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Abstract. It is shown that a complete separable X € ANR is homeomorphic to an open subset

of a Hilbert space iff any map @ I"~> X is strongly approximable by maps sending {I"}nen to discrete
neN

families. Corresponding characterizations of non-separable Hilbert manifolds are also included
which imply, in particular, that any Fréchet space is homeomorphic to a Hilbert space.

This paper establishes characterizations of manifolds modelled on infinite-
dimensional Hilbert spaces, analogous to the following for Q-manifolds, proved
by the author in [37]: . '

(0) A locally compact ANR, X, is a manifold modelled on the Hilbert cube Q
iff any two maps f,g: Q — X can be arbitrarily closely approximated by maps with
disjoint images.

That result was obtained by using Edward’s theorem stating that X'x Q is
a Q-manifold, for any locally compact X' € ANR, and by using Bing’s shrinking
criterion to show that, under the assumption of (0), X = X x Q(*). The approach
of [37] was adopted by Mogilski, who proved in his Ph. D. thesis that if Xx Q
is locally homeomorphic to the Hilbert space /,, then so is X and, more generally,
that among ANR’s the CE-images of /,-manifolds are /,-manifolds. (See [28].)
However, the compactness of the Q-axis was essential for the examination of the
projection Xx Q — X in both [37] and [28] and, even though an analogue of
Edward’s theorem is known for complete ANR’s (with Q replaced by a Hilbert
space), the lack of local compactness of the Hilbert spaces makes the characteriz-
ations of Hilbert manifolds more complicated and less accessible than that of
Q-manifolds.

Here we apply a simple variation of Bing’s shrinking criterion, stated in § 1,
which is valid for non-proper maps, to examine the projection X x H — H where
X x H is a manifold modelled on a Hilbert space H of infinite dimension. In this way
we show in §2 that X = H iff any map H — X can strongly be approximated by
embeddings sending H to a Z-set in X. This preliminary characterization is improved

(1) ~ means homeomorphism.
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in § 3 where we give other necessary and sufficient conditions on X to be homeo-
morphic, or locally homeomorphic, to H. The conditions of § 3 are formulated in
terms of properties of mappings of finite dimensional metric simplicial complexes
into X. In particular, we have (N denotes the set of integers):

(i) Let X be a complete separable AR. Then X =1, iff, given a map
J: NxQ — X and a cover 9 of X by open sets, there is amapg: Nx Q — X with
{9 ({n} x Q)}nen discrete in X and {902, (0)}yenxg refining .

(i) Let X be a complete AR and let A be a discrete space of cardinality equal
to the weight of X. Then, X is homeomorphic to the Hilbert space I,(A) iff X=X x1,
and, for some metric inducing the topology of X, any map Ax Q—X is the o-uni-
Sform limit of maps sending {{a} x Q}..4 to o-discrete families.

We give the following applications of the characterizations of §3:

In § 6 we prove that two Fréchet spaces are homeomorphic iff they have the
same weight. This settles the problem of the topological classification of Fréchet
spaces, dating from Fréchet and Banach, which in the separable case was completed
by combined results of Kadec and Anderson.

In § 5 we show that the product [] X; of complete AR’s is homeomorphic to

ieN

a Hilbert space provided all the X;’s are non-compact and have the same weight.
In §4 we extend the before-mentioned result of Mogilski by showing that
Hilbert manifolds of arbitrary weight are respected by a class of maps which includes
proper CE-maps and proper retractions as well.
The author wishes to thank C. Bessaga, T. Dobrowolski and J. Mogilski for
helpful conversations during the preparation of this paper and remarks on earlier
versions of it.

Notation. By I we denote the segment [0, 1], by I* the k-cube and by Q the
Hilbert cube I”. The set of integers is denoted by N and the real line by R. We wrlte
px for the projection Xx Y — X.

Embeddings are assumed to be closed and homeomorphisms surjective. If X is '

an abstract simplicial complex then K™ denotes its n-skeleton and |K] its geometric
realization equipped with the metric topology induced by the Hilbert space in
which |K]| is naturally embedded, see [10], [22]. Given families &7, & of sets in
a space Y we write o/ <% if of refines # and, if f; X — Yandg: Y —>2Z areisome

maps, we let f7!(f) = {f (A} sew and g(#) = {g(A)} sew. All the undefined
notions have the meaning of [10] or [18].

§ 1. Certain properties of function spaces. C(Y, Z) denotes the set of all maps
(i.e. continuous functions) from ¥ to Z and cov(Z) the family of open coverings
of Z. If ¢ is a bounded metric for Z we denote by p the sup-ﬁetric on C(Y,Z)
induced by . We write, for ¥ € cov(Z), ae C(Z, (0, ®)) and fe C(Y, Z),

B(f,7)={geC(Y,2Z): {f(3),9(»)}<¥ for each ye Y}, ..
By(f, @) = {ge C(Y,Z): o(f(»),9(»)<af(p) for all ye Y}.
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Maps in B(f, ¥") are said to be ¥ -close to f. We topologize C(Y,Z) by the limi-
tation topology t in which each fe C(Y, Z) has {B(f, ¥"): ¥ € cov(Z)} as basis
of neighbourhoods. If Z is metrizable then t coincides with the topology of uniform
convergence with respect to all metrics for Z; if ¢ is a fixed metric for Z then the sets
B(f, ), e C(Z, (0, o0)), form a basis of (closed) 7-neighbourhoods of f.

If not stated otherwise, spaces X, Y, Z are assumed to be metrizable and all
function spaces are considered in the limitation topology. C(Y, Z) is in general not
metrizable. We shall use the following properties of C(Y,Z):

1.1. LemMma (see [37], [33]). Let Z be complete-metrizable, F a subspace of
C(Y,Z) and U,, ne N, open subsets of C(Y,Z). If U, n F is dense in F for each n
then maps in F are approximable by elements (i.e. are in the closure) of (\ U, N F,,
where F, denotes the - closure of F and ¢ is any metric for Z. In particular, countable
intersections of dense Gs-sets in C(Y,Z) are dense in C(Y,Z).

1.2. LEMMA. If o is a family of subsets of Y then {fe C(Y, Z): f () is locally
finite in Z} and { fe C(Y,Z): f () is discrete in Z}; are open subsets of C(Y, Z).

1.3. LemMA. If Ze ANR and A is a closed subset of Y then the restriction
f - f|A is an open map from C(Y,Z) to C(4,Z).

The proofs of 1.2 and of 1.3 are omitted ([37], § 1, contains a proof of 1.3 for
the case where Y is compact).

Given % ecov(Y), a map f: Y— Z is said to be a #-map if there exist
¥ e cov(Z) with f~1(¥)<%.

1.4. LEMMA. (a) For each % € cov(Y) the set of all U-maps f: Y — Z is open
in C(Y,2).

(b) Let ¢ be a complete metric for Y and U, € cov(Y) be such that diam,U<1/n
forUeU,andne N. Then, f: Y — Z is an embedding iff it is a U,-map for all n € N.
In particular, the set of embeddings Y — Z is a Gsset in C(Y,2Z).

() If flA: A—Z is a U-map, where fe C(Y,Z) and A is closed in Y, then
there is a neighbourhood P of A in Y such that f|P is a % -map.

Proof of (c). Choose a locally finite ¥ € cov(Z) with f~1(Vy) n A<% for
all ¥Vye ¥, and let ¥ e cov(Z) be a star-refinement of ¥°4. Using the paracom-
pactness of Y construct a # e cov(Y) such that st(f~'(Vo) n A, #)<% for all
Vo€ ¥ o We put P = st(4,#). Given Ve ¥ . If xef '(V) n P then {x, a}<#
for some ae A. We have {f(x), f(@)}<¥" and f(x) € ¥V whence f(a) e st(V, ¥).
Take V, € ¥, containing st(¥, ¥); then aef !(V,) n A and

xest(fTU V) nA,#)=L

Hence (V) n PcL,<%, for all Ve v .

The proof of (a) is omitted. To see (b) notice that (y,) is ¢-Cauchy whenever
(f(»y) converges and f is a %,-map for all n.

Below, 1.1 and 1.4are used to characterize maps of complete metric spaces which
are approximable by homeomorphisms. A map n: Y — Z is said to be a near-
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homeomorphism if, given ¥~ € cov(Z), there is a homeomorphism f: Y— Z ¥ -close
to n. The set of all near-homeomorphisms Y — Y will be denoted by NH(Y).
1.5. THEOREM (Bing’s shrinking criterion). Let Y and Z be complete-metrizable

spaces. A map n: Y—Z is a near-homeomorphism iff n(Y) is dense in Z and the follow-
ing condition is satisfied:

(bi) given U ecov(Y) and ¥ €cov(Z) there are "Ilfecov(Z)- and fe NH(Y)
with nfe B(n, ¥") and fn~1(W)<%.

Proof. Let %,ecov(Y), ne N, be such that mesh(%,) — 0 with respect to
some metric of Y, and let U, be the set of all %,-maps ¥ — Z. We fix a metric g
for Z and write F = {nh: hisa homeomorphism of Y}. Given nh € Fand % € cov(Y)
there are, by (bi), #" € cov(Z) and a homeomorphism f of ¥ with fn~{(#")<h(%)
and 7/ ™! as close to m as we wish. Then nf ~* hisa % -map in F which closely approxi-
mates nh. By 1.4 and 1.1 it thus follows that the set of embeddings ¥ — Z belonging
to F, contains F, hence =, in its closure. As any map in F, is a uniform limit of maps
whose images are dense in Y, the maps in F, have dense images and embeddings
in F, are homeomorphisms. This completes the proof.

1.6. Remark. If = is a closed map then condition (bi) is equivalent to the
tollowing more familiar

(bi)’ given % e cov(Y) and ¥ € cov(Z) there is an fe NH(Y) with nfe B(n, ¥’)
and {f"—l(z)}zez<%-

Proof. If { fn™'(2)}.c,<% then {n~'(2)}.ez<f~N(%), whence n~ 1 (#)<f ™ 1(%)
for w = {Z~\n(Y\U): Uef (%)} ecov(Z). Thus (bi)'&: (bi), provided = is
closed.)

Condition (bi)’ is the one which Bing showed in [11] to characterize near-

“homeomorphisms between compacta. Later, Bing characterization has been extended
in [26] and [17], [25] to show that (bi)’ distinguishes near-homeomorphisms among
proper surjections of locally compact metric spaces and of complete metric spaces,
respectively. (Actually, in all these papers a parametric version of (bi)’ was considered
to give a necessary and sufficient condition on # to be conjugate to the 1-level of
a small pseudo-isotopy of X.)

§ 2. Characterizing Hilbert manifolds I. We recall that a closed set X is said to be
a Z-set in X, written K € Z (X)), iff the set { fe C(Q, X): f(Q) n K = @} is dense
in C(Q, X). Embeddings whose images are Z-sets are called Z-embeddings. In
this section we prove.

2.1. PROPOSITION. A complete connected ANR, X, is a manifold modelled on

the infinite-dimensional Hilbert space H of the same weight as X iff the following
condition is satisfied

(*)  for any complete-metrizable space Y with wY<wX the setuéf Z-embeddings
Y — X is dense in C(Y, X). ‘
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Proof. Assume that X is a manifold modelled on H and fix Yand u e C(Y, X).
If w: Xx Hx H— X is any homeomorphism and v: Y — H is any embedding then
w(uxvx0) is a Z-embedding of Y into X; therefore the necessity of (x) follows
from the fact that py: Xx Hx H— X is a near-homeomorphism (5], [29]) and Y
embedds into H ([10], p. 193).

The proof of the sufficiency part involves the main idea of Edwards (see [13])
and author’s [34] result on products of ANR’s and Hilbert spaces.

Given a closed subset K of a space Y let (Yx H)g denote (YNK)x H U K,
equipped with the topology generated by open subsets of (YNK)x H and by sets
Un Ku (UNK)x H, where U is open in Y. Define (Hx Y)g similarly. By mg:
Y x H— (Y x H)g we denote the map which is the identity on (¥Y\K)x H and py
on Kx H.

2.2. LeMMA. If K€ Z (X) then ny: X x H— (X % H) is a near-homeomorphism;
moreover K e Z((X x H)y).

Proof. A homeomorphism g: Xx H — (X x H); with g(x,0) = x for xe K
is defined in the proof of Proposition 5.1 of [36]; using the formulas there it is easy
to see that g may be taken to approximate mx as close as we wish. Since
Kx{0}e Z(XxH) we have K = g(Kx {0} € Z((X x H)).

Let J denote [0, co] and C = (H xJ);q;, the metric cone over H.

2.3. LEMMA. Given ¥ o€ cov(X) there are K= KcX and ge NH(XxC)
such that

(iii) pxg e B(px, V), 9(KxC) = Xx Hx {0} and

(iv)  the sets g(Px C), where P is open in X, form a basis of neighbeurhoods of
points of Xx Hx {0} in XxC.

Proof. Let # € cov(X) satisfy st’(W)<7¥"y; since X € ANR there is by (%)
a Z-embedding u: X'x Hx {00} SX W -homotopic to py. With K = im(u) there
is by 2.2 a homeomorphism f: Xx C — (X x C) such that py f is # -homotopic
to py; then f ™1 e NH(Xx C) and f~1(K) e Z (X% C). Since Xx C is a Hilbert
manifold [34], by the unknotting theorem for Z-sets there is a homeomorphism h
of Xx C with pyh st3(#")-close to py and

B XxHx {00} = f~'u: Xx Hx{oo} —f~(K)

(see [4], [12], [33]). We let g = A1 ' ny.

Proof of 2.1. We shall apply 1.5 to show that X x C — X is a near-homeomor-
phism. This will conclude the proof since Xx C =~ Xx HxJ by 2.2 and Xx HxJ
is an H-manifold by [34].

Given ¥ € cov(X) and % € cov(X x C). Take a: X — (0, 00) and ¥, € cov(X)
such that st(¥"()<¥" and

(i) {(x,h,)e Xx(HxJ)y,: t<a(x), xe V} refines ¥, for each Ve ¥,
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Then, take %, e cov(Xx H) and y: H— (0, o) such that

Gi) {(x,h,t)e Xx Hx(0, o0): (x, h) e Uand t—a(x, h) € [iy(x, b, (+3)y(x, h)}}
refines %, for each Ue%, and ie N.

(Construction. By compactness of [0, co] there is a locally finite %, € cov(X x H)
and positive reals dy, U € %,, such that infa| U>0 and Ux [t, t+8y]<% for each
Ue, and t=infa| U. By the well known theorem on separation of semicontinuous
functions by continuous ones ([18], p. 236) there is a y: X x H—(0, c0) whose graph
misses the closed subset |J {Ux[dy, o0]: Ue%y} of Xx HxJ.)

Let g e NH(X x C) satisfy (iii) and (iv). Then, there are an open neighbour-
hood P; of K in X and 2 e cov(P,) such that

V) Pyxuyg(PxHxJ)<%U, for Pe 2.

Let By: XxH—(0,0) be a map with S; = {(x,h,t): t=8,(x, h)}
cg(Pyx HxJ). Using (i), (ii) and the separation theorem again we get an open
neighbourhood P, of K in X and a map f,: XxH— (0, ), B,>28,, with
cl(P)cPy, gP,xHxJ)=S; and S, = {(x,h,t): t=B,(x, H)}cg (P, x HxJ).
Inductively, we construct maps f#;: Xx H— (0, c0) and open neighbourhoods P,
of K in X such that cl(P)<P;_,, B;=>2B;_, and

) Gk, 1) 12 By (x, ) cg(Pyx Hx )= {(x, by 1): 12 Bi(x, B)} for
i=1,2;:

Let u be a homeomorphism of X x (H xJ)o, preserving the sets {x} x {h} xJ and
carrying the graph of B; onto that of a+(i—1)y, for each ie N. We put f = ug;
then py fe B(px, st(¥")) and it remains to show that, given x € X, there is a neigh-
bourhood G of X such that f(Gx C)<%. We consider 3 cases

1° x ¢ Py. Take V € ¥, containing x and put G = V\clP,. Then p,f(Gx C)<¥"
and f(G)c{(x,h,t)e Xx(HxJ),: t<a(x,h)}. Hence f(GxC)<%, by (i).

2° Forsome i, xe P\P,, ,. Take P € # containing x and put G = P n P\clP,, ,.
Then pyxpf(Gx C)<%, and '

F(GxCy={(x, h, 1): t—a(x, h) € [iy(x, h), (+3)y(x, A1},
by (v) and (vi). Hence f(G x C)<%, by (i).
3° x € K. The existence of the required neighbourhood G of x follows from (iii).
§ 3. Characterizing Hilbert manifolds II. Thréughout this section we assume

that X is a connected complete-metrizable ANR and A is a discrete space of cardi-
nality wX. Our purpose is to establish the following characterizations:

3.1. THEOREM. X is a Hilbert manifold iff the following two conditions are satisfied:

(*1)  for each ne N the set of maps AxI"— X sending {{a} x I"},c4 to a discrete
Jamily in X is dense in C(AxI", X);
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(*2)  for any sequence (K,) of finite-dimensional simplicial complexes having not
. more than wX vertices the set

M) {feC( @ IK|, X): {f (K} nen is locally finite in X}
is dense in C( @ |K,|, X). '
. ueN

3.2. COROLLARY. X is an l,-manifold iff it is separable and
{feC(@® I", X): {fU}yen is discrete in X}
. neN
is dense in C( @ I", X).

neN

3.3. COROLLARY. X is a Hilbert manifold iff X x 1, = X and there are metrics g,
of X such that, for all ne N, the set

{feCAxI", X): {f({a}xI")}4es is o-discrete in X}
is g,~dense in C(AxI", X).

The necessity of all of the conditions mentioned follows from 2.1.

The proofs of the sufficiency parts involve the following properties of metric
simplicial complexes (they are presumably known but the author could not find them
in the literature): -

3.4. LeMMA. Let' Y€ ANR and % e cov(Y). Then, there is a locally finite-
dimensional simplicial complex K with not more than wY vertices and maps v: Y — |K|,
w: |K| — Y such that wo e B(idy, %) and, writing U, for the cover of |K| by open
stars of the vertices of K, we have v™1(%U,)<%. Moreover, K may be taken to be finite-
dimensional if Y is, and locally finite if Y is separable.

Proof. Assume first that Y is an open subset of a normed space (E, || |)).
Passing to a refinement we may assume that # consists of convex subsets of E.
Let #” be.a star-refinement of % such that the nerve K of # is locally finite-dimen-
sional; the existence of % follows from a result of Dowker [16], p. 209. If Y is

separable (finite-dimensional) then % may be taken star-finite (of finite order).
Define v: Y — |K| and w: |K| — E by

v(x) = (Aw(®))wew and w((tw)) =WZWIWXW .

where (4y) 1s a locally finite partition of unity on Y with A;{ YN\W) = {0} for all
WeW, and {xyp: We#} is a system of points of Y with xz € W, for all We #".
It is easy to see that w(|K|)c X and v and w satisfy the required conditions.

The general case now follows by considering Y as a retract of an open subsct
of a normed linear space (see' [10], p. 68).

3.5. LeMMA. Let K be an n-dimensional simplicial complex, n< o, and let P be
an open neighbourhood of |K"~| in |K|. Then, the convex hulls C, of |6|\P, o € K,
form a discrete family in |K|. :
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Proof. Otherwise, there is an x e C\C, where C = |J {C,: 6 € K™}. Then,
xelt for some 7e K" V. By simple Hilbert-space geometry, dist(|a|\P, |z])
= dist(C,, |7]) for all g € st(z, K). Since |t|=P, we get dist(C N [st(z, K)|, |1])>0,
contrary to the fact that xe C n |1].

The reduction of 3.1 to 2.1 is divided into three lemmas:

3.6. LEMMA. Assume that X satisfies (x1) and, in addition, Xx Q = X. If K is
a finite-dimensional simplicial complex with <wX vertices and % is the cover of |K| by
open stars of the vertices of K, then the set of U -maps |K|— X is dense in C(|K|, X).

Proof. IfdimK = 0 then the assertion follows from (¥1). Suppose that dimK = n
and the lemma is proved for complexes of dimension n—1; we shall show that,
given f: |K| — X and a neighbourhood G of fin C(|K|, X), thereisa % -map g € G.

By 1.3 and the inductive assumption we may assume that f is a #-map on
|K”~1V)|. Let P be a neighbourhood of |[K®~| in |K| with f|P a %-map, and let
¥ e cov(X) be such that

2) ifg: |K|— X is st(¥)-close to f then ge G and g|P is a %-map.

By 3.5 there is a cover {C,: o € K"} of |K|\P, discrete in |K|, such that C, = I"
and C,cint|o| for each o € K™. By (x1) and 1.2 there is a map go: |K| — X sending
{C,: o€ K™} to a discrete family and ¥ -close to f. Let {D,: o € K™} be a discrete
family of open subsets of |K| such that C,c D,cint|s] for e K™. Take
A: |K| — [0, 1] with A(y) = 1 if y is in one of the C,’s and A(y) = 0 if y is in none
of the D,’s, and define g: |[K| — Xx[0, 1] by g(») = (go(»), 4(»)) for ye|K|.
Then, g is a % -map: if # € cov(X) is such that, for each We ¥, go "(W) n P<%
and W intersects at most one member of {go(D,): o€ K™}, then g~ (Wx [s, t])<%
for all We# and s,t€[0, 1] with |s—t]<I.

Since X = X x Q there is a homeomorphism /i: Xx[0,1]—X ¥ -close to py
(see [4], [29]). We let g = hg.

3.7. LeMMA. Let K be a simplicial complex with <wX vertices and % the cover
of |K| by the sturs of the vertices of K. If X satisfies (1) then there is a dense G4-set F in
C(IK|, Xx Q) such that {g~*(x)}xex<¥ for all g€ {pxf: feF}.

Proof. Given integers m, n, consider for each o € K™\K"~ 1 the image of |o]
under the (1—1/n)-homothery with respect to the barycenter of |o|, and denote

by &, the discrete family of so obtained subsets of |K|. By (1) and the com-
pactness of Q, the sets

Fon={feC(K|, XxQ): pxf (L, is discrete in X}

are open and dense in C(|K|, Xx Q). We let F =\ F,,

3.8. LEMMA. Assume X satisfies (x1) and (#2) and, in addition, X = Xx Q.
Then, for any complete metrizable space Y with wY<wX, the set of all embeddings
Y— X is a dense G5 in C(Y, X).
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Proof. By 1.1 and 1.4 it suffices to show that

(3) given Z ecov(Y), ¥ ecov(X) and f: Y — X, thereis a #-mapg: Y — X
¥ -close to f.

Since X € ANR there is an extension f: ¥— X of fsuch that Ye ANR. By 3.4
there are a locally finite-dimensional simplicial complex K and maps v: Y- K],
w: |K| — Ywith fwv as close to fas we wish and v~ (%) <%, where %, is the cover
of |K| by open stars of the vertices of K. Then, gyv is a %-map for any %,-map
do: |K| — X; this observation reduces the proof of (3) to the case where

(4) Y = |K]|, for some 1.f.d. simplicial complex K, and % is the cover of |K| by
open stars of its vertices.

Let @ = Wy W, c... be open finite-dimensional subsets of | K| which cover |K]|;
without loss of generality we assume that W,c W, , for all i (if not, replace W; by
{y €|K|: maxi,(y)>1/i}, where 4,: |K| — [0, 1] satisfy 4, '(0) = |K|\W,, ne N).

<

The family {W,;,;\W,;}i»0 is discrete in |K|; let S, be the union of its members.
There is a discrete family {D,};>, of open finite-dimensional subsets of |K| such
that W,;,,\W,,c D, for all i. Then D;e ANR for all i (see [22]) whence, by 3.4,
(*2) and 1.3, there is a map h: |K| — X with he B(f, ) and {h(W,;+,\\W,)}is0
locally finite in X. By 3.7 we may require in addition that the sets h(W,;4 \W5))
are pair-wise disjoint and hence form a discrete collection. There are %-maps
h,: |IK™| — X with h, € B(h||K™|, ¥",)for all n>0, where ¥7, is such that any map
in B(h|Sy, ¥"1) sends (W4 (\W,))i>0 to a discrete family and extends to a map
|K] = X ¥ -close to f (see 3.6, 1.2 and 1.3). With n(i) = dimW,;,, for i>0, we
extend the map S, — X given by

xb hyp(x) for  xe Wy \Wy; and i20

to a map g,: |K| = X ¥ -close to g. Clearly, golS, is a #-map
Similarly, we construct g,: |K| — X which is a #-map on §; = | W,2\W,;_,

iz1
and is so close to g, that g, € B(g, ¥") and g,|S, is a % -map. Let P be a neighbour-
hood of S, with g,|P a %-map, and let A: |K|— I satisfy A~'(1)<|K[\P and
A71(0)>S,. Define §: |K| — XxI by §(») = (9:(»), A(»)); then g is a %-map
on Sy U S; = |K| (Proof omitted). We let g = wg where w: X'xI— X is a homeo-
morphism sufficiently close to py.

Proof of 3.1. Let K be a simplicial complex with <wX vertices and % the cover
of |K| by the stars of the vertices of K. By 3.7, 3.8 and 1.1, there is a dense G,-sct
F, in C(|K|, Xx Q) consisting of embeddings and such that {971} xex<%
for g € {px f: f€ Fy}. The maps py f, f€ F,, being closed it follows that they are
% -maps (cf. Remark 1.6); hence the -maps are dense in C(|K|, X). As in the
proof of 3.8, this implies that the embeddings are dense in C(S, X), for any
complete metric space S of weight <wX.
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Applying this with S = Y@ Ax Q we infer that, for any complete metric
space Y with wY<wX, the sets

F,={fe C(Y, X): f is an embedding and there is an 1/n-net
{9ataen in C(Q, X) with {f(¥)} U {g(Q)}aca discrete in X}

are dense in C(Y,%). Since the F,’s are of type Gj it follows that () F, is a dense
subset of C(Y, X) consisting of Z-embeddings. By 2.1, X is a Hilbert manifold.

Proof of 3.2. If X is separable thenthe complex occurring in the proof of 3.8
may be taken to be star-finite and the sets W, in that proof to be compact polyhedra.
Therefore in order that X be an /,-manifold it suffices that the set (1) be dense in
C( GD |K,|, X), for any sequence (K,) of finite complexes. Considering @ |K,| as

neN

a subset of @I a map g: @ |K,|— X extends to a map @ I"— X pro-

neN neN neN
vided each g(|K,|) is contractible in X. Therefore, under condition of 3.2, it follows

from the local contractibility of X that each x € X has an /,-manifold neighbourhood.
The proof-of 3.3 involves the following

LEMMA. Let Y,, a € A, be metrizable spaces and let f: @ Y,— X be a map
acA

such that { £ (Y,)}eea is o-discrete in X. If Xx 1, =~ X then f is approximable by maps

g: @ Y,— X with {g(Y,)}seu discrete in X.
acA

Proof. Let {4,},.v be a decomposition 'of A such that {f (Y,,)},,EA" is discrete
in X, for all n. We let g = vu, where v: Xx(0, 0) — X is a homeomorphism close
to px (see [4], [29]) and

u(y) = (f(»),n)e Xx(0,0) for neN and ye{{Y,: acd,}.

Proof of 3.3. It follows from the lemma that X satisfies (*2) and that to
verify (x1) it suffices to check if, given f: AxI"— X and a: X — (0, ), there
is a g€ B, (f,20) with {g({a} x I")}s,es o-discrete in X.

To this end let

A; = {ae A: inf a(a, q)e[l/i;1/i—1)}, ieN.
qel™

By ass.. _.on, there are g,: 4,xI"— X, ie N, with g,(g,,f|4;xI")<1fi
and {g,({a} xI")},esa o-discrete in X. We let g(a,q) = gfa,q) for ie N and
(@, q9)ed;xI".

§ 4. Spaces finely dominated by Hilbert manifolds. We say that p: M — X is
a % -domination, where % € cov(X), if p is proper and there is a map ¢: X — M
with pg % -homotopic to idy.

4.1. THEOREM. Let X be a complete ANR. If, for every % ecov(X), X is
U - dominated by a Hilbert manifold then X is a Hilbert manifold itself.
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4.2. Remark. Let p: M — X be a proper map of ANR’s. If p is either a re-
traction or a CE-map then it is a % -domination for each % e cov(X). (The latter
case follows from infinite-dimensional versions of Lacher’s theorem, see [23] and [33].)

Proof of 4.1. We check that X satisfies (¥1). Given f: A x I"— X and % ecov(X).
Let p: M— X and q: X — M, where M is a Hilbert manifold, be as in the de-
finition of a % -domination. If f;: AxI" — M is a sufficiently close approximation
to gf with { fo(ax I")},4 discrete in M, then g =pf, %-approximates f; moreover
{g(@x I")}4ea consists of compacta and is locally finite (we use the properness of p).
Therefore the relation

a~b iff there are a,,...,a,€ A with a = a,, a, = b and
gl@a;xI"yng(a;xI") # @ for i<n

decomposes A4 into countable sets 4;, A€ A, such that {g(4;x ")}, is discrete
in X. Moreover, it follows from assumptions that

{heCU"x{1,2}, X): h(I"x1) n h(I"x2) = D}

is dense in C(I"x{l,2}, X); therefore one can apply Baire property of
C(A;xI", X) to get %-approximations h;: A;xI" to g|4,xI" such that still
h = @ h; bas {h(A;x I")};eq discrete and {h(axI")},4, locally finite for each 4,

Aed
but in addition each {h(ax I")},.4, consists of disjoint sets. Then, & st(%)-approxi-
mates f and sends {axI"},., to a discrete family.

The verification of (*2) is trivial.

§ 5. Infinite products which are Hilbert spaces.

5.1. THEOREM. Let X, X,, ... be complete AR’s. In any of the following cases
X =[] X; is homeomorphic to a Hilbert space:
i

(@) wX = 8, and infinitely many of the X;s are non-compact,
(b) wX>x, and sup wX,; = wX, for each ne N.

Remark. Let Y be a complete non-compact AR. By 5.2, the product Y®
homeomorphic to a Hilbert space; in particular this is true for ¥ = J(M), the
M-hedgehog (see [18], pp. 172, 197), as was conjectured by de Groot. That
J(%,)® = I, has already been shown by Curtis and Vo-Thanh-Liem in a recent
paper [14] which covers also some other special cases of 5.2.

In notation of 5.1 equip X with the metric o((x;), (¥;)) = max g(x;, y;), Where g,

ieN

is a metric for X; with ;<27 for each ie N.

LemMMA. Let H be the Hilbert space of weight wX. If all the X;'s contain closed
subsets homeomorphic to H, then X = H.

Proof. By 3.1 and [20] it suffices to show that, given a complete metric space Y
with wY<wX and maps f: Y — X, a: X — (0, 1), there is an embeddmg g: Y- X
with g € B(f, a).
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By assumption, for each i € N there is an embedding ¢;: ¥ — X;. Since X; € AR
there are maps ¢;: X;x X;x[0, ) — X;, ie N, such that ¢,(x;, x,,t) = x, for
t<1 and c¢(x,, x,,t) = x, for t>2. We define g by the formulas

ig(») = cpif (), 0d»), 2af (»)) for yevY,

where p;: X — X; denotes the natural projection. Given ye Y, if af(p)
e[27""1,27"] then 2af(y)<! for i<n, whence p,f(y) = p;g(p) for i<n and

o(£(3),9()<27" 1 <af (3) -
Moreover, if (g(»,)) converges for a given sequence (y,) then write x = limg(y,)

and consider ¢ = infaf(y,). If ¢ = 0 then (f(yi(,,,)) converges to x for any sub-
neN

sequence (Vi) of (»,) with limaf () = 0; this however yields a(x) = 0 which is
impossible. Thus ¢>0 and for n so large that 2"e>2 we get p,g(»;) = ¢,(»;) for
all i. Since ¢, is an embedding (»,) converges and g is an embedding.

Proof of 5.1. Let A be a discrete space of cardinality wX. Using the lemma
and considering products of infinitely many of the X;’s instead of the X’s themselves,
we reduce the problem to demonstrating that X contains closed subsets homeomor-
phic to 1,(A4). In case (a) simply observe that each X;x X;,, contains a closed copy
of [0, o) (cf. [14]) and separable complete metric spaces embed into [0, 00)™ by
means of a sequence of partitions of unity. In case (b) assume without loss of gener-
ality wX = limwX,, and write X = J] X, By the preceeding argument X x/, is

homeomorphic to a closed subset of X and by 3.3 it remains to show that, given

neNand f: AxQ— X, therc is a g: Ax Q — X with {g({a} x Q)}ses o-discrete

in X and 0(g,/)<2™". Put Y =[] X,; and Z = [] X,;; then wZ = wX. Pick
i<n i>n

a point from each member of a -discrete basis in Z to get a set {z(a): a€ A} o-dis-

crete in Z and define g: AxQ —X by pyg = pyf and pyg({a} x Q) = {z(a)}

for ae A to complete the proof.

§ 6. The topological classification of Fréchet spaces. By a Fréchet space we mean
any locally convex complete-metrizable topological vector space. The purpose of
this section is to prove the following

6.1. THEOREM. Any Fréchet space, X, is homeomorphic to a Hilbert space.

The separable version of 6.1, to which we shall refer as to the Kadec-Anderson
theorem, was obtained by combined efforts of Kadec [24], Anderson [2] and Bessaga
and Pelczynski [8]. Shorter proofs of the results of Kadec and Anderson were
given in [3], [9] and [10].

For non-separable spaces many special cases of 6.1 have been established,
including results of Bessaga [6], Troyanski [32], Gutman [19], Terry-Torunczyk
([31] and [35]) stating, respectively, that Banach spaces which are either reflexive
or are of the form ¢y(A) or are weakly compactly generated are homeomorphic to
a Hilbert space, as is any Fréchet space homeomorphic to its own countable product.
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Other results on this subjecf proved till 1975 were contained in [7] and in [10],
Chapter VII.

In the proof of 6.1 we use Kadec-Anderson theorem and results 6.2 and 6.3
below:

6.2. PROPOSITION. Let X be a complete connected ANR such that X x1, =~ X
If K e Z(X) for any closed subset K of X with wK<wX, then X is a Hilbert manifold.

Proof. Equip X with a metric ¢ and let 4 be a discrete space of cardinality wX.

By 3.3 it suffices to show that, given ¢>0 and f: 4xQ — X, there is
ag: AxQ — X with o(g,f)<e and {g({a} x Q}4. o-discrete in X.

Let < be a well-ordering of 4 with card{a' € A: d'<a}<wX, for all ae A.
We construct g|{a} x Q by induction on a so that '

8(a) = i,n<f9(g({a} x 0),9({a’} x 2))>0,

for all ae A. Let g|{ay} x O = f|{a,} x Q for the minimal element a, of (4, <)
and, if g|{a’: a'<a} x Q has been defined for a certain a>a,, write K for the closure
of g({a’: a’<a}x Q). Clearly wK<§,card{a’: a'’<a}<wX whence Ke Z(X).
To complete the induction let g|{a} x Q be an ¢-approximation of f|{a} x Q whose
image misses K.
Write A4, = {ae A: §(a)>1/k} for keN. Evidently, (J4;,=4 and
{g({a} x Q)}gea, is discrete in X for all k € N; thus g has the desired properties.
" 6.3. LEMMA. Let U be a connected open subset of a non-separable metrizable
topological group X. Then, K € & (U) whenever K is a closed set in U with wK<wU;
in particular, X x 1, is a Hilbert manifold provided X is a complete ANR.

Proof. We may assume that 1, e U. It follows from the homogeneity of X
that ¥ <wU for no open subset V of U (see [30], p. 497). Therefore, given f: Q — U,
there is a sequence (a,) of points of 4 = U\{xy~': xe K, yef(Q)} converging
to 15. We write g,(q) = a,f(q) for ne N and ge Q; then g,(Q)c U for large n’s
and ¢,(Q) N K = @ for all n’s, showing that K € Z(U). Hence if X € ANR then 6.2
applies to any component of X x/,.

Proof of 6.1. Let X be an infinite-dimensional Fréchet space. Then X e AR
by Dugundji theorem (see [15], p. 188) and, if X, is any closed separable linear sub-
space of X of infinite dimension, then X, & /, by Kadec-Anderson theorem.
A theorem of Bartle and Graves hence gives X =~ X, x/,, for some X, (see [10],
p. 86). Thus X =~ X, x/,xl, = XxI, and the result follows from 6.3 and Hender-
son’s [20] theorem that Hilbert spaces are the only contractible Hilbert manifolds.

In connection with the subject of this section let us ask the following (cf. [10])

QuUESTION. Let X be a complete-metrizable topological group. If X e ANR,
is X locally homeomorphic to a Hilbert space, of finite or infinite dimension?

Appendix to § 6. A proof of Kadec-Anderson theorem. For the sake of
completeness let us apply 3.2 to give a short argument for the Kadec-Anderson
6 — Fundamenta Mathematicae CXI. 3
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theorem which was used in the proof of 6.1 and states that X’ = /, for any separable
infinite-dimensional Fréchet space X. We consider 3 cases:

» 1° X is a Banach space. Let ¢ be the metric induced by the norm || || of X.
By 3.2 and Dugundji theorem it suffices to show that, given a: X — (0, o) and

fi @ I"— X, there is a g € B(f, ) with {g(I")},ey discrete in X.
neN
We construct g|/” by induction on n.

Assume that, for a certain n>1, g has been defined on @ I* so that each
k<n

g(I*), k<n, is contained in a finite-dimensional linear subspace of X and

G NgMN=FMIN<K2 (y) and |lg(M)—g(yII=1af (») for all y,p; such that
yoel*, yel' and k<I<n.

Let h: I"— X be a piece-wise linear map with ||h(v)—f(y)||<<}zinlf af (2)
E"

for y e I", and let E be the linear span of g(IY) U ... U g(I"~ 1) U h(I"); by construc-
tion, dim(E) < 0. Take a vector x € X of norm <3 which is at distance 1 from F
and write g(») = h(y)+af (¥):-x for y e I" to complete the inductive step.

We claim that the map g: @ I"— X which satisfies (5), for all n carries

neN #
{I"},en to a discrete family in X. In fact, otherwise there exist integers k; <k, <...
and points y; e I such that (g(»,)) converges. By (5), limaf (y;) = 0 and (f(»))
converges; hence a(lim f(»;)) = 0 which is impossible.

2° X = R®. This case is covered by 5.2(}).

3% The general case. We follow an argument of [8]. By a theorem of Eidelheit
‘either X is a Banach space, and then X = I, by 1°, or there is a closed linear sub-
space X, of X with X/X, = R®; see [10], p. 184. By 2° and the Bartle-Graves
theorem we then have X = /,x X,, whence X = /, by [8] or [34].
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