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Infinitary stationary logic and abelian groups
by

Paul C. Eklof * (Trvine, Ca.) and Alan H. Mekler ** (Ottawa, Ontario)

Abstract. Necessary and sufficient conditions are given for abelian groups which are L x-free
to be equivalent with respect to certain “fiter logics” obtained by adding to Leyx a second-order
“almost all” quantifier, Examples and constructions are given of equivalent non-isomorphic groups.

0. Introduction. In this paper we investigate the properties of abelian groups
which are expressible in various logics, L, (aa), obtained by adding to L, a second-
order quantifier “aas”. The semantics of the quantifier depends on the choice of
a stationary subset £ of »; given E we interpret “aas” as meaning — roughly — “for
a set of small subsets s which, modulo a non-stationary set, contains E”, (This is
made precise in section 2.) In particular for E = %, “aas” means “for a closed
unbounded set of small sets s”.

This paper may be considered as a sequel to [2]. In that paper the abelian groups
are characterized which are L,,,-equivalent to a free group; these are called the
strongly %-free groups (Theorem 1.1). Assuming V = L (or with no additional set
theoretic hypothesis for % = @,, n € ) it may be shown that for most regular %
there are strongly »-free groups of cardinality » which are not free (Theorem 1.5).
In this paper we consider languages stronger than L., which distinguish between
strongly ®-free groups. In particular we show (assuming V = L or for % = ®,14)
that there is a sentence of LE,,(aa) which picks out the free group among all abelian
groups of cardinality  if and only if E contains a closed unbounded set (Theorems 2.2
and 3.6). ’

Tn general, we give necessary and sufficient conditions for two strongly x-free
groups of cardinality » to satisfy the same semtences of Li,,(aa)'('l"heorem 3.4).
(Of relevance here is an invariant of such groups (introduced in [6]): we associate to
any x-free group A a stationary set I'(4) (or more precisely an equivalence class
of stationary sets — see Section 1)). Moreover, we characterize algebraically the

* Research partially supported by NSF Grant No. MCS 76-12014.

** Research partially supported by a grant from the National Research Council of Canada
(Grant No, 3775). . .
1 — Fundamenta Mathematicae CXII


GUEST


2 - P. C. Eklof and A. H. Mekler

pairs of strongly x-free groups 4 and B which satisfy the same sentences of LZ (aa)
for every E (Theorem 4.3) and we show — assuming V = L — how to construct
non-trivial such pairs (Corollary 5.2) (V).

Throughout the paper we shall make use of the following conventions and
terminology: (i) “group” always means “abelian group”; (ii) |4| denotes the cardi-
nality of a set or group; (iii) if 4 is a group and 1 is a cardinal, 4* denotes the direct
sum of A copies of 4; (iv) a cardinal is an initial ordinal and an ordinal is identified
with the set of its predecessors; thus, 8, = w, = {v| v<w,}; (v) % will always denote
a regular uncountable cardinal.

1. Almost free groups. We begin by reviewing some terminology and some
results dealing with groups which are “close” to being free (see [2] and [3D.
A group A is said to be x-free if every subgroup of 4 of cardinality <x is free.
A subgroup B of a x-free group is said to be x-pure in A if A/B is x-free i.e., B is

a direct summand of every extension C of B in 4 such that |C|<x. We say that A is -

strongly x-free if A is »-free and every subset of A of cardinality < is contained
in a x-pure subgroup of 4 of cardinality <. The property of being strongly x-free
has model-theoretic significance:

1.1. THEOREM [2] A is strongly x-free if and only if A is L., ,~equivalent to a free
_group. B

1.2. DEFINITION, A %-filtration of A is an increasing chain 4 = {4,] v<u)
of subgroups of A satisfying for all v<a:
M 14, <x;
(i) 4 = {J A4,; and
v<x

(iii) if v is a limit ordinal, 4, = |J Ay,

n<v

L3. LeMMA. (a) A is x~free of cardinality % if only if A has a %-filtration by free
groups. In this case we can choose a x-filtration A such that

(V) if A, is not x-pure in A, then A, A, is not free.

(b) A4 is strongly x-free if and only if A has a x-filtration 4 satigfying (i)-(iv)
and

(V) Ayyy is %-pure in A for all v<x.

- Proof. Given A = {a,: v<x} x-free (resp. strongly x-free) of cardinality » we
s1mply construct by transfinite induction a continuous increasing chain 4 so that
ay€ A,y If A, is not %-pure in A, then by definition of - -purity we can choose
Ayyy so that 4, /4, is not free. If 4 is strongly x-free, then by definition we can
choose 4,, so that 4,,; is x-purc in 4. B

From now on, if 4 is a %-free group of cardinality » and we write 4 = () 4,,,
v<x

. (’).In another paper we study the Lg,,(aa) theory of abelian groups and prove, among
otpcr things, that it is decidable (Ann. Math. Logic 17 (1979), pp. 227-270).
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we mean that 4 = {4,| v<u} is a x-filtration of A satisfying (iv). Moreower, if 4is
strongly »-free, we assume that (v) holds.

A closed unbounded set (or cub) in % is a subset C of % such that supC = % and
supX e C U {x} whenever X'= C. Let I(%) be the set of all subsets of » disjoint from
a cub; I forms an ideal in $(x), the Boolean algebra of all subsets of x. Let D(x)
denote the Boolean algebra P (x)/L. If Ee P () we let E denote its image in D (%):
thus By = E, if and only if £, n C = E, n C for some cub C in #%. The greatest
element of D(x) is | = % = C for any cub; the least element is 0 = &. A subset E
of % is called stationary if and only if £ # 0 i.e., for all cubs C, En C # @.

We are going to define a map I', from the set of all x-free groups of cardi-
nality % to D(x). Given 4 %-frec of cardinality x and a x-filtration 4 = {4,] v<}
of A4, let ,

= {v<u| Ayi/d, is not free} = {v<x| A4, is not x-pure in A}

and let I’,‘(A) Ee D).

1.4. Lemma. (1) I, is well-defined; (2) I'(4) = O if and only if A is free; and (3)
if I'(A) # 1, then A is strongly x-free.

Proof. See [6], Theorem 2.5, p. 259. B

We conclude this section with a summary of some results about the existence
of %-free groups.

1.5, TeroreM. (1) (Shelah [22]) If' A is a singular cardinal and A is A-free of
cardinality A, then A is free.

(2) (Shelah, Mekler, et al) If 4 is weakly compact and A is A free of cardmaltty As
then A is free.

(3) (Shelah) It is consistent with ZFC that every 2%°- free group is free (assuming
the consistency of the existence of a supercompact cardinality).

(4 (Gregory [11]) Assuming V = L, there exists for every regular non-weakly
compact % a strongly u-free group of cardinality » which is not free.

(5) (Bklof [3]) If there is a w~free group of cardinality » which is not free, then
there is a strongly x™-free group of cardinality »* which is not free.

(6) (Mekler [190) If there is a sirongly x-free group of cardinality » which is
not free, then for every EI'(A), there exists an A with T'(4) = E

(7) (Mekler [20}) For every ne o and every Ee D(w,..,), there exists A with
r ‘“'|+I(A) =

8) (Mekler [20]) Assuming V = L, for successor cardinals % and E<D(x),
there exists A such that T'(d) = E if and only if Ec1—~W where W = {v| cf (v) is
weakly compact}.

For additional results on I, see [20]. Recently Shelah has proved that GCH
implies not every . -free group (of cardinality M,.,) is free.

Past (6) is weaker than the result claimed in Theorem 2.7 (2) of [6]. This is

because the hypothesis that the group 4 be strongly x-free is needed for the con-
l‘.
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struction used in the proof of Lemma 1.3, p. 326 of [19]. (For the same reason
Theorem 1.1 of [19] should read “if there exists a sirongly x-free non-free group of
cardinality %, then there exist 2* strongly x-free groups of cardinality x»”. We do not
know if Theorem 1.1 of [19] is true as stated, although we suspect it is.)

For the purposes of some constructions used in later sections to exhibit some
examples we shall outline some of the ideas involved in the proof of part (7), which
will appear in a forthcoming paper [20]. (The simple proof claimed in Corollary 2.8
of [6] does not work, because of the error mentioned above.) The case n = 1 is
quite elementary and well-known and does not require the following machinery.
Thus the reader who so desires can skip the following and in the later examples
consider only the case n = 1.

1.6. DermTION (Hill [12]). Define by induction on n €  a class &, of torsion-
free groups of cardinality <w,. Let &, = the class of all countable torsion-free
groups. For n>0, §,+; = the class of all groups 4 which have an o, {-filtration
{4,] v<w®,,} such that for all v<w,,,, 4,./4, belongs to &,.

1.7. Tueorem (Hill-Mekler). Let E be a stationary subset of %, consisting only
of limit ordinals. Let & be any function from E into §,. Then there is a strongly
0,4 -free group A of cardinality w,yy Wwith an o, -filtration 4 = {4,| v<w,4:}
such that: A, is @y -pure in A if v¢ E; and A, /A, = () if veE. B

2. Stationary logic. We now introduce a class of languages, stronger than L,
using which we can differentiate between the strongly x-free groups, which are all
Lf,‘-equivalent. We fix a regular cardinal % and an element E of D(x). Let
§ = {SeP(): Ec8}, a filter in 2(x), the power set of ».

First we define the syntax of our language L‘z,,(aa) — which is the same for
all £, The non-logical symbols of Lz,,(aa) are those of the language of abelian groups
(a binary function symbol + and a constant symbol 0) plus a countable number of
unary predicate symbols sq, s, $;, ... Then Lzu(eia) is the smallest class of formulas
containing the atomic formulas and closed under the formation rules of L, (negation,
conjunction and disjunction over arbitrary sets of formulas; quantification over
sets of variables of cardinality <) plus the additional rule:

If ¢ is a formula of LE (aa), then so is aas; . Let state s¢ be an abbreviation
for TaasT1¢. (See [1] and [16], where L,,(aa) and L, (aa) are studied in general
and in detail. The idea of studying such languages was first suggested in [23])

We shall define a semantics for LE,,(aa) only for groups A4, of cardinality ».
Fix a w-filtration {4,| v<ix} of A. If (v}, .., %581, .., 5,) is a formula of
LE,(aa) — whose free first and second order variables are displayed — then for
any ay,..,a,€ A and v, ..., v, €% we define

AR5 QL0 ey 845 V1, s V]

by induction on formulas. If ¢ is 5i(v)), then A4 Fg @la, v] if and only if ac 4,.
For other atomic formulas and for the cases of negation, conjunction and quanti-
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fication of first order variables the ‘definition is the usual one. If @ is of the form
aas,V, then we define
AEEQLdgy oy @y Vs oy Vil
if and only if {vo<u| A FgWlay, .., @ Vo5 Viy ooy Y} € iS‘E. (Compare [1], § 8.3.)
It is easy to check that for sentences § of LZ,,(aa), the definition of 4 Fz0 is inde-
pendent of the choice of the x-filtration, since any two x-filtrations of 4 agree on
a cub. Notice that L2, (aa) has the same strength as L.
2.1, ExampLE, (1) Lev & be the sentence

aasaas'(ses’ — 5’18 is not free)

which is a sentence of L?‘i,‘(aa) since the clause “s'/s is not free” can be replaced by
a formula of L., (namely, the disjunction of the descriptions of all non-free groups
of cardinality <x). Then

AFgd
(2) Let 6 be the sentence
aasaas'(sss — s'fs is free).

if and only if I'(4H)=2F.

Then A kg if and only if I'(4)s1—E. In the special case of £ = 1 we obtain,
by Lemma 1.4:

2.2. THEOREM. There is a sentence 6 of LL,(as) such that for any group A of
cardinality %, A k0 if and only if A is free. B

We shall see later (3.6 and 3.7) that these examples are best possible._In par-
ticular, for any £ # 1, the property of being free is not expressible in LE, (a2).

2.3. EXAMPLE. (See [5].) Let C be any group of cardinality <»x. Let yi¢c be the
following sentence of L:EO,,,n(aa)

aasaas’[sss’ - Ext(s’fs, C) = 0]

Then, assuming V = L, for any group 4 of cardinality %, 4 F, e if and only if
Ext(4, C) = 0. Moreover in general there is no sentence of L, which expresses
the property of 4 that Ext(4,C) =0. :

2.4. Remark. In the case E = 1 we can extend the definition of the semantics
of L% (aa) to groups of arbitrary cardinality by analogy with the definition of the
semantics of L () (of. [1]). Thus A F aasg if and only if {S<4:|S|<xand 4F ¢ [S1}
a closed unbounded subset of #,(d), the set of subsets of 4 of cardinality <.
Theorems 3.2 and 3.4 extend in a natural way to this setting.

3. E-equivalence of groups. Let us say that two groups of cardinality » are
E-equivalent if they satisfy the same sentences of LE,,,(aa). ‘We shall generalize the
idea of Examples 2.1 (1) and (2) in order to give necessary and sufficient conditions
for two strongly »-free groups of cardinality » to be E-equivalent, We begin with
a back-and-forth criterion for E-equivalence, due to Makowsky.
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3.1. DeFINITION. Let 4 and B be groups of cardinality x. Fix x-filtrations
A=\ 4,, B=1) B, of the groups. A partial isomorphism from 4 to B is a pair

y<x v<ux
(f, ) consisting of:
(i) an isomorphism f: 4, B, for some g, T<x,

(i) a bijection o: X — Y, where X, Y are finite subsets of x,
satisfying: for every pe X, if p<q, then f(4,) = B
We write (f, 0)<(f’, o) if f<f’ and s=0o’.

3.2. TueoreM (Makowsky [17)). If A and B are groups of cardinality x%, A is
E-equivalent to B if and only if there is a set I of partial isomorphisms from A to B
satisfying : ]

(1) For every subset Z of A (resp. B) of cardinality <x and every (f,o)el
there is (f’, a')eI such that (f, o)=(f', ¢') and Z<domf' (resp. Z=codom f7),

(2) For every Se %E and every (f,0)el there exists S'e 'i";ﬁ such that for
every i'e S’ there exists we S such that (f, o U {(1, )} e L

(2") For every S'e ‘fyf and every (f,o)el there exists Se?}f such that for
every pe S there exists u'e S’ such that (frow{pp))el u

(We shall need only the sufficiency of the conditions, which is proved by an
induction on formulas in the usual way.)

o(m)

3.3. DEFINITION. Define an equivalence relation ~ on groups of cardinality <x
by G~H if and only if there is a free group F of cardinality < such that
GOF =~ HOF.

3.4. THEOREM. Let A and B be strongly » jree groups of cardinality % = A" let
Ee D(x). Fix x-filtrations A = E)A,,, B = |) B, of the groups. The following are
equivalent. v” "

() 4 is E-equivalent to B.

(2) For every class $ of groups of cardinality <ux which is closed under ~ and =
{ve E| 4,.,/4,€ $} is stationary in x < {ve E| B,.,/B, e $} is stationary in .

(3) For every class $ as in (2),

{r<nl AyrifA,e 5} e§E < (v<n] By, B,e 9} .
Ploof (2) <> (3). This follows from the fact that {(veE| 4,,,/4,¢ $} is not

stationary in x if and only if{vexl 4,44/4,€B} e ‘{yE where § denotes the comp-
lement of § in the class of all groups of cardinality <.

(1) = (3). Suppose $ is as in (2) and suppose
Y= {v<y| Avrsfd,e H}e ifﬂ§
say 'C is’a cub such that En C= ¥ A C. Let © be the sentence

aasaas'(scy’ > s'lse ).
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This is a sentence of Lix(aa) because the clause “s'/s € $” is expressible in L, (by
using a large disjunction, of. Example 2.1 (1)). But AFze if and only if
{v<x| 44 /4, € H} € 33 (To see this use property 1.3(v) of a x-filtration and the
fact that $ is closed under .~ ; we have A, /4, € Hif and only if 4,/d,€H for all
uzv+1, because A,/4, = A,,H/A ®A4,/Ayy, and A,/A,,, is free.) Since the same
holds for B, and 4 and B are E—equivalent, we are done.

(3) = (1). We shall prove this implication using Theorem 3.2. Since » = A*
is a successor cardinal we may assume that the x-filtrations are chosen so that-
(%) for every v<xt, Ayy;/d, = A,y /4,@ZP, so that A,.,/d, = A4,/4, for every
uzv+1, and similarly for B. Let I consist of all partial isomorphisms (f, 6) —
see Definition 3.1 ~ where f: Ay — By, for some g, Tex, and for all gedomo,
AwH/A;A = Bv(qu/-Ba(ll)‘

Let us first verify 3.2(2) (and by symmetry 3.2(2')). Given (f, o) € I, where
fi Agsy— By, and given S e & let C be a cub such that En CSS n C. Let $ be
the closure of

{A;H—!/'Au[ ﬂGEn C ,LL>Q+1}

under jsomorphism and ~. By hypothesis, {u<| B,s,/B,€ $} belongs to i’s-
So let

S’ = {ueE| p>v+1 and B, /B, €9}

which also belongs to 73” By definition of S’, for every y'e S’ there is a u>g+1
such that

By (/B@OF & A,y \]A,®F
for some frec group F of rank <. But then by assumption (%),
Bui/By & By [BOF = Ayy [A,BF & Ayii/A,.

Hence (f, o w {(u, ))}) belongs to 1.
In the verification of 3. 2(1) we use the fol]owmg result of J. Erdds (see [8],
p. 196).

3.5. LemMA. If HSF, H'SF' are free groups of infinite rank such that F/H is
isomorphic to F'[H' and torsion-free and such that |H| = |H'|, then there is an
isomorphism @ F-F' such that ¢(H) = H' .

Now suppose we are given Z< A of cardinality <x. (The case of Z< B is entirely
symmetrical,) Chose o' such that Z& Ay ;. Given (f; 0) € I where f1 Ay — Beyy
let 45 <...<tt, be all the elements of the domain of ¢ which are >¢+1 and <¢'+1.
By increasing ¢’ if necessary we may assume that the rank of dpy /4, . is 4. We
must show that we can extend f to f*: Ay — Bes, for some t’ € x such that. for
i=1,..,rf(4,) = B,(u‘). First we show how to extend f1o gyt Ay, 1=Boguyy+1-
By property 1.3(v) we have:

Am+1 = AQ+I@A Ba(m)+1 = Bc+1®ﬁ


GUEST


8 P. C. Eklof and A. H. Mekler

for some 4, B. Hence

Ay = Aﬂ+1®(z g Am); By = 'Bt+]®(‘§ n Bd(m)) 4
Therefore

A(A N Ay) = Ayirfdy, = By i/Bogy = BI(B A Bygyyy) -

Hence by Lemma 3.5 there is an isomorphism ¢: A— B such that ¢(4 n 4,)
= B N B,,,;). Then define g, to be f on 4,,, and ¢ on 4. It should now be clear
that in a finite number of steps like that above we can extend ft0 g,: 4, s Bouy et
We can then easily extend g, to the desired f” since for sufficiently large t* we have

2
Agsr/Aps1 2 ZP = Boyy[Byyysy . B

If % is a weakly inaccessible cardinal and 4 and B are strongly x-free groups of
cardinality x, then for any E in D(x), A is E-equivalent to B if and only if 4 and
B have x-filtrations, 4 = {J 4,, B= ) B, such that for every ve E, 4,,/4,

v<x v<x
& B,.4/B,. In this case we say 4 is E-quotient-equivalent to B (cf. section 4),
The proof of sufficiency is like that of the implication (3)=>(1) in 3.4. As for
necessity, let {x,: v<x} enumerate the cardinals less than x in increasing order.
Filter. A = {J 4, and B= \) B, so that for all v, 4,, and B,, are x-pure,

v<sx v<x

and %, = |4,| = |B,], and
' Ayi/d, @ 7 2 A, /d,
(and similarly for B,,,/B,). For each group G, let G(4) = {x,: 4, 1/4,~G}.
Then
A Fzaasaas’ A (S'/s~G < 5| e G(4))

where the conjunction is over all groups G of cardinality <». Let C be a cub
such that for all veCn E,

BEaas' A ($/B,~G < B,eG(4)).

Hence for all ve C N E, B,y ,/B,~A,.1/A,, since |B,| = x, = |4,|. But then it is
casy to see, using the properties of the filtration, that 4, 1/4, = B,14/B,.

The following corollary should be compared with Example 2.1 (2) and
Theorem 2.2.

3.6. CorOLLARY. Let E'e D(x)

(1) If A and B are strongly x-free groups of cardinality » such that I'(A)<1-E
and F'(B)S1—E; then A is E-equivalent to B.

(2) Hence, for every ne  and every Ee D(w,.y) with E # 1, there is a non-
Jree group A such that A is E-equivalent to a Jfree group.

Proof. (1) This is an immediate consequence of 3.4(2) since {v e E|4,, |4, e & 1
is stationary in x <> & contains a free group < {v€E| B,.,/B,e A4’} is station-
ary in x.
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(2) By Theorem 1.5(7) there is a group 4 such that I'(d) = 1—£, and by
Lemma 1.4(2), 4 is not free if £ 1. & ’

The following corollary should be compared with Example 2.1(1).

3.7. CoroLLARY. Let Ee D (%)
(1) If 4 and B are strongly x-free groups with %-filtrations A = ) A, and

V<

B =) B, such that for all veE, Ay 1/Ay~B,y B, then A is E-equivalent to B,

v<x

(2) Hence, for every E e D(w,4,) and every E,, By e D(w,,,) such that EcE,
(i=1,2) there exist strongly u-free groups A and B such that I',(A) = E,,
I'(B) = E, and A is E-equivalent to B.

Proof. (1) is an immediate consequence of 3.4(2).

(2) Let H be an &,-group which is not free (see Definition 1.6). By Theorem 1.7
there exist groups 4 = U 4, and B = | B, such that I'(4) = E,, I'(B) = E,
v<x

V<%
and for every ve w,.,

~JH - ifveE,
Avesfdy = {free if v¢ By

and

~ JH  ifveE,,
Byi /B, = {free ifveE,.

By part (1), 4 and B are E-equivalent. B

The following stiould be compared with Example 2.3. Recall that a group G is
cotorsion if Ext(4, G) = 0 for all torsion-free groups A or, equivalently, if
Ext(Q, G) = 0 (see [9], § 54). ’

3.8. COROLLARY. (V = L) Let G be a countable group which is not cotorsion.
Let Ee D(w,41) such that B #1. There is no sentence Y oof LE’O,,,“ +1(aa) such that for
every torsion-free group A of cardinality w,,,, A F  if and only if Ext(4, G) = 0.

Proof by induction on new. For n=1 we construct 4” = {J 4, such
vy

that 4" is strongly e,-free of cardinality w;, I'(A?) = 1—E and for ve w, —E,
Ayqy/4y = Q. Then by Corollary 3.6(1) AV is E-equivalent to a free group but
by Theorem 2.1 of [5], Ext(4”, G) s 0. Suppose that we have constructed an
F-group A™ such that Bxt(4™, G) % 0. By Theorem 1.7 there is a group
AP = U 4, which is strongly w,,,-free of cardinality w,4, such that

V<Ot
T(A"Y) = 1—F and for ve w,q; —E, A,,/A, = A™, Then by Corollary 3.6(1),
A®*Y i Foequivalent to a free group, but by Theorem 2.1 of [5],

Ext(A®"*D, G) # 0. m
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4. Quotient-equivalent groups. We are going to characterize the pairs of strongly
x-free groups of cardinality » which are E-equivalent for every E e D(x). The fol-
lowing is the algebraic condition which turns out to be what we want.

4.1. DerINITION (cf. [6]). If A and B are strongly %-free groups of cardinality s,

we say that they are quotient-equivalent if there are x-filtrations 4 = vng v B = vgqu

such that for every v € %, A,4./4, & B,.1/B,. Equivalently, 4 and B are quoticnt-
equivalent if for any x-filtrations 4 = {J 4, and B = |J B, of the groups, there

v<x v<x
is a cub C such that for ve C, 4,4 ,/4,~ B, /B, (cf. Definition 3.3). Note that if 4 is
quotient-equivalent to B, then I'(4) = I'(B).

4.2. DEFINITION. Let & be a Boolean algebra. Let us say that a subset X of 4
separates points if for any two different elements ¢, # c¢; of # there is ¢ X su.ch
that either (I) cona=0(#)c; na=0(.e,cona=0and ¢ na# 0 or vice
versa) or (I) ¢h na = 0(#) ¢, na = 0, (where ¢’ is the complement of c).

Obviously a dense subset of & separates points. But for any non-trivial 4. therc
;u‘e non-dense subsets which separate points. Indeed, if be#—{0,1}, then
2= {aeB] anb # 0} is not dense but separates points.

4.3. THEOREM. Let A dand B be strongly x- free groups of cardinality . The follow-
ing are equivalent.

(1) A4 is quotient-equivalent to B,

(2) A is E-equivalent to B for every E in D(x);

(3) For some subset X of D(x) which separates points, A is E-equivalent to B for
every E in X.

Before proving the theorem, we present a set-theoretic result which we shall
need. We are grateful to S. Shelah for supplying us with the following proof.

4.4. LemMMa (Shelah). Let % be a regular cardinal, E a stationary subset of x
and f and g functions from E into % such that for every ve E, f(v) # g (v). Then there
is a stationary set E'< E such that

{fON veEYn{gM) veE} =0

Proof. There is a stationary set £, =E such that for all p, ve £, f(W)<nu
< f (v)<v'and g <p<g(<v (because if we write £ as the disjoint union of
4 subsets, then one of them is stationary). There is a cub C such that for every
ne Cand every v<n we have f(v)<n and g(v)<#5. By Fodor’s Theorem there is
a stationary set E,<E, such that:

@) if f(v)<v for all ve E,, then f|E, is constant; and

(i) if g(»)<v for all ve E,, then g|E, is constant.

Finally, let E’ = E, n C. We claim that if v, n e E’, then f(v) # g (). Suppose
false. Say f(v) = g (i) = o. Then certainly v # 5 since E'cE.

“Case 1. a<max{v,n}. Say 7 = max{v, n}. Then g(n) = a<n so by choice
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of £, and £,, g|E, is constant. Thus g () = g(v), but this contradicts the fact that
g # £ (). ‘
Case 2. azmax{v,n}. Say = max{y, n}, so v<y.
S <n<a, a contradiction. M
Proof of 4.3, (1) = (2) follows immediately from Theorem 3.4, 2)=(3)is
trivial. Thus it remains only to prove (3) = (1). Suppose A = |J 4, is not quotient-
. v<x

Then since ne C,

cquivalent to B = () B, i.e., E = {v>x] Ayy1/A,~ B,y /B)} is stationary in s.
v<ux

Fix a one-one correspondence between % and the ~ -equivalence classes of groups
of the form 4,.,/d, or B,.1/B,. Define functions f, g: E— x such that for all
veE, f(v) (resp. g(v)) equals the element of x corresponding to the ~ -equivalence
class of A4,.1/4, (tesp. B,., /B,). By Lemma 4.4 there is a stationary subject £’
contained in £ such that for all v, 5 € E' Avis/A,~ By, [B,. Let A be the closure
of {A,41/4,) ve E'} under =~ and ~. Let

Fo={vex| Ay, Jd,e X} and Fy={venl B,s,/B,eX}.

Then Fo # F; since Fon E' = B, F, A ' = 0. Since % separates points there
is an E*e& X such that either (1) Fon B* = 0(#)F, A E* = 0; or ma-Fy)n
NE* =0y (1-F) N E* = 0. Suppose (I) holds. Since

(veE¥ 4,,,/4,€ Ay =FognE* and {vel* Byyy/Bye A} = F A E*, |

Theorem 3.4 implies that 4 is not £*- equivalent to B, a contradiction. So‘ (II) must
hold. Let # be the complement of 4. Thus

and
- {veE¥ B,y \/B,e X} = (1~F)  E*
$0 again by Theorem 3.4 we obtain a contradiction. M

4.5. EXAMPLE. Suppose X is a subset of D(w,41) which does not separate
points, i.e., there exist Fy, F\ € D(w,,,) such that Fy # F, but for every E*e X
(I) and (II) do not hold. Let % = @y . We shall construct strongly »-free groups A4
and B of cardinality % which are not quotient-equivalent but which are E*-equiv-

* alent for every E* in 2. Let H be an &,-group which is not free, By Theorem 1.7

there are groups 4 = () 4, and B = | B, such that I'(4) = F,, ) =F, and

vy V<

for every v<u, 4,,,/4, (vesp. B,,,/B,) is either isomorphic to H or free-depending
on whether v e Fy (resp. v € F,) or not. Obviously 4 is not quotient-equivalent to B
since I'(4) % I'(B). We shall use Theorem 3.4 to prove that 4 is E*-equivalent
to Bfor every E*in Z. Fix £* € 2, Given a class o of groups closed under & and ~,
let

CAA] = {(ye E¥| Ayyyjd e X} and  B[H] = {ve EX| B,.,/B,e H'}".
If H,Ze A then A[H'] = E* = B[X'] 50 3.4(2) holds. If H'e o', but Z ¢ A" then
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A[] = Fyn E*, B[] = F; n E* so 3.4(2) holds because (I) fails. If H¢ o,
but Ze A, then A[H] = (1—-Fp)n E* and B[¥] = (1-F)) n E* so 3.4(2)
holds because (II) fails. Finally, if H¢ o and Z ¢ X then A[o] = 0 =B[X']. &

4.6. COROLLARY. XS D(w, . ) separates points if and only if whenever A and B
are strongly ®,.q-free groups of cardinality ®,,, which are E-equivalent for all
EeZ, then I'(d) = I'(B). &

We could have defined a language L, (D(%)) in which we introduce a new
quantifier aag for each E in D(%); thus a formula of L, (D(x)) may involve infi-
nitely many different quantifiers of the form aag. The semantics of aag is defined
just as before. The following result shows that we do not obtain, at least in our setting,
any additional strength by doing so.

4.7, THEOREM, Let A and B be strongly u-free groups of cardinality x. The following
are equivalent.

(1) 4 is E-equivalent to B for all Ee D(x);

(2) A and B satisfy the same sentences of Lm,,(D(x)).

Proof. (2) = (1) is trivial. Now suppose (1) holds; so by 4.3 4 and B have
»-filtrations 4 = |J 4, and B = |J B, such that for all ve x, 4,;,/4, = B,.,/B,.

v<pn v<x
There is an obvious back-and-forth criterion for L,,(D(x)); namely, we require
a set I of partial isomorphisms (f, ) —as in 3.1 — which satisfies 3.2(1) and for
every E e D(x) satisfies 3.2(2) and (2°). But inspection of the proof of Theorem 3.4
shows that we have such an I, namely the set of all partial isomorphisms (f, o)
such that o is the identity on its domain. M )

5. The construction of quotient-equivalent groups. We shall show, under the
assumption of the axiom of constructibility, the existence of many quotient-
equivalent non-isomorphic groups. Recently Shelah has shown how to construct
such groups in ZFC. However we do not know if the theorem from which we derive
our result as a corollary is provable in ZFC.

In our proof we shall make use of the terminology and methods of the solution
of the Whitehead Problem in L (see [21], or [4]).

5.1. THEOREM. (V = L) Let 4 be a x-free group of cardinality » and G a group
of cardinality < such that Ext(A, G) # 0. There are 2* different groups B, (i<2¥)
such that there is a short exact sequence
%) 0-5G3 B, 3 4-0.

Before proving the theorem let us derive two corollaries.

5.2. COROLLARY. (V = L) Let 4 be a strongly x-free group of cardinality x
which is not free. Then there aie 2° different strongly x-free groups B; (i<2*) of cardi-
nality % such that each B; is E-equivalent to A for all Be D(x).

Proof. Let 4 = | 4, be a x-filtration of 4. We apply 5.1 with G = Z. As-

v<x%

suming V = L, we have that 4 not free implies Ext(4, Z) # 0 [22]. For any short
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exact sequence (x) define a »-filtration of B, by By, = n;!(4,). Then it is clear
that B, ,, /B, & 4,,,/4,, so B, is quotient-equivalent to 4. W
. We also have the following immediate corollary (see [13], [14], [15], [19] for
various versions) which is not a theorem of ZFC. (The method of proof of 5.1 is
a generalization of the method used to prove 5.3.) '
5.3. COROLLARY. (V = L) Ifd is a x-free group of cardinality % and G a group
of cardinality <ux, then either Bxt(4, G) = 0 or |Ext(d, Q=21

Proof of 5.1. Given 4 and G as in the hypotheses, fix a %-filtration 4 = U4,

X <x
of 4 such that either Ext(d4,,,/d,, G) # 0 or Ext(4,/4,, G) = 0 for all ,u?vv+1.
If we let

E={y EXt(A'v+1/AV’ G) # 0}

then E is stationary in % (Theorem 2.1 of [5]). We can write E as a disjoint union,
E={)E, of stationary subsets of » ([24]).

i<x

We claim that there are 2* pairwise non-isomorphic pairs (8;, ¢) such that

(5.1.1)  There is a short exact sequence (x) and, moreover, such that; B, = 4 x G

as sets; m;: B — 4 is projection on 4; and ¢, is defined by e,(x) = (0, x).

(where by an isomorphism of pairs (Bi, €;) and (B, e;) we mean a group isomor-
phism ¢: B, — B;such that p o ¢, = e;). If the claim s true, then the theorem follows
since each B, can appear only » times as the first coordinate of a pair.

Suppose to the contrary that there are up to isomorphism, at most » pairs
(By, e;), i<3. We shall obtain a contradiction by constructing a pair (C, ¢) satisfying
the conditions (5.1.1) which is not isomorphic to any (B, ¢)). As a set C will be
AXG. Let 4 = {) A, be a x-filtration of 4. We shall define by induction on v a group

v<ux

structure C, on 4,x G such that
0—GS C, 5 A,—0

Is a short exact sequence (wheree: G C: vis o, J'C) and n: C— A: (a,x) > a).
To insure that (C, ¢) is not isomorphic to any (B, e;) we make use of >, (E,) for
each i<x. For pair (B, ¢;) fix a short exact sequence (x) satisfying the con-
ditions (5.1.1). Let B;, = n;"!(4,). Let {fiv: Biy— A4, % G} be a OO.(E)-sequence
(see, for example, Theorem 0.2 of [4].

The crucial case in the construction is when C, has been constructed, v € E|,
and the function f;, is an isomorphism of the pairs (By,y, €;)) and (C,, ¢). We consider
the commutative diagram

et | Be,y
0+>z538, ™% 4 L0

' | e b

0>Z>C,—> 4, 50
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whére 7 is induced by f,, ie. f(nd)) =n(f,®). Choose a splitting
@t Ayyy— Biyiy of mlB; iy, Letp=fiy o (eld,) o fi5*: A,—C,.Then p is a split-
ting of =|C,, so since Ext(4,,,/4,, G) # 0 the usual argument shows that there
is an extension
0—G—Cyyy ﬁvj’;’/ivm —0

of 0 = G — C,— 4, — 0 such that p does not extend to a splitting of 7|C, 4 (see
Yemma 1.3 of [4]). .

The other cases of the construction are routine (cf. proof of Lemma 1.4 of [4]).
Now having constructed C we must check that (C, e) is not isomorphic to any
(B, ¢;). Suppose to the contrary that for some i there is an isomorphism ¢: B, — C
such that poe; = e, Let &: A— A be the automorphism induced on A. There
is a cub S such that for ve S, ¢(B;,) = C,. By O, (E) there is a ve E; n § such
that ¢|B;, = f;,,. Thus we are in the crucial case of the construction. Choose 7>v
such that te S. Since 4,/4,,; is free, ¢ extends to a splitting ¢': 4,— B, for
ni|B;,. Let p' = (¢|B;)o¢ o (§|B; )" ": A, — C; then p’ extends p since
©|B;, = fi,, and is a splitting for n|4,. But this contradicts the construction of
Cyyy- W ‘

- By combining the methods of the above theorem and the methods of [7], we
obtain the following results which are not theorems of ZFC. (For the second part
we use [11].)

" 5.4. THEOREM. (i) (V = L) For every x which is regular and not weakly compact,
there are 2* strongly x-free indecomposable groups B; (i<2*) of cardinality x which
are pairwise quotient-equivalent and pairwise non-isomorphic.

(i) (GCH) For x = w1, (ne w) we obtain the same result as in- part (i), B
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