,1,2,..}
is-finite. Now, for arbitrary &0, choose N such that MM<e It follow:;th;at for -
m, n> N, inequality (2) can be applied N times to the term d(F™x, F*x) and so

© ) : 6(F"‘x, F"x)<c"M <g..
Choosmg a point Xn in F“x for n = 1 2 - we have

d(x,, , x,) < 6 (F"'x, F"x) <e
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fot m,n>N. The sequence {x,: n = 1,2, ..} is therefore a Cauchy sequence in
the complete metric space X and so has a limit z in X. Further, .

8(z, F'x)<d(z, x,,)+ 8 (x,,, F"x)

<d(z, x,)+5(F"x, F'x)
<d(z, x,)+¢
for m,n>N. Letting m tend to infinity we have
Q] ' 6@z, F'x)<e,
for n=N and so
®) 6(F"x, F2)<6(F"x, 2)+5(z, Fz)
<d(z, Fz)+¢

for n>N. On using inequalities (2), (6), (7) and (8), we héve for n>N
8(F"x, Fz) < cmax{8(F"'x, F'x), 3(z, Fz), 5(F""'x, Fz), 5(2 Fx), 6(F"~ 1x, )}
cmax{e, 8(z, Fz), 8(z, Fz)+e, ¢, &}
clo(z, Fz)+¢] . )
It follows that since x, is in F"x, we have
6(x,,,Fz)<5(F"x Fz)<é[8(z, Fz)+a]
for n>N and on letting n tend to infinity we have
[6(z, FO)<co(z, F2) ’
since & was arbitrary. It follows that &(z, Fz) = 0 and so Fz = {z}.
Now suppose F has a second fixed point w in X, so that w is in Fw. Then on
using inequality (1) we have
S (Fw, Fw)<cd(w, Fw)<cd(Fw, Fw) .
It follows that §(Fw, Fw) = 0 and so Fw only contains the single point w. Then
. d(z, w) = 5(Fz, Fw)
< cmax{6(z, Fz), 6(w, Fw), 6(z, Fw) é(w Fz), d(z, w)}
= cd(z, w).
The uniqueness of z now follows. This completes the proof of the theorem.
‘We now note that although the mapping F in the theorem has a unique fixed

point z it is possible for the point z to be contained in other sets Fx. To see this
let x be the closed interval [0, 1] with the usual metric. Define the functlon F by

putting
_J{o} for' - x=0,
Ex {[o 3x]  for x+0.

Inequality (1) is satisfied with ¢ = } and the fixed pomt 0is contamed in every set
in the range of F.

N
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We finally prove two corollaries to Theorem 2. First of all we have

COROLLARY 1. Let F be a mapping of a complete metric space (X, d) into B(X)
satisfying the inequality

O (Fx, Fy)<ay8(x, Fx)+a,8(y, Fy) +as8(x, Fy)+a,6(p, FX)+asd(x, y)
Jor all x, y in X, where ay, ...,a5>0 and a;+...4as<1. If F also maps B(X) into

itself, then F has a unique fixed point z in X and further, Fz = {z}.
Proof. We have

S(Fx, Fy)<a,5(x, Fx)+a,8(p, Fy)+a38(x, Fy)+a,8(y, Fx)+asd(x, y)
<emax{d(x, Fx), §(y, Fy), 5(x, Fy), 8(», Fx), d(x, )}
where ¢ = a;+...+as. The result follows immediately from the theorem.

COROLLARY 2. Let T be a mapping of a complete metric space (X, d) into itself

satisfying the inequality
d(Ix, Ty)< cmax{d(x, Tx), d(y, Ty), d(x, Ty), d(», Tx), d(x, »)}
Jor all x, y in X, where 0<e<1. Then T has a unique fixed point z.

Proof. Define a mapping F of X into B(X) by putting Fx = {Tx} for all x in X.
It follows that F satisfies inequality (1). Further, by noting the condition that F maps
bounded sets into bounded sets was only used to prove inequality (2) and because we
required the sets {F"x: n = 1,2,...} to be bounded, this condition is not needed
in this corollary since F"x is now a set always consisting of a single point. In such
a case inequality (1) can always be used instead of inequality (2) throughout the proof
of the corollary. Thus, there exists a unique point z in X with Fz = {z} = {Tz}.
The result now follows.

The result of this corollary was given in [2].

It should also be noted that it follows from Theorem 1 that the condition M be
F-orbitally complete in Theorem 3 of Cirié [1] can be replaced by the condition M
be complete and it follows from Corollary 2 that the condition M be T-orbitally
complete in Theorem 1 of [1] can also be replaced by the condition M be complete.
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