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Cell-like decompositions arising from mismatched
sewings: applications to 4-manifolds

by

J. W. Cannon (Madison, Wis.) and R. J. Daverman * (Knoxville, Ten.)

Abstract, The Mismatch Theorem for sewings of crumpled r-cubes as proved by Eaton for
n = 3 and Daverman for n>4 can be extended to a larger related class of decompositions and can
be reformulated so as to depend only upon a certain 1-ULC Taming Hypothesis that is always true
for n # 4 and often (possibly always) true for n = 4. Such a reformulation, with applications to
sewings of collarable objects in E" and to cell-like decompositions of 4-manifolds, is the purpose
of this paper. Thereby we extend some results of Daverman about sewings of crumpled n-cubes
to the case n = 4 and answer some questions raised by Cannon about spun decompositions.

0. Prerequisites. The Mismatch Theorem and its applications developed by
Eaton [16] and Daverman [13] provide much of the motivation for this paper. Their
results set forth a homotopy-theoretic shrinking criterion for decompositions of S*
(n # 4) having as nondegenerate elements the arc fibers of a topologically embedded
copy of S"~ 1 x I. A new level of generality is introduced by the Mismatch Theorem
developed here, which applies to decompositions of S" (n # 4) having as non-
degenerate elements the arc fibers of a topologically embedded compact space X x 7,
where Xx E! is an n-manifold (implying that Xx(0,1) is open in S"), and
which also applies to certain decompositions of S* of the same type.

While not hesitating to deal with non-manifold factors X of n-manifolds
Xx(0, 1), we do maintain a simplifying hypothesis concerning the objects under
consideration, which circumvents a significant question, by considering only compact
spaces Z in S" that admit collared embeddings in z#-manifolds — in other words,
not only is the frontier F of Z to be ann-manifold factor, but, in addition, adjunction
to Z of an open collar on F must produce an n-manifold. In general, even if Fx E!
is a manifold, whether adjunction of a collar along F produces a manifold is not
known. For n2=5, the adjunction of such a collar does yield an #-manifold in two
instances: (1) in case the frontier F is an (n—1)-manifold [14]; (2) in case Z is con-
tained in an n-manifold N (without boundary) such that N—2Z is locally simply
connected at each point of F [10].

* Research of both authors supported in part by the National Science Foundation, USA.
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212 J. W. Cannon and R.J. Daverman

The proof for our version of the Mismatch Theorem, appearing in Sections 2
and 3. is self-contained except for some basic facts about sets satisfying ULC proper-
ties (see [20], [8], [13]) and for Bing’s Shrinking Criterion (see [3] and [9, pp. 92
and 108]; the latter of these references contains further references to the literature
on this criterion). In Sections 5 though 9, where examples are treated, we tacitly
assume quite a bit about cell-like decompusitions of 3-manifolds; basic references
to the necessary notions and additional sources of information may be found in [16],
[13], and [19].

Atfter the results developed in this paper were first discovered, Cannon [I11]
and Edwards [18] produced powerful homotopy-theoretic methods for determining
when a cell-like decomposition of an n-manifold (n=5) yields the same manifold,
which could be used to verify the results contained herein whenever n>=5. The
primary advantage of the rather geometric approach which we employ is its appli-
cability to the difficult dimension n = 4.

We use S”, B", and E” to denote the n-sphere, the n-ball, and Euclidean n-space,
respectively. We use Diam X and Cl X to denote the diameter and closure of a set X.
We use Int X and Bd X to denote the interior and boundary of a set X; we leave
it to context to determine whether these are to denote combinatorial or point set
interiors and boundaries, or even, in some cases, the boundary or interior of a crump-
led cell or similar object.

Occasionally we use for (our) convenience some of the language of continuous
relations [9]. The reader unfamiliar with this language should not have much trouble
simply ignoring such material and supplying corresponding (e, J) arguments.

We thank Ric Ancel and Dan Everett for reading portions of a preliminary
version and suggesting improvements.

1. ‘Setting for the Mismatch Theorem. Throughout the next three sections
X = X x {4} will denote a compact, connected, bicollared set in S" with bicollar
X x1I (I = [0, 1]) such that S"—(X xI) has exactly two components, U, (bounded

Fig. 1
by Xx{0}) and U, (bounded by Xx{1}) (see Fig. 1). Associated with X x I will
be the cell-like upper semicontinuous decomposition G of S" whose nondegenerate
elements are the fibers {x} x 7 of Xx I (x € X), also denoted as x[1<1]. As usual,
S"/G will denote the associated decomposition space, and n: S" — S"/G, the pro-
jection map.
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2. Mismatch Theorem-simple form. The key decomposition space ideas
of the Mismatch Theorem, due essentially to W. T. Eaton [16], are expounded here.
THEOREM 2.1 (Mismatch-simple form). The spaces S™ and S"jG are homeomorphic
if each neighborhood of the identity Id: S"— S™ contains a homeomorphism

hy: S"— 8" such that, for each xe X, h,({x}xI) misses either ClU, or ClU,
(see Fig. 2).

X101}

hy(Xx[0,1])

Fig. 2

Proof. The following notions, conventions, and notations will be helpful;
let g: S" — S" denote any homeomorphism:

M) n,=mog™': "> S"/G,

(2) g(Xx1I) = g(X)x 1 (via the identification g(x, ) — (g(x), 1)),

) x[j<k] = {x} x[(j=D/k, jlk] (x eg(X), 1<j<k),

(4) g(X)x1 is a kxe-product if, for each xeg(X) and each j<k,
Diam x[j<k]<g,

(5) if 0=1[0=0y<0,<..<0,=1] and ¥ = [0 = Yo<¥;<..<¥,, = 1],
then gg,: S" — S" is the homeomorphism fixing S"—[g(X)x 1], taking (x, 8,
to (x, y), and taking {x}x[0;, 0,,,] “lincarly” onto {x}x [¥;, ¥;4,].

Suppose now that a positive number ¢ and a neighborhood U of n: S" — S%/G
in $"x(S8"/G) are given. By Bing’s Shrinking Criterion [9, Theorem Al3], it suffices
to show the existence of a homeomorphism g: §"— S”, with n,< U, such that,
for each x e g(X), Diam{x} x I<e. There is a positive integer k such that X x 7
is a k xe-product. If k were 1, we could take g = Id. We proceed by induction to
reduce k to 1. Assume the following for some i>1:

Inductive hypothesis (i) (/<k). There is a homeomorphism g: S§"— 8" with
n,= U, such that g(X)x /I is an (i x g)-product.

We complete the inductive proof of Theorem 2.1 by defining a homeomorphism
h: §"— §", with m,,c U, such that hg(X)x I is an (i—1) x e-product. The homeo-
morphism 4 is the composite 413k, h of three homeomorphisms 4, , h,, and hy; h, is
simply a homeomorphism supplied by the hypothesis of Theorem 2.1, very near
kd: $"— §", and satisfying, for each xeg(X), the requirement that A,({x}xI)
misses either g(X)x {0} or g(X)x {1}; i.e., h, frees at least one end of each fiber

Re
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hy({x}xI) (xeg(X)) so that it can be shortened by h,; h, is simply one of the
maps gey,

0 = [0<a<l/i<(1-(1/))<b<1], ¢ = [0<a'<l/i<(1-(1/))<b'<1],
a<a’'<b’'<b (see (5) above) which shoves fibers A, g ({x}) x Itoward g (X) and thereby
shortens them; A, is fixed outside 4,h;9(X)x I and simply reparameterizes this
product so that hg(X)x I is an (i—1) x e-product. The necessary additional details
are as follows.

First choose a>f>0, a’ € (0, 1/i), and b’ € (1—(1/i), 1) in such a manner that
the following conditions are satisfied: Suppose x eg(X), 1<j<i, a€(0, a’), and
be(b’, 1) are chosen arbitrarily; then

(6) Diam N(x[j<i]; a)<e.

(7 gouN(xLi<il; )= N(x[j<i]; o).

(®) {g(X)x[0, ¥'[} N goy N(x[i<i]; H=N(x[i-1<i]; o).

) {g(X)x [, 11} 0 gy N(x[1<i]; p)=N(x[2<i]; o).

Next choose a neighborhood ¥ of Id: S" — S" as follows. Since

mgolde(nylny) = m,cU,

there is by [9, Theorem A 12] a neighborhood ¥ of Id such that myo ¥ =1 o (n, ' )= U.

Choose h, in V so that k; moves no point as far as §, ae (0, a’) and be (b', 1)
so that, for each x € g(X), A,({x}) x I misses either g(X)x {a} or g(X)x {b}. Let
hy = goy- It follows from (6) and (7) that h,h,g(X)x I is an ixeg-set. It follows
from (8) and (9) that, for each x € h, h, g (X), either {x} x [0, 2/i] or {x} x [1—(2/i), 1]
has diameter less than &. By the lemma below, it follows that there is a homeo-
morphism hy: S"— S”", fixed outside h,h,;g(X)xI and preserving the fibers of
hyhy g (X)x 1, such that hg(X)x I is an (i—1) x e-product (h = hyh, h,). It remains
only to check that m,,cU:

Thg = Thynyg © M3 ! S Thahyg © (nh_zljuy Thahig) = Thahyg
=m,ohitohylan,o V'io(n, tn)cU.

LeEMMA 2.2. Suppose that X x I is an ix g-product (i>1), and suppose that, for
each x € X, either {x} x [0, 2/i] or {x}x[1—(2/i), 1] has diameter less than &. Then
there is a homeomorphism hy: S"— S" in n~'om such that hy(X)xI is an
(i—1) xe-product (see Fig. 3).

Proof. Let

U, = {xe€ X| Diam{x}x[0—(2/i), 1]<¢}
and
U, = {xe X| Diam{x}x[1-(2/i), 1]<e}.

Then U, and U, are open sets whose union is X. The proof is now an exercise:

in the use of Urysohn’s Lemma. Choose 6>0 so small that if [a, b]<], b—a<é,
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Fig. 3

and xe€ X, then Diam{x}x [a, b]<e. There exist continuous functions (0 = Jo)
< fi<..<(fi-y =1): X—|[0, 1] (see Fig. 3) such that

WX j#0, i=1, Imficlii, G+DJi], f(X=Up) =jl, and f(X—Uy)
= (j+1)/i; and

(2 If 0<j<j+1<i—1 and fi(x)<(i+1))i< fj+,(x), then fiv10)—f(x)<d
(see exploded view in Figure 3).

Define /3| XxI: XxI— XxI on each fiber {x} x I by defining h3(x, jl(i—1))
= (x,fj(x)) and by extending “linearly”. Then hy(X)xI is an (i—1) x e-product.

3. Mismatch Theorem-general form.

THEOREM 3.1 (Mismatch Theorem). Assume the 1-ULC Taming Hypothesis
below. Suppose that X contains disjoint sets F, and F, such that U, U (F, x {0})
and Uy U (Fy x{1}) are 1-ULC. Then S" and S™/G are homeomorphic.

(The condition concerning F, and F, is called a mismatch condition; we say
that X'x I satisfies a mismatch condition; see Fig. 4.)

Fix{1}

Xx[0.]

Us
Fox l()l
Fig. 4

1-ULC TAMING HYPOTHESIS. Suppose (f: X — [0, 1])c(Xx [0, 1]) is a con-
tinuous function such that $"—fis 1-ULC. Then each neighborhood of Id: $" — §"
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contains a homeomorphism h: S"— S" fixed outside an arbitrarily small neigh-
borhood of f such that (fn A(f~'({0, 1}))xI) = O (see Fig. 5).

BX - [0.0])

Fig. 5

Remark. The Taming Hypothesis is true for n 4 (see [10]). Thus we recover
the Eaton and Daverman Mismatch Theorems [16] [13]. If f were bicollared in S”,
‘the Taming Hypothesis would be obvious. If n # 4, then f is in fact bicollared
in S” [10]; however, this is more difficult to prove than merely the Taming Hypo-
thesis itself. In Section 7 we shall establish the Taming Hypothesis for -certain
4-dimensional examples. For the remainder of Section 3 we assume the hypothesis
of Theorem 3.1.
" The connection between the Taming Hypothesis and the Mismatch Theorem is
forged by the following easy lemma, whose proof we omit. (See [20] and [8, Section 2.
for the arguments of the type needed for the proof.)

LemMma 3.2. Suppose (f: X —[0,1)c(Xx|0,1]) is a continuous function]
Iff7'0)n Fy = @ = f~Y(1) N Fy, then S"—f is 1-ULC. In fact, S"—f is 1-ULC
if and only if Cl(Uy)—f and CI(U,)—f are 1-ULC."

As a consequence of Lemma 3.2 and the Taming Hypothesis, we deduce ‘the
following key technical lemma, the statement of which is essentially that of [13, Ap-
proximation Theorem 3.1]. It is in our proof of the lemma that our work most
markedly differs from [13].

LEMMA 3.3. Given >0, there is a closed subset F of X satisfying the following
conditions:

1) Cl(Uy)—(Fx{0}) is 1-ULC.

Q) If V, is u neighborhood of F in X, then there is an }&-homeomorphism h
of S" fixed outside an Ye-nbd of Xx {1} such that h((X—Vy)xI)n ClU; = @
-(see Fig. 6).

Proof. Ric Ancel suggested substantial improvements for this proof, and many
-of the details of the present proot are due to him.

~ By standard arguments concerning ULC properties [20] [8, Section 2], [13,
Section 2], we may assume that Fy is the union of countably many closed sets
X, = 9, X;,X,,... We note: that,  since U, u (F;x{1}) is 1-ULC and since
X; n F, =@ for each i, it is also true that CI(U,)—(X;x {1}) is 1-ULC for each i.
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We may therefore iteratively apply Lemma 3.2 and the Taming Hypothesis with
respect to functions (f}, f5, ...: X—I)c(X xI)such that f; ({0, 1}) = f; X(1) = X,
for each i. Such an iteration will be used to prove the following claim from which
Lemma 3.3 follows easily.

f)(‘” X x/

U

HICX = Va1 /////,‘ {0

U/

H(X = Vo) xil ]

N\

Fig. 6

Notation for the claim. If 4 = S” then PA is the image of 4 N (X x ) under
the natural projection X'xI— X.

CLAM. Given £>0, there exist %e-homeomorphisms g,,9,, ... of S™ and open
subsets Ny, Ny, ... of X such that

(i) g; is fixed outside an %e-neighborhood of X x {1}
(i) Pg{ClU,)=N,;
(ii)) (CIN) N (Xov X, V..U X)) =@; and
(iv) (CIN,, )= N..
To prove the lemma from the claim, let

Y @ ®©
F=(NN)=(NCN)=(X- U X).
i=0 i=0 i=0

Since Upu( ) X;x{0}) is 1-ULC the set ClU,—(Fx{0}) is also 1-ULC. Thus
i=0 ,

requirement (1) of Lemma 3.3 is satisfied. If ¥, is a neighborhood of Fin X and if

N;cV, then h = g; ' satisfies requirement (2) of Lemma 3.3.

Proof of the claim. Choose numbers §,<8,<d,<... in the open inter-
val (0, 1) such that, for each x e X,

Diam({x} x [6;, 1) <#$[(3)'"*-4¢] .

Letg, = identity: S — S"and let N, = X. Assume inductively thatg,, g, g2, .-.» 9:
and Ny, Ny, ..., N; have been chosen so that, in addition to (i), (ii), (iii), and (iv) of
the claim, the following additional requirements are satisfied:

(v) if i>0, then g; moves no point as far as [I —(3)']-}¢, and

i) g(ClU ) U, v (X x(5;, 1]).

The homeomorphism g;,,: S" — S" may now easily be chosen as a composite
hy o hy o g; of homeomorphisms described as follows.



218 J. W, Cannon and R. J. Daverman

Choose fi4,: X — (8., 1] continuous with £;71(1) = X,,,. As noted above,
S"—fi+, is 1-ULC. By the Taming Hypothesis, there is an arbitrarily small homeo-
morphism #, of S§", fixed outside an %e-neighborhood of Xx {1}, such that
hy(CLU)) N f;+1 = B. We choose h, so near the identity that (1) no point of S” is
moved as far as 1[(3)'**-4¢] and (2) no point of the compact set [Pgy(ClU,)x I] u
U g{(ClU;) is moved into the disjoint compact set (X—N;)x I.

There is a homeomorphism 4, of S”, fixed outside of X'x[d;, 1] and fiber
preserving on X x [§;, 1], which pushes g,(ClU,) so near to ClUj, that

hyhig(ClU) N fipy = B

We leave it to the reader to check that an open set N;,, may be chosen so that
gi+1 = hyhyg; and N, satisfy conditions (i}~(vi) (i + 1 replacing 7). This completes
the proof of the claim and of Lemma 3.3.

Proof of Theorem 3.1. Suppose £¢>0 given, ¢ small compared to the distance
between X x {0} and X x {1}. Let F be a subset of X satisfying conditions (1) and (2)
of Lemma 3.3. Let (f: X— [0, 1])c Xx I be a continuous function very close to
the identically zero function such that £ ~1(0) = F. By (1), Lemma 3.2 and the Taming
Hypothesis, there is an }e-homeomorphism hy: S®— S", fixed outside an
}e-neighborhood of f, such that fn hy(f~*({0, 1})xI) = @. Hence, for some
neighborhood ¥, of F in X, fn h(VyxI) = @. By condition (2) there is an
}e-homeomorphism h,: S"— S" of S", fixed outside an %e-neighborhood of
Xx {1}, such that (Xx{1}) N hy((X—V,)xI) = &. Then h = hyoh;: S"— S"
is an e-homeomorphism of S such that, for each x € X, h({x} xI) misses either
X x {0} or Xx{1}. We conclude from Theorem 2.1 that S” and S"/G are homeo-
morphic.

4. Mismatch Theorem—extended forms. We catalogue some of the conditions
which may be weakened in Theorems 2.1 and 3.1:

(i) S" may be replaced by any manifold S without boundary.

(i) X' x I may be replaced by any closed subset X (twist-product) I of .§ which
has the structure of a locally trivial arc-bundle over X and is a neighborhood in §
of its %-section.

(iii) The global conditions may be replaced by local conditions defined on
small subsets of X (twist-product) 7 on which the twist-product is a standard product.
Similarly, the global 1-ULC Taming Hypothesis may be replaced by a local version.

(iv) The conclusion of the 1-ULC Taming Hypothesis need only be checked
for functions (f: X —I) arising in the proof and application of Lemma 3.3.
An extraordinarily significant extension, to be used repeatedly in later sections,
it warrants an explicit statement.

THEOREM 4.1. Suppose for each ¢>0 there exists a closed set F in X such that

(1) for each continuous function (f: X — [0, 1)) in Xx[0, 1) with F = f~1(0),
every neighborhood of the identity Id: S" — S" contains a homeomorphism h: S® — S*"
Sfixed outside an arbitrarily small neighborhood of f such that fo h(FxI) = @,
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(2) for each neighborhood V, of F in X, there exists an %e-homeomorphism
g: S"— 8" fixed outside the Ye-neighborhood of X x1 such that

d(X=Vy)xI)nClU, = 9.
Then S"™ and S"|G are homeomorphic.

Remark. Condition (1) holds if there exists some continuous f;: X — [0, 1)
with F = f5 1(0) such that f;, is bicollared.

5. Collarable objects and sewings. A collared set C in an rn-manifold Cis a closed
proper subset of Int M such that the frontier FrC of C is collared from M—C; in
particular, such a collar is required to contain a neighborhood of FrC relative to
Cl(M —C). Consequently, FrCx E! is an n-manifold.

An n-dimensional collarable object is a space C that can be embedded in some
n-manifold as a collared set. Alternatively, for a space C and positive integer n,
let F denote the subset of C consisting of all points having no neighborhood homeo-
morphic to E”, and abstractly attach an open collar Fx [0, 1) to C along F in the
obvious manner to form a space M; then C is an n-dimensional collarable object
iff M is an n-manifold. ‘

Accordingly, an n-dimensional collarable object C has an intrinsically defined
interior (IntC) consisting of those points having neighborhoods homeomorphic
to E" and an intrinsically defined boundary (BdC) defined by BdC = C—IntC.

A sewing of two n-dimensional collarable objects Cy and C, is a homeomor-
phism h between their boundaries. Associated with any sewing # is the sewing space,
denoted as C, u,C,, namely, the identification space obtained from the disjoint
union of Cy and C, under identification of each point ¢, from Bd C, with the cor-
responding point h(c,) from BdC,.

THEOREM 5.1. Suppose h is a sewing of n-dimensional collarable objects C,
and C,. Then there exist an n-manifold M (without boundary), a bicollar X x I in M
for which X is homeomorphic to BdC,, and a decomposition G of M having for its
nondegenerate elements the fibers {x}x I of Xx I, as in the setting of Section 1 for
the Mismatch Theorem, such that C, v, C, is naturally homeomorphic with M|G.

To establish this we set X = BdC, and obtain M from the disjoint union
of Cy, C; and X x I by identifying each point ¢ of BdC, with {¢, 0> in X'x I and
each point A(c) in BAC, with (¢, 1) in Xx I

The following corollary involves a simple application of the Generalized
Schoenflies Theorem.

COROLLARY 5.2. Suppose that the n-dimensional collarable objects C, and C,
can be embedded in S" as collared sets and that BAC;x E* is homeomorphic to
S""YxE' (i = 0, 1). Then for each sewing h of C, and C, there is a bicollar X x I
in 8" and there is a decomposition G of S having as its nondegenerate elements the
Sfibers {x}x1I of Xx1I such that Cy u, C, is homeomorphic to S"/G.

A sewing h on n-dimensional collarable objects C, and C, is said to satisfy the
Homotopical Mismatch Property if there exist subsets F, and F; of BdC, and
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BdC,, respectively, such that F; U IntC; is 1-LC at each point of C; (i =0, 1)
and h(Fy) n F, = Q.

THEOREM 5.3 (Homotopical Mismatch Theorem). Let C, and C, denote n-dimen-
sional collarable objects (n # 4) and let h denote a sewing of Cy and C, that satisfies
the Homotopical Mismatch Property. Then C, v, C, is homeomorphic tc the
n-manifold M = Cy v (XxI) U C; of Theorem 5.1.

Remarks. This is nothing more than a reinterpretation of Theorem 3.1. For
n = 3 itis a consequence of Eaton’s work [16] because all 3-dimensional collarable
objects are bounded by 2-manifolds. For n>5 it extends Daverman’s work [13]
about sewings of crumpled n-cubes.

An additional strong and significant feature of the Homotopical Mismatch
Property in dimension 3 is that it is both necessary and sufficient for a sewing to
yield a 3-manifold [16], while in higher dimensions, even in the simple crumpled
n-cube case, a sewing can yield S" without satisfying the Homotopical Mismatch
Property [13, Example 13.2]. Nevertheless, in some important situations, such as
that set forth in the following result, the Homotopical Mismatch Property is both
necessary and sufficient for the sewing to yield an n-manifold. (Necessity follows,
even for n = 4, just as in [13, Theorem 10.1].)

CoROLLARY 54. Let C an n-dimensional collarable object, n>=5, and
Id: BdC — BdC the identity map. Then C Uy C is an n-manifold if and only if Bd C
contains disjoint sets Fo and Fy such that F; L IntC is 1-LC at each peint of C (i = 0, 1).

Elementary transformation group theory finds some use for the C Uy, C con-
struction, for there exists an obvious involution of Cuyy C having the seam corres-
ponding to Bd C as its fixed point set and having C as its orbit space.

COROLLARY 5.5. Let h denote a sewing of n-dimensional collarable objects C,
and Cy. Then (Cy U, C)X E' is an (n+1)-manifold.

Proof. For n =3 this is announced in [14], so we assume n>4. Clearly
(Co Uy Cy) X E' is equivalent to (Cox EY) Upxia (C; X EY). Choose disjoint dense
subsets D, and D; of E'. Then F, = BdC,x D, and F, = BdC, x D, show that
hxId satisfies the Homotopical Mismatch Property.

A result more general than Corollary 5.5 is established in Section 9.

An n-dimensional collarable object C is said to be universal if, tor any n-dimen-
sional collarable object C* and any sewing & of C and C*, C U, C* is an n-manifold.

CoOROLLARY 5.6. If C is an (n—1)-dimensional collarable object (n=5), then
Cx E! is universal.

Note that, because C is collarable, Bd(C x E') is an n-manifold. Thus, the proof

of Theorem 8.6 of [13] shows that any sewing of Cx E*! to another n-dimensional
collarable object satisfies the Homotopical Mismatch Property.

6. Inflations and inflated decompositions. The results of this sectionimprove
upon those of [13, Section 11] and serve as an auxiliary aid for the spinning con-
struction described in Section 8.
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Let C be a space, B a closed subset of C, and f: C— [0, 1) a map such that
B = f~4(0). By the inflation of C relative to B we mean the space

Infi(C, B) = {{c, 1) e Cx E'| [t|< f(o)}.

The topological type of Infl(C, B) does not depend on the particular map femployed.

For simplicity we confine our attention to a relatively standard setting. Consider
a cell-like upper semicontinuous decomposition G of B", every nondegenerate element
of which intersects S"”'in a cell-like subcontinuum. There is an inflated decompo-
sition I(G) of B"*! and there is a doubled decomposition 2G of S" = BdB"*!
whose nondegenerate elements are, respectively, the sets {(g x E') n B"*!} and.
{(gx E') n S"}, where g is a nondegenerate element of G and E"*! = E"x E*
(see Fig. 7).

— o

B"

nondegenerate
element of G

corresponding nondegenerate
element of /(G)

corresponding element of 2G
Fig. 7

Our next result relates inflations and inflated decompositions. We leave the-proof
tracing through the definitions to the reader. )

THEOREM 6.1. Suppose G is a cell-like upper semicontinuous decomposition of B",
each nondegenerate element of which intersects S"~* in a cell-like subcontinuum;
let C = B"|G and let B denote the image of S"~* in C. Then B"**|I(G) is homeomorphic
to Infl(C, B), and S™2G is homeomorphic tc C Uyygy C, where 1d (B) denotes the identity
map of B to itself.

Remark. Even when C is not an n-dimensional collarable object, it makes
sense to consider C Uigsy C as a sewing space.

The following is like Theorem 11.1 of [13].

THEOREM 6.2. There is a collared embedding h: B"**[I(G) — E"* " if the following
two conditions are satisfied: '
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(1) The decomposition 1(G), extended trivially to all of E"*Y, is a shrinkable
decomposition of E"*! (see definition below).

(2) The decomposition (2G)x E* of S"x E* (with elements of the form g x {t},
g€2G, te EY) is a shrinkable decomposition of S"x E!.

Addendum. If Fis a closed set in " which misses the nondegenerate elements

of G, then the embedding 4: B"*!/I(G) — E"*! may be chosen in such a manner
that

h
FCB”+1—>B"+1/I(G)—>E"+1

is the identity and such that the fibers [1, 2]-{x}, for x € F, are fibers of the collar
on h(B"*1/I(G)) (- denotes scalar product in the vector space E").

DEFINITION. A decomposition G of a space X is shrinkable if the following
condition is satisfied: let U be any G-saturated open subset of X, let ¥ be any
neighborhood of Id: U — U, and let W be any neighborhood of n: U — U/(G|U);
then there is a homeomorphism f: U— U such that (n;'*n)cV and nc W
(ns = m:f~': U— UJ(G|U)). Under rather general conditions [9, Theorem A13],
the shnnkablhty of G is sufficient to prove the existence of a closed map p: X — X,
the identity on any given closed subset of X missing the nondegenerate elements,
such that the point preimages of p are precisely the elements of G.

Remark. In general it is easier to prove a slightly weaker shrinkability condition,
and this course is followed by almost all authors. However, a careful examination
of most proofs shows that an adaptation of the argument proves shrinkability in the
sense defined above.

Proof of Theorem 6.2. Consider the decomposition G’ of E"*! whose
nondegenerate elements are either of the form g=B"*! (g € I(G), g nondegenerate)
or of the form t-gct-S” (te(l, ), g€ 2G, g nondegenerate). The set U = E*H1—
—[1, ) F is a G’-saturated open subset of E"*! containing the nondegenerate
elements of G'. Using (1) and (2) and the definition of shrinkability, one can show
the existence of a closed surjective map p: E"** — E"*!, fixed on [1, o) F, such
that the point preimages of p are precisely the elements of G’ (see, for example,
[9, Theorem A13]). This shows that E"*! is homeomorphic with E™*1/G’, and
the desired result follows.

COROLLARY 6.3. Let G denote a cell-like upper semicontinuous decomposition
of B" (n>4), each nondegenerate element of which intersects S~ = BdB" in a cell-
like subcontinuum. Suppose that (B"/G)x E! is a (n+1)-dimensional collarable
object. Then B"*'|I(G) has a collared embedding in E"*1.

Proof. The hypothesis implies that the trivial extension G’ x E* of the product
decomposition G x E* yields E"*1, and, therefore, by the Approximation Theorems
of Siebenmann [29] or Cannon [9, Theorem 56], G’ x E! is shrinkable. From this
it follows that the decomposition of E*** whose nondegenerate elements are those
of the form g x {0}, g € G, is shrinkable, and then I(G), trivially extended, is also
shrinkable.

Cell-like decompositions arising from mismatched sewings 223

To verify Condition (2), we set C = B"/G and B equal to the image of S"~!
in C. By Theorem 6.1, S$"/2G = C Uy C. By the proof of Corollary 5.6,
(Cuu@C) X E' is an (n+1)-manifold. Once again the approximation theorems
imply that 2G x E! is shrinkable.

COROLLARY 6.4. Let G denote a cell-like upper semicontinuous decomposition
of B" (n>4), each nondegenerate element of which intersects S"~ = BdB" in « cell-
like subcontinuum, and such that B"/G is an n-dimensional collarable object. Then
B"*1/I(G) has a collared embedding in E"*!.

COROLLARY 6.5. If C is a crumpled 3-cube, then Infl(C, Bd C) is a 4-dimensional
collarable object.

Proof. We obtain a decomposition G of B into points and arcs, where the set
of arcs consists of the fibers from some collar ¢(S%xI) on BdB? in B3, such that

= B3|G [22] [24]. Again it is easy to see that Condition (1) of Theorem 6.2 holds,
and it follows from the proof of Theorem 9.1 or, as hinted in [15], from techniques
of Bryant [7], that 2G x E? is a shrinkable decomposition of S x E!. Thus, there
exists a collared embedding of B*/I(G) = Infl(C, BdC) in E*.

COROLLARY 6.6. If G is a cell-like, closed-0-dimensional decomposition of B?,
each nondegenerate element of which intersects S* = BAB® in a singleton, then
B*/I(G) admits a collared embedding in E*.

The main result of [17] or [19] implies that both G’ x E! and 2G are shrinkable
decompositions of E*x E' and §3x E', and, as in Corollary 6.3, the shrinkability
of G'xE' implies the shrinkability of the trivially extended I(G).

7. Some crumpled 4-cubes, 4-dimensional collarable objects and sewings.
Fix a space C for which there is a cell-like upper semicontinuous decomposition G
of B", every nondegenerate element of which intersects S* ! in a cell-like
subcontinuum, and there is a closed surjective map mg: B"— C whose point
preimages are precisely the elements of G. We say that C has simple 1-ULC sets
if, whenever F is a closed subset of Bd C such that C— Fis 1-ULC, it is possible to
find a decomposition G and projection 7mg: B"— C as above such that
g|ng ' F: ng!' F— F is a homeomorphism (i.e., no nondegenerate element of G
hits ng 1(F)).

LeMMA 7.1. If C is a crumpled cube in S3, then C has simple 1-ULC sets.

Proof. This is well-known, See [16].

Lemma 7.2. If C arises from o cell-like, closed-0-dimensional decomposition
of B® such that each nondegenerate element intersects S? in a cell-like continuum,
then C has simple 1-ULC sets. Moreover, the decompositions G which show that C has
simple 1-ULC sets may all be chosen to be cell-like, closed-0-dimensional decom-
positions of B3.

Proof. Let G be a closed-0-dimensional decomposition of B* and ng: B* — C
a closed map as indicated by the hypothesis. By R. L. Moore’s Theorem and its
refinements ([27], [9]), we may assume, after a pseudoisotopy of B, that each non-
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degenerate element of G hits S? = BdB? in a single point. Let F, = n5!(F) and
“let £>0. Since G is a closed-0-dimensional, it follows from the proofs in [26] that
there exist finitely many disjoint cells-with-handles H,, ..., H, in B3, intersecting S
is single boundary disks D,, ..., D, of diameter less than g, such that

(1) FopcU IntH;,c N(F,, ¢) and

(2) No element of G in the closure of the union of the nondegenerate elements
of G hits (BdH,)—Int D,.

We fix our attention on one of the cells with handles H = H,. Let E,, ..., E;
be a complete set of meridional disks for H, each missing D = D;. Since C—F is
1-ULC, it is easy to find singular disks Ej, ..., E; in H—D, having the same
boundaries as E,, ..., E;, but missing F,. After applying Dehn’s Lemma [28], and
cut-and-paste arguments, we find that we may assume that E,, ..., E; originally
missed F,. Thus, H—(E; U ... U E;) contains a cell H' intersecting S? precisely
in the set DcBd H' such that H n Fyc< H'. With the cells H{, ..., Hy, obtained by
the argument above, it is easy to pull each element of G in F, to a set of size less

than e Standard decomposition space techniques now complete the proof
[9, Theorem A13].

THEOREM 7.3. Suppose that C; (i = 0, 1) is either a crumpled 3-cube or a space
arising from a closed-0-dimensional decomposition of B® as in Lemma 7.2 and suppose h
is a sewing of Infl(C,, BdC,) and Infi(C;, BAC,). Then there exists a bicollared
compact set X in S* with bicollar X x I satisfying the 1-ULC Taming Hypothesis such
that, for the associated decomposition G of S*, S*/G is naturally homeomorphic to

Infl(C,, Bd C,) U, Infl(C,, BAC,).

Proof. In light of Theorem 5.1 and Corollaries 6.5 and 6.6, we need only check
the Taming Hypothesis. Let f: X — I be a continuous function with 1-ULC com-
plement in S”. We set C} = Infl(C;, BdC)) and identify C} with ClU; (i = 0, 1).
By Lemma 3.2, Cg —f and CT —f are 1-ULC. In order to satisfy the Taming Hypoth-
esis, we must show how to use a small homeomorphism of S* to pull those fibers
of X' x I which hit fat Xx {0} or at X x {1} away from f. Let us concentrate on the
fibers hitting f at X x {0} for the moment. Let F = f n (X x{0}). By Theorems 6.1
and 6.2 we may think of Cg U (Xx[0, 4]) as arising from maps

B* U (I1,2]- 5% 5 (BYI(Go) w (11, 21 S, 21 2Gy)) 5 ch o (<D, 4.

‘Thus z~ 1A~ 1(F)is a closed, 2G,-saturated subset of S3. Let Fy = [z7 A~ Y{(F)] n S2.
It.is easy to check that (B3/G,)-image (F,) is 1-ULC. By Lemmas 7.1 or 7.2, B%/G,
has simple 1-ULC sets. Hence, we may assume that no nondegenerate element of G,
hits F,. Thus by the Addendum to Theorem 6.2 we may assume that Fy= F and

that the fiber {x} x [0, 4] through a point y € F is of the form [1, 2]-{y}. It is thus.

_an easy matter to pull these fibers toward X x {4}. This shortening pulls all of the
fibers through F away from f and proves one half of the Taming Hypothesis.
A similar argument near X x {1} completes the proof of the Taming Hypothesis.
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COROLLARY 7.4. Suppose that, for i = 0,1, C;is a crumpled 3-cube such that
CY = Infi(C;, BdC)) is a crumpled 4-cube (i.e., C} is bounded by a 3-sphere)
and h is a sewing of Cy and C¥. Then C§ L, C* is homeomorphic to S*.

Proof. The homotopy theoretic property equivalent to Cg = Inﬁ(Co, Bd Cy)
being a crumpled 4-cube is that Bd C, contains disjoint sets F, and F, such that
F,uIntCy is 1-ULC (e = 0, 1) [16]. It follows that in BdCg, which is equivalent
to Cy Uyg Co, the set X corresponding to the seam of C, Uy C, contains disjoint
sets Fg and F{ such that Fy UIntCq is 1-ULC (e = 0, 1). Without loss of generality,
Fg is a countable union of compact 0-dimensional sets {Z;}. But since each Z; is
contained in ¥ and BdC§— 2 is 1-ULC in (BAC}—2) U F¥, each Z; is tame relative
to Bd C§. Moreover, under the natural embedding of CT in S*, each sct 4(Z) is
locally flat modulo its intersection with the flat 2-sphere corresponding to the seam
of C, U C; in BACY. Hence, h(Z)) is flat (it is sufficient simply to see that
S*—h(Z;) is 1-ULC). As in [13, Proposition 12.2], & satisfies the Mismatch Property
because Ci—h(Fy) is 1-ULC.

A crumpled n-cube C is self-universal if, for each sewing & of C to itself, C u, C
is homeomorphic to S™. : ’

COROLLARY 7.5. Any crumpled n- cube obtained by inflating a crumpled (n— 1)- cube
is self-universal.

For n>=5 this is Corollary 12.5 of [13].

i We shall derive a few more (admittedly weak) 4-dimensional analogues to sewing
results from [3]. Repeating a technical definition given there, we say that a crumpled

n-cube C is a closed n-cell-complement if C can be embedded in S" so that
CI(S"—C) is an n-cell.

THEOREM 7.6. Let C, be a closed 4-cell-complement in S* such that each tame
Cantor set in BAC, is tame in S*, and let C, be a closed 4-cell-complement in S*
such that BAC, is locally flat modulo a 1-dimensional polyhedron K that is tamely
embedded in S*. Then, for each sewing h of C, and C,, Cy Uy C, is homeomorphic
to S*.

Proof. We think of Cy U, C; as arising from the decomposition G of S* with
fibers in X x I (=83 x1T), where S* is represented as the union of C,, C, and X x I,
as in Theorem 5.1. We shall prove that the Conditions of Mismatch Theorem 4.1
are satisfied.

Fix ¢>0. Choose ¢, in (0, 1) such that the diameter of {x} x [#,, 1] is less than t%¢
for each x e X. Determine a triangulation T of $* of very small mesh so that some
subcomplex N of T is a compact 4-manifold containing BdC, in its interior and
Nn(Cyu Xx[0,1,]) = @. Let P denote the 2-skeleton of N.

For any (curvilinear) triangulation S of X, we can adjust S slightly so that the
2-skeleton S® x {1} intersects K in a 0-dimensional set contained in S® —S§,
It follows from [23] that S® x [1,, 1] is locally tame in S*. Hence, there exists an
1Tz¢-homeomorphism g of S* fixed outside the union of X x[t,, 1] and a small
neighborhood of BdC, such that g(P) n X x [z, 1] does not intersect S@ x 1. We
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choose a sequence of triangulations S; of X, with S;,, subdividing S;, S{" disjoint
from K, and S® n K 0-dimensional. Then, as in the proof of Lemma 3.3, we obtain
a compact set Fin X—{J S such that, for any neighborhood ¥V of F in X, there
exists an +e-homeomorphism i* of S* to itself such that

Pch*(VxI) v IntC,)

and /i* moves no point of Cy, U X'x [0, #,]. Fix a neighborhood ¥V, of F in X and
name such an /*. By standard engulfing techniques, there exists an +e-homeo-
morphism 4 of S* to itself such that, for the 1-skeleton Q of N (subdivided) dual
to P,
Qch(Cy L Xx[0, 1))
and 4 moves no point of C,. There exists an +¢-homeomorphism 0 of S*, fixed
outside N, stretching across the join structure of the subdivided triangulation of A,
so that
0h(Co U X% [0, 1)) U h*(VoxI) v IntC,)oN.

Observe that the two open sets above cover S*. We define g as A~*0~ ' h*. Then
(Cou Xx[0, 1)) Ug((VoxI)uIntC,) = 0 A7 1(S*) = §4,

implying that g is an %e-homeomorphism of S* such that g(X—Vo)xI)n C; = 3.
Hence, F satisfies Condition (2) of Theorem 4.1.

To see that it satisfies Condition (1), we note that F is contained in a tame
Cantor set in X because it is contained in X—S{® for all i. Thus, if fis a map of X
into [0, 1) with F = £~1(0), then f is locally flat modulo Fx 0, which is tame both
in X and in S* (by hypothesis), implying that fis bicollared [23] and that Condition (1)
holds. Hence, C, u, C, is topologically S*.

COROLLARY 7.7. Suppose C is a closed 4-cell-complement in S* such that Bd C is
locally flat modulo a 1-dimensional polyhedron in Bd C that is tamely embedded in S*.
Then C is self-universal.

THEOREM 7.8. Suppose C is a closed 4-cell-complement in S* such that Bd C is
locally flat modulo a 1-dimensional polyhedron K tamely embedded as a subset of Bd C.
Then C uyy C is homeomorphic to S*.

Because the argument is quite similar to that of Theorem 7.6, we focus on the
dissimilarities. We think of C, = C = C,;, X = BdC and S* as the union of C,, C,
and X x I refiecting the “identity” sewing of C, to C,. We fix ¢>0 and choose
ty, T, N, P, and Q as before, excepting that we adjust P so that P n (Kx 1) is a com-
pact 0-dimensional set and P n (Kx[0,1)) is locally finite (read countable).
Hence, K contains a compact 0-dimensional set F such that

FxIoPn (KxI)

and each fiber { f'} x I, fe F, meets P. Then F satisfies Condition (2) of Theorem 4.1
as before. To see that it satisfies Condition (1), note that Fx 1, with the exception
of countably many points, lies in P and therefore is tame as a subset of S*, implying
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that the symmetric set Fx 0 is tame as well; since Fx0cKx0c X x0, FxO0 is also
a tame subset of X'x0, and Condition (1) follows as well.

COROLLARY 7.9. Suppose C is a closed 4-cell-complement in S* such that BdC
is locally flat modulo a Cantor set tamely embedded in Bd C. Then C uyy C is homeo-
morphic to S*.

In particular, this encompasses a result of Broussard [5].

THEOREM 7.10. Suppose C is a closed 4-cell-complement in S* such that to each
>0 there corresponds 6>0 such that for any polyhedral 2-complex P in Ng(C)
there exists a pseudo-isotopy W, of S* fixed off N(Bd C) and moving points less than ¢
such that y(P)c=C and ,(P) n BdC is countable. Then C is universal.

Proof. Let C, be another closed 4-cell-complement and /1 be a sewing of C,
and C = C;. As usual, arrange S* as the union of Cy, C, and X x I so that the result
of the associated decomposition is C, U, C,. Again we shall show that the con-
ditions of Theorem 4.1 are satisfied.

Fix €>0. As in the proof of Theorem 7.6, choose t,€(0,1) such that
Diam ({x} x [to, 1])<+%¢ for each x € X. Let &' denote the distance between C, and
X x [0, to]. Triangulate S* with very small simplices so that some subcomplex N is
a compact 4-manifold containing BdC, in its interior, NcNyBdC), and
NN (Cou XX%[0,t,]) = 9. Let P denote the 2-skeleton of N. By hypothesis there
exists an Ze-pseudoisotopy ¥, of P such that y,(P)=C; and ¢,(P) n BdC, is
a countable set F, and y, is fixed on C, —N. Then, for any ncighborhood ¥V, of F
in X, there exists s€[0, 1) such that Pch*((V'xI) U IntC;), where h* = y; '
The rest of the argument verifying Condition (2) proceeds exactly as in Theorem 7.6.

Kirby’s result [23] shows that Condition (1) also holds for this countabie set F.
Thus, by Theorem 4.1, C, U, C, is topologically S*.

COROLLARY 7.11. If C is a closed 4- cell-complement in S* such that BA C is locally
Sflat modulo a Cantor set tamely embedded in Bd C and embedded in S* as a Blankinship
example [4], then C is universal.

We leave to the geometrically inclined reader the proof that 2-complexes near C
can be pseudo-isotopically deformed until, in the limit, their intersection with BdC
is a finite set. (The argument is just a pseudoisotopically obtained verification of
a remark in [5, p. 284].)

8. Spins of collarable objects. Cannon defined spun decompositions of E’ in
[9, Appendix III], and Daverman introduced an alternative definition for spins of
crumpled cubes, which we extend to the broader setting considered here: let
C = B"/G, where G is a decomposition of B" as in paragraph 3 of Section 6; then
the k-spin Sp“(C) (k=0) of C is the quotient space of Cx S* resulting when each
set of the form {x}xS* xe BdC, is identified to a point.

The results of this section are low dimensional versions of theorems conjectured
in [9] and established (for higher dimensions) in [13]. They portray almost completely
the interconnections among spins, inflations, and identity sewings, with the single
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unresolved exception for 0-spins of crumpled 4-cubes now revealed in Theorem 8.2
below.

Let C denote B"/G, as above, and suppose C is an n-dimensional collarable
object. The basic idea of [13, Section 11] is the observation that Sp®(C)~C uy C;
Sp'(C)~C* U,y C*, where C* = Infl(C, BAC); Sp*(C)xC** Uy C**, where
C** = Infl(C*, Bd C*); etc. Moreover if any one of these identity sewings satisfies
the Homotopical Mismatch Property, they all do.

As a result, our earlier work throughout provides the underpinnings allowing
mismatch arguments of [13, Section 11] to be applied for the following theorems.

THEOREM 8.1. Let C be a crumpled 3-cube. Then Sp°(C)~S> if and only if
Sp!(C)~ S*. Thus, for all nonnegative integers k and m, Sp*(C)~S**3 if and only if
Sp™(C)~S™*3,

THEOREM 8.2. Let C denote a closed 4-cell-complement in S*. Then the identity
sewing of C to itself satisfies the Homotopical Mismatch Property if and only if
Sp*(C)~S*** for all k>1.
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THEOREM 8.3. Let G, denote Bing’s dogbone decomposition [2], so described that
each nondegenerate element is a polygonal arc with two bends spanning the annulus
between S* and 1-S2, let G be the decomposition of B* with the same nondegenerate
elements as Gy, and let C = B3|G. Then Sp®(C) is not a 3-manifold but Sp*(C)~ S**+3
for all k>1.

This is proved exactly like the other theorems of this section, except for the fact
that C does not embed in a 3-manifold. Nonetheless, Sp!(C) corresponds to
C* Uy C*, where C* = Infl(C, BdC). We leave it to the reader to verify that the
necessary mismatch conditions are satisfied for Sp'(C). The key to the proof that
Id(BdC) and Id(BdC*) satisfy the Homotopical Mismatch Property is that no
element of the decomposition in Figure 8 yielding Sp°(C) intersects both of the disks D
and E. Thus Sp'(C)~C* u;y C*~S* Furthermore, C** = Infi(C*, BdC¥)
and Sp*(C)~S*** for k>2, as before.

9. Near-product decompositions. The results of this section generalize R. H. Bing’s
result that, if D is the dogbone space, then Dx E'~E* [3] and complement the
Edwards-Miller [19] Eaton-Pixley [17] result that closed-0-dimensional cell-like
decompositions of E* are E* factors. The results were used to prove Corollary 5.5.
They illustrate the remarks of Section 4, particularly remark (iv).

Setting. Let X, = S2xE!, and let g: XoxI— S*>xE! be an embedding
such that, for each te E, g(S?2x {t} x )= S*x {t}. Define X = g(X,x{4}) and
identify g(X,xI) with Xx7 in the natural way. Then X is a bicollared set with
bicollar Xx 7 in S3x E' which separates S x E! into two open complementary
domains U, (bounded by Xx{0}) and U, (bounded by Xx{1}). Let G be the
associated decomposition of S3x E! as in Section 1. Note that (S x EY)/G may
be thought of as resulting from one parameter family of sewings of crumpled cubes.

THEOREM 9.1. The spaces S3x E* and (S*x E')/G are homeomorphic.

The analogous result for $"x E!, n>3, is an immediate consequence of the
Mismatch Theorem (Theorem 3.2). For S x E*, the proof relies on a pair of lemmas,
the first establishing a weak version of the Taming Hypothesis, the second supplying
a version of Lemma 3.3.

Lemma 9.2. Let (f: X — [0, 1])=(X x [0, 1)) be a continuous function such that,
for some closed-0-dimensional subset C of E*, f~1({0,1}) = f'({1)<=(S3*x ).
Then there is a homeomorphism h: S®x E' — S3x E*, arbitrarily near the identity
and fixed outside an arbitrarily small neighborhood of fn (X x{1}) such that
foh(fTi{(1Px1) = @.

Proof. To avoid some of the notational and expositional difficulties of the
general case, we assume for simplicity that the closed set C is compact and that
fn (Xx{1}) is all, and not just a part, of (S*x C) n (X x {1}); that is, f intersects
X x {1} precisely in the “Cantor set” C of horizontal levels in S* x E'. The lemma
requires that we show how to pull (S3x C) n (XxI) into (S*xE*) n (X% [0, 1))
by a small homeomorphism of S3x E*.

4%
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Fix a single level te C for consideration. Then set D = (S3x{t})—-U, is
a 3-cell. We use the Canonical Neighborhood Theorem of D. R. Mc Millan, Jr. [25]
to find in S x {t} a 3-dimensional annulus Sx 7, S a 2-sphere, and finitely many
disjoint cubes-with-handles H,, ..., H, such that

() Hin(SxI) = (BdH,) n(Sx{l}) is a single disk for ecach i;

(2) BdDcInt((SxI) U H,; U ... U H}); and

3) (Sx{0})=IntD.

In addition, we require that, for some >0 to be chosen below,

(4) each H; has diameter less than §;

(5) Sx{0} and Sx {1} are homeomorphically within § of Bd D; and

(6) cach fiber {s} xI of SxI has diameter less than §.

Conditions (1)—~(5) are parts of McMillan’s theorem. Condition (6) was essen-
tially proved by McMillan in the case that concerns us (D a cell). However, for
completeness we may quote R. Craggs’ difficult theorem [11], which states that,
given condition (5) for ¢’ sufficiently small, condition (6) may be realized for § simply
by changing the fiber structure of Sx 1.

The idea now is to untangle the cells-with-handles Hj, ..., H, in S*x (Small
Interval) so that they can be pulled near Sx {1}. Then Sx {1} can be pulled near
to S {0} along the fibers of S x I. Thereby (X xI) n (§3 x {t}) will be pulled into
X x[0, 1), as desired.

The choice of § depends on any given >0, on an associated special open cover V,
of S* x {t}, and on the 2-sphere Bd D as follows. Let ¥, be a finite open }&-covering
of §3x{t} that is the union of four discrete collections ¥y, V;, V,, and V,. Let
0'>0 be a Lebesgue number for the covering V,. Let 6>0 be so small that any
d-subset of Bd D lies in a ¢’-disk in Bd D.

We choose the small vertical interval in which H,, ..., H, will be untangled as
follows. Let a<a’'<t<b’'<b be real numbers such that
(7)) (b—a)<e,

®) [a,dl]nC=0 =[b,b'] nC, and
(9) (Xx{1}) n (S’ x[a,b])={Int((SxT) U H, U ... U H)} x[a, b].

The untangling of H,, ..., H, can be described in terms of 1-dimensional poly-
hedral spines Sp,, ..., Sp; of Hy, ..., H,, respectively, each Sp; intersecting .S x {1}
in a single point x; in the disk H; n (S x {1}). By the choice of § and since Diam H; <4,
there is a homotopy of Sp; in a §’-subset of [(S3x {t})—(Sx{1})] L {x;} which
fixes {x;} and, at the final stage, takes Sp; onto a set arbitrarily close to {x;}. Note
that the image of the homotopy, being a ¢’-set, must lie in some element v of V,.
It is well-known that this homotopy of Sp; can be approximated arbitrarily closely

by an ambient isotopy of Sp; in $*x E' which fixes [(Sx/)u {J H;]xE" and
j#i
has its support in v x [a, b].
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Finally we are in a position to describe a small homeomorphism 4 of S3x E?,
fixed outside of S3x [a, b], which takes (X xI)n (S*x[a’, b']) into (X x[0, 1)) N
N (S* % [a, b]). The homeomorphism 4 is the composite k3 o h, o h, of three homeo-
morphisms which we describe in reverse order. The homeomorphism 45: S3x E! —
— S*xE' pulls (Sx[0,1])x[a’,b'] near to (Sx{0})x[a,d’] along fibers
{s} x[0, 11x {u} (se S, ue [«, b']). This pulls a neighborhood 4 of §x [0, 1]x [a’, ']
into (X'x[0, 1)) n (S*x [a, b]). The homeomorphism A,: $3x E! — §3x E? pulls
H; v ..U H, into the open set A4; h, is itself a composition of homeomorphisms
which first pull the sets H; very close to [H; n (S xI)] U Sp; and then isotope the
sets Sp;, and hence the image of H;, into A as described in the preceding paragraph;
these isotopies must be performed in a very specific order (see below) to ensure
that s, is a small homeomorphism. Finally, A; pulls (XxI) n (S3x[a’, b']) into
h3'(4) by pulling [(SxI)u | H,]x[a,b] close to [(SxI)u | Sp]x[a,bd].

Since h; and h; can obviously be chosen small, it remains only to note that A,
will also be small if properly described. The idea is to order H,, ..., H so that all H;’s
lying in elements of ¥V, come first, then those remaining that lie in elements of V,,
then those in elements of V,, and finally those in elements of V. If the isotopies
associated with H,, ..., H, and described two paragraphs previously are then carried
out in order, no point will be moved further than 4-}¢ = ¢ by h,.

To complete the proof of Lemma 9.2 it remains only to note that C can be
covered by finitely many disjoint intervals [a,, b,], ..., [@n, b,,] satisfying the con-
ditions satisfied by [a, b] in the above argument.

LEMMA 9.3. Given ¢>0, there is a closed-0-dimensional subset C of E' satisfying
the following condition:

(x) If V, is a neighborhood of C in E*, then there is an %c-homeomorphism h of
S3x E' fixed outside an arbitrarily small neighborhood of X x{1} such that
h{(XxD) N [S’*(E'=V)l} n (X x{1}) = @.

Proof. The proof is exactly like the proot of Lemma 3.3 except that in place
of Fo=X,uX,u.. we take F, =[Xn(S*x{t,} Ju[Xn(S3x{,N] U ..
where {t,, t,, ...} is a countable dense set in E*'. Lemma 9.2 takes the place of both
the Taming Hypothesis and Lemma 3.2 in the proof of Lemma 3.3.

Proof of Theorem 9.1. This follows trom Lemmas 9.2 and 9.3 and The-
orem 2.1 exactly as Theorem 3.1 follows from the Taming Hypothesis, Lemmas 3.2
and 3.3, and Theorem 2.1. As in the proof of Lemma 9.3, Lemma 9.2 takes the place
of both Lemma 3.2 and the Taming Hypothesis.

COROLLARY 9.4 (Daverman-Eaton [15]). If C, and C, are crumpled 3-cubes

and h: BdC, — Bd C, is a homeomorphism, then (C, U, C,)x E*~S3*X E*.

COROLLARY 9.5 (Bing [3]). If D is the one point compactification of Bing’s dogbone
space, then Dx E1~S3x E*.

Proof. The space D can be realized as a sewing C, U, C, of crumpled cubes [1]
so that Corollary 9.4 applies.
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