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@ r(X)=r¥)=a

(b) X, is scattered, and Y, is not;

© 1Y) = lo}+0; and

(D X = lel+o unless o = 0, in which case | X, = 1. .

Proof. Let Z be the integers (with the usual order). Given X let X,y =2Zx X,
ordered lexicographically, and Jet Y, = O x X,, also ordered lexicographically.
If o is a limit ordinal, let X, = {f: a-+1— Z: fis continuous (with respect to order
topologies on a+1 and Z) and f(#) = 0}; if f,geX, with fs g, let

B = max{{<a: f(&) # g(&)}, and write f<g if FB<g(P). It is casily checked
that X, has the desired properties.
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Abstract. The purpose of this paper is to give a characterization of weakly confluent-con-
tractible fans. After giving several definitions, it is shown that such a fan must be pairwise smooth,
must contain no ziz-zag, and lastly must contain no P-point. It is then shown that a fan which
satisfies these three properties must be monotone-contractible. This implies the fan is weakly con-
fluent-contractible in as ‘much as monotone functions are always weakly confluent. Hence these
properties also yield a characterization of monotone contractible fans.

Introduction. Several mathematicians (see [1], [4], [5], [7]) in recent years have
studied the contractibility of dendroids. We will use the term dendroid to designate
a compact metric continuum which is arc-wise connected and is also hereditarily
unicoherent. A ramification point of a dendroid is a point which is the intersection
of three or more arcs. K. Borsuk [2] has described simple types of dendroids, con-
taining only one ramification point, which are called fans. The ramification point
is called the top of the fan.

A topological space X is contractible if there exists a continuous map
F: [0, 1]x X — X such that F(0, p) is p, for each point p'of X; and there is a point g
in X such that F(1, p) is ¢ for each point p of X. The map F is called a contraction
of X.

Figure 1 in the Appendix is a contractible dendroid 4 with the surprising
property that for each choice of a contraction F, there must be a time 7 in [0, 1]
for which F(¢tx A)is a noncontractible sub-dendroid of 4. In order to restrict the
spaces it was decided to place a stronger requirement on the maps involved. The
property chosen was first defined by A. Lelek [9], that of weak-confluence of the

- maps. It was found that for dendroids, even with weakly-confluent maps, examples

of the type found in Figure 1 are still admissible. The investigation was further
restricted to the case of fans. It will be shown that a fan is weakly-confluent con-
tractible if and only if it is confluent contractible, if and only if it is monotone con-'
tractible.

A continuous map is said to be monotone if the pre-image of each continuum
lying in its image is itself a continuum. A contraction F on a space X is a monotone
contraction provided that for each time ¢ in [0, 1], the map F restricted to {¢} x X is
monaotone. .
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A continuous map is confluent if, for each continuum K lying in its image, it
is true that every component of the pre-image of X is mapped onto K. A contraction F
on a space X is a confluent contraction if F restricted to {t} x X is confluent for each ¢
in [0, 1]. '

A continuous map is said to be weakly-confluent if, for each continuum X lying
in its image, it is true that at least one component of the pre-image of K is mapped
onto K. Given a space X and a contraction F of X, we will say that F is a weuliy-
confluent contraction provided that for each time ¢ in [0, 1], the map F restricted
to {t}x X is weakly-confluent.

The main result of this paper is a characterization of those fans which admit
a weakly-confluent contraction. The following definitions will be used throughout
the paper.

DerINITION. Let X be a dendroid and let » be a point in X, Suppose there are
two sequences {r(1,n)}, {r(2,m} (n = 1,2, 3...) of points of X, each converging
to 1. We say that the former sequence dominates the latler sequence provided that
whenever there exists a point s in X and a sequence {s(1, n)} converging to s, with
the property that the arcs [(1, n), s(1, n)] converge to the arc [r, 5], then it follows
that there also exists a sequence {s(2,n)} converging to s such that the arcs
[r(2, n), (2, n)] converge to [r, s] set-wise.

. DerNITION. We say that a dendroid is pairwise-smooth provided that whengver
a pair of sequences converge to a common point, then one of the pair dominates
the other. Figures 2 and 3 in the Appendix illustrate fans which are not pairwise-
smooth. .

DEFINITION. We say that a dendroid X contains a zig-zag if there are distinct
points @, b belonging to X and a sequence of arcs [a,, b,, ¢,, d,], n = 1, 2, ... (with
endpoints a,, d, and interior points b,, ¢, in the order indicated) converging to the
arc [a, b] in such & way that {4,},=y,.. and {¢,},=y,.... each converge to g, while
{butn=1,2,.. a0d {d},- 1 , . each converge to b. Figures 4 and 5 in the Appendix
show some examples of a zig-zag.

The "P-point defined mext, is a slight modification of R. Bennett's O-point.

DerFINITION. Let X be a dendroid and let 5 be a point of X, We call b a P-point
if there is:a sequence of points in X {bu}n=1,2,... converging to b such that Ls[b, b,]
is not equal to b, and such that if [5,, x,] denotes the arc irreducible between b, and
Ls[b, b,], then it follows that {x,},.,,.. converges to b. A simple example of
a P-point is given in Figure 6 of the Appendix, )

We will show that a'fan is weakly-confluent contractible if and only if it is
pairwise smooth, contains no zig-zag, and contains no P-point.

The following notation will be used:

Cl = Closure, !

B(,) = Open ball of radius ~—~~, centered at .._, .

[a, 8] = Arc with endpoints. a;- b the ‘order does not matter unless otherwise

indicated, i L :
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{a,b] = [a, b] less {a},

[a, 0> = [a, b] less {b},

Bd = Boundary,

d, ¢ are used for distance functions,

Z () = {peX| pgb},

%) = {pe X| p<b),

Ls( ) = Limsup (as sets or else as points).

Given a fan X with point ¢, the weak cut point order (with respect to ¢) is de-
fined on X by: p<q if p belongs to [e, g] and p<gq if p<q but p is distinct from gq.

Given a fan X with a partial order < defined on X a metric o on Xis radially
convex provided that p<g<z implies o(p, ¢)<o(p, 2).

A partial order < on X is closed if the set {(a, b)| a<b} is closed in Xx X.

Chapfer 1. This section contains some basic results which will be needed to

.obtain the main theerem.

Lemma L1 Let X be a dendroid. Let {x,}7%1, {r,}=%, be sequences of points
of X converging to x,, ro respectively. Let b be a point of Lsx,, r,] and let < denote
n

the weak-cut-point order, with respect to b defined on Ls %, 7). There exists a sub-
n

sequence {[x,(J), r{N1}i=y and sequence {B.(7)}j=1 converging to b, with b.(J) con~
tained in  [x,(j), r,(/)] such that Ls[x,(j), b ()I<b (if Xo<b) respectively,
i

Ls[x.()), 20120 (if x020).
J

Proof. We may as well assume that x, is distinct from b, that for each
n=1,2,..,x, is not contained in Cl(B(l, b)), and that b belongs fo lim [x,, ;]
n

For each j = 1, 2, ..., there exists a subarc [x,, b, ] of [x,, »,] which is irreducible

between x, and CI(B(1/, B)), for each n greater than say N;. Also, sinced does mot

belong to Ls[x,, b, ], it follows that Ls[x,, b, pl< b (respectively, >5). Hence
n n

for each n larger than say M; it must be true that [x,, b, 5] isin the 1/j neighborhood
of & (b) (respectively, of % (5)). Choose n(1)<n(2)<...<nk)<..., with n (J) greater
than M;, such that [x,(f}, b, 5(/)] s in the 1/j neighborhood of (£ (b)) (respectively,
of (% (b)). Note that by, ;)() is contained in CI{B(1//, b)) for each j. Thus {6 n(D}i=1

.converges to b and. it is evident that Ls[x,(/), b, ;(/)]1<b (respectively, =b).
7

LemMA 1.2. Let X be a dendroid and {x,} 1, {r,}»= be sequences of points of X,
converging to Xo, ro respectively such that the arcs [x,,r,] are pairwise disjoint or
else x, = xo for all n while {x,, r,] are pairwise disjoint, and such that Ls[x,, r,]

n

= [x,, rol. Define y<z if y is contained in [x,, z] for some n =0, 1,2, ... If X con-
w
tains no zig-zags, then \J [x,, r,] admits a radially convex metric, with respect to <.
n=0 .

Proof. Itis known (see [3] and [10]) that the result follows ifit can be shown that
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@
whenever a sequence of points {,}n=, contained in {J [x,, r,] converges to a point y,,
then it follows that LsL(y,) is included in L(y). §1;;pose the lemma is false. There
then exist points y, 'in %5 7ls $8Y, {Pulney converging to y, in [x4, rp] and there

exist points p, in [x,, 3,] with {p,}r= converging to a point p in {y,, ro]. We may as
well suppose that p is max Ls [x,, »,]. Let g be min Ls [, 1) and note that g<y,<p.

By taking a subscquence 'md relabeling indices we can assume that there exist
points g, in [p,, 1), {q,} converging to ¢. If p denotes max Ls[x,, g,] we find

[xo,r0l - &
similarly, points p, in [p,, g,] with {§,}n=, converging to p. Note that g<y,<p< p.
Now f is contained in [g, o] which is included in Ls [¢us r,] and, applying Lemma, 1.1

we find (without loss of generality) points J, in [q,,, r,] with {p,}s%, converging to p
such that Ls 1By qu]< B. But Ls [By» g.]¢ must follow from the minimality of g,

hence Ls[p,,,q,,] = [p, q]. Also, since g € [xq, pl<Ls[x,, p,] it follows from
"

Lemma 1,1 and the maximality of p that there exist points g, in [x,, P}, {Gu}nes
converging to ¢, such that Ls[g,, p,] = [§, q]. The set Ls[g,, f,] is equal to [p, g]
n

because f is maximal and for almost all », p, is greater than or equal to p,, while ¢
is minLs{p,, r,]. By relabeling indices on the appropriate subsequences, we obtain

»
the fact that {[B,, ¢, P> dul}ney converges to [, ¢] in the manner required to form
a zig-zag. This contradicts the hypothesis and the lemma must be true.

LemMA 1.3. If X is a contractible dendroid and {a,}n-y, {b,}n=y are sequences
of points of X which converge to a,, b, respectively, then Ls[a,, b,] is hereditarily locally

n
connected. (This is an unpublished result of Charatonik.)

Proof. Suppose F is a contraction of X with F({1}x X) = z say. For each n
let [z, x,] be irreducible between z and [a,, b,]. Now

Lsfa,, b,] = Ls([x,, a,] v [x,, b,) =Ls[x,, a,] U Ls[x,, b,]

& Ls([z, x,] v [x,, a,) U Ls([z, x,] v [b, x,])
= Ls[z, a,] U Ls{z, b,]J=Ls F([0, 1] xa,) U LsF([0, 1] x b,)
[= LSF(([O; 11xa,) v ([0, l]xb,,))
= F(Ls{([0, 1]x a,) U ([0, 11x5,)})
= F(Ls([0, 1] x a,)) u F(Ls([0, 1] x b))
= F([O 11x{a}) v F(0, 1] x{b})

Now F([0, 1] x{a}) L F(0, 1]x {b}) is locally connectéd and hereditarily uni-

coherent and is thus: hereditarily locally connected. The ‘set Ls [a,,, b,] therefore
inherits the latter property.
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qlapter 2. We are now prepared to show the necessity of each of the three
conditions — pairwise smooth, no zig-zag, no P-point — in order that a fan be
weakly-confluent contractible.

THEOREM 2.1. A contractible dendroid does not contain a zig-zag.

Proof. The zig-zag is a special case of a continuum ¢f type N defined by Lex
‘G. Oversteegen. See Theorem 2.1 of his paper Non-contracnbﬂrty of Continua in
Bull. Acad. Polon. Sci. (to appear 1978).

Lemma 2.2. If a contractible fan contains a P-point, then that peint must be the
top of the fan.

Proof. Let X be a contractible fan with endpoints {e,},.,, top ¢, and let x be
a P-point of X distinct from ¢. We wish to obtain a contradiction. There is a se-
quence of points {x,},; converging to x for which the points x, lie on distinct
ares [c, e,(n)], such that if [x,, y,] is irreducible between x, and Ls[x, x,], then the

sequence of points {y,},%, converges to x. It follows that both x and ¢ belong to
Ls[x, x,] and we know, as a result of Lemma 1.3, that Ls[x, x,] is hereditarily locally
n n

)

connected. Thevefore, it is also true that Cl{ {J [c, y,]} is locally connected. Since x
n=1
o«
belongs to CI{ | [c, 3,1}, there is a relatively open neighborhood # of x lying ia
n=1

0
€ U [e, yuI} such that % is connected and does not contain ¢. However, % must
n=1

contain y,, for almost all n, and hence must contain the arcs [y,, x] for almost all n.
This implies that y, lies on {c, x] for almost all n. The arc [x,, ¢] would then be

a proper subcontinuum of [x,, y,], joining x, to Ls[x, x,] for almost all n, contrary
4

to the choice of the points y,. This contradiction establishes the lemma.

THEOREM 2.3. If a fan is weakly-confluent contractible, then it does kot contain
a P-point.

Proof. Let X be a fan with top ¢, endpoints {e,},c4, and let F be a weakly-
confluent contraction of X. If X contains a P-point, then ¢ must be a P-point
{Lemma 2.2). There is then a sequence of points {¢,}n—; converging to ¢, such that ¢,
is contained in [c, e,(m)] (n = 1, 2, ...) for distinct endpoints {¢,(n)}r=, and pos-

sessing the property that Ls[c, ¢,] contains at least one point, say y, different from c.
o

With the appropriate choice of subsequence {c,(j)}j=; one can find a sequence
of points {y;}7=, converging to y such that y; belongs to [c, ¢,(N] (G = 1,2, ...).
For each j let #; be the greatest value of ¢ in [0, 1] for which F(t, c,(j)) belongs to
[y}, e(n,)]. We may assume that the sequence {#;}7%; converges, if not one uses
a subsequence which does converge. Let #, be the limit of the sequence {£;}7%,.

Now
F(ty, ) = F (I;S(G-, (i) =

6 — Fundamenta Mathematicae z. 111/1

I—}SF(tjs () = I—}S =y
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Let % be an open neighborhood of y which is small enough that it does not con-
tain ¢ and let

K=(Cl {jgl le, F(to, cD)D)—% .

Let M be the component of K which contains ¢ and note that M is a continuum which
is mot locally connected. (If M were locally connected, then it would be impossible
for ¢ to be a P-point.) Since ¢ does not belong to F;,*(M), each component of
F (M) is an arc or a point. However, these are locally connected and thus cannot
be mapped onto M. This is contradictory to the assumption that Fis weakly-confluent,
Therefore X, must contain no P-point.

' THEOREM 2.4. A weakly-confluent contractible fan is pairwise smooth.

Proof. Let X be a weakly-confluent contractible fan with top ¢, endpoints
{€s}qea> and let F be a contraction of X. Suppose that X is not pairwise smooth.
There is then a point r belonging to X and sequences {r(1,n)}, {r(2,n)} for
n=1,2, .., each converging to r, a point s and sequence {s(1, n)} converging to s
such that lim [r(1, ), s(1, n)] = [r, 5] and a point g, sequence {g(2, n)} converging

to g such that lim[r(2, n), ¢(2, n)] = [r, p].

- Because e is not a2 P-point (Theorem 2.3), we may choose the points s, #, ¢ to
lie (in that order) on an arc [e, ;] —{c} for some B & A. Let e,(1, ), e,(2, n) be the
endpoints of the arcs on which lie (respectively) the points r(l, n), r(2, n). We may
assume that the points s(1,7), ¢(2,n) also belong to .the arcs [e, e (1, n)],
le, e“(Z,‘yn)] respectively. ’

It is important to note that the points s(1,n), q(2, n) may be chosen to lie on

the arcs [e, r(1, m)], [¢, r(2,n)] (respectively). For example, if the points s(l; n)

belong to [r(1,n), e,(1, n)], and if Ls[e, r(1, n)] = [c, z] say, there are then points
n

z(1,n) in [e, r(1, n)] converging to z such that lim[r(1, n), z(le m] = [r, z].

_ Actually there is a subsequence, but we relabel the indices. We have
lim[r(1,n), z(1, n)]<z by ohoice‘of zand >r by using Lemma 1.1. It is evident that

z<q, or else {r(2, n)} would dominate {r(1, n)} since we could put a radially convex
metric ¢ on the set

{0,210 (U 0t =00, )

n -
(by Lemma 1.2) and g<z would enable us to choose a sequence [g(1, n)] converging

to g such that lim[r(l,n),q(l,n)] = [r,q), the points ¢(l,n) lying on

.[r(l, n), z(1, n)} at the obvious correct distance o(r, g) from r(1, n).
But with z<g, we can put a radially convex metric ¢ on'the set

(Ul 2l o e, 2]
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(by Lemma 1.2) and take points s(3, ) (at distance o(s, 2) from z(1, 1)) lying on
the arc [e, z(1, n)] and take points r(3, x) (at distance g(r, z) from z(1, 1)) lying on
le,z(1,n)] and find that lim[r(3, 5), s(3, n)] = [r, s]. Hence the note stated above

is seen to be correct in this case. The other case, concerning the points ¢(2, #) may
be done using a symmetric argument (also reversing the direction of each in-
equality).

At least once during the contraction of X, the point r must be moved to the
position s as well as to the position g, since

F([0, 11x{r}) = F(Ls[0, 1]x{r(1, m)})
= Ls}:([O, 1Ix{r(1, m})=2Ls[F(0, (1, zz)j, F(1, r(1, )]
=] I:'s [r(1,m), 12Ls{s(1, n)n}
= {2*}, :

Without loss of generality we suppose that r is mapped to s first before it is ever
mapped to g. Let #, be the first time 7 in [0, 1], such that F(r,7) = 5. Let
F([0, t,] < {r}) = (say) [s, w], where w must, of course, be less than q. Let ¢, be the
last time ¢ in [0, 75}, such that F(z,r) is w.

Now, without loss of generality, the arcs [F(¢,,r(2,n)), F(to, r(2,n))] are
contained in the arcs [§(2, 1), e,(2, )] ~{g(2, n)}. (Since r has not yet moved to g,
this must be true for almost all n.)

By the choice of 7, #;, and w, it is evident that

lm[F(t;, r(2, n)), F(to, 12, n))] = [w, s].

and similarly for g.

By Lemma 1.2 we can put a radially convex metric ¢ on the union of these arcs. It
is then true that the arcs [r(2,n), F(t,, r(2,n))] converge to [r, s] and hence,
{r(1, )} dominates {r(2, n)} contrary to our initial supposition.

The theorem is thus proved.

Chapter 3. We shall now show that the three necessary conditions given in
the previous section are in fact sufficient in order that a fan be not only weakly-
confluent contractible, but also that it be monotone contractible.

Throughout this chapter we shall understand that X denotes a fan with top ¢ and
endpoints {e,},.+ which is pairwise smooth, contains no zig-zag, and contains no
P-point.

‘Whenever we refer to the limsup (Ls) of a sequence of azcs, it is to be considered
that this set belongs to one of the arcs [e, ¢,], or else ¢ would be a P-point.

DERNITION: Let n be an integer greater than zero. We say that an arc [a, b]
which, for some xe€ 4, lies on {c, &,] is a partial n-hook provided there exists
a sequence {[c, &,(m)]}y=1,2,... Of arcs, each of which contains points

¢ =p(m,0)<p(m,)<...<p(m,n)

6%
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such that for each j = 0, 1,2, ..., n, the sequence {p(m, D}h=1,,.. converges to the
point p; say; and such that for j = 1, 2, ..., n, the sequence

{[P (m’J_ ])n p(’ﬂ,j)]},,,: 1,2,

of arcs converges to. the arc [pj-1,p;], with the additionsl features:
(2) [p;s pj+1] is properly contained in [pi-1sp;] for j=1,2, =15
(®) Py-1 = b, p, = a; and finally,
(¢} Ls[p(m, n), e,(m)] is properly contained in [Pu-1, Pyl

We call the point p,_; the top of the paitial n-hook and the point Py the botiom
of the partial n-hook.

Note. Tt follows from the definition of a partial #-hook that for a given n:
either, for each partial n-hook [a, b], a<b (if n even) or, for each partial n-hook
[a, b], b<a (if n 0dd). This is because in order to satisfy the portion of the definition
concerning proper containment we must have Po<P1s P1>P2, P2<P3, etc.; that is,
2j-1<p; if j is odd, while pi-1>p; if j is even.

(Recall that our partial order < is defined as P<q provided p weakly cuts ¢
from ¢)

LemMA 3.1, If a pair of partial n-hooks intersect, then their tops must coincide.

Proof. The proof is handled by induction on . For details see [6].

LemMMA 3.2. Let € be a positive real number and suppose that X contdins no partial
k-hook for k = 2, 3, ... of diameter less than . If for a fixed k one chooses sequence
{Upe—sD), PDBi=1,2.. of partial k-hooks such —that - {p_ (i)} — py_,(0),
{P)} — py(0), then

Hm[pe (i), pu(D)] = [24-1(0), py(0)]

and the latter set is also a partial k-hook.

Proof. One need only show the lemma is true when k& = 2, since by definition,
each sequence of partial #-hooks (for n>2) is embedded in a sequence of partial 2
hooks and with the lemma true for k = 2, we can put a radially convex metric gon
the closure of the sequence of partial 2-hooks, which is then inherited by the se-
quence of partial n-hooks. Using the radially convex metric o, it is easy to show
that the lemma then holds for k = 1. We proceed by showing that if the lemma fails
for k& = 2 then one can find a zig-zag lying inside the fan, contrary to our gencral
kypothesis. See [6] for further details,

Lemma 3.3. Let & be a positive real number and suppose that X contains no partial
k-hook for k = 2,3, ... of diameter less than e. Then there exists a positive real
number 5, called the nesting diameter of X such that for each partial k-hook, the
diameter of [Pi—2,Pr-1] Is at least & greater than the diameter of [Br=1. 24, for
k=2,3,.. (using the same notation as in the definition).

Proof. If no such § exists, then it is possible to consider two cases:
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Case I. For some integer k greater than 1 there exists a sequence

{[Ps- HOR P)]}i= 1,241

of partial k-hooks such that the difference in diameter between [Pa=2(), pr—1(D)]

and [p,_ (), p(D)] is less than (1/7). Now by taking subsequences and relabeling, we
may assume (in view of Lemma 3.2) that

HIZANON 2O} = [pi—1(0), 0],
where

Pi-1(0) = limp, s, py(0) = limp,(i)
are distinct points (using the & hypothesis). Now if k = 2, it foHows that the point cis
a P-point. For k>2, we may “diagonalize” the three double-sequences
{{[[p(l, n17j):P(i: "7sj+ 1)]}7:}=1}1?;1}f=k—3.k—2,k—1
(whire {[p(i, m,j), p(i, m, j+ D} = [p{D), pjs: (D] for j=k-3, k=2, k-1,
1=1,2,..). We may now suppose after some relabeling that
Lo, my, k=3), p(G, my, k=2)]} — [p_3(0), p_5(0)],

{Ip(i, m,, k=2),p(@, m,, k=Dt — [Pr-200), py— 1 (0)],
and

{loG, myyk=1), p(i, my, DT}~ [p,-1(0), py(0)] ,
where p,_3(0) = limp;_5() and p,_ ,(0) = Iix_’npk_ 2(i). Bowever, because of our

assumption on the diameters of [Pe-2(D)s 2o i@, [21— 1), 2], having difference
Tess than (1/7), it is evident that p, _ 2(0) is identical to p,(0). Also, by using Lemma 1.2

to put a radially convex metric on CI{ U [p(, mg, k—3), p(i, m;, k—2)]}, we may
: i=1
find points z; belonging to [p(i, m,, k—=3), p(i, m;, k—2]) with z;~> pr—1(0). The
arcs
{lzi p (G, my, ke =2), p(G, my, k~1), p (i, my, Bli=1,2.-
then form a zig-zag, so this case cannot ocecur. ‘
Case II. There exists a sequence {[p;_ (i), Pid]}i=1 ... of partial i-hooks such

" that the difference in diameter between [p;_,(), p;— ()] and [ Pi~1(), pD)] is less

than [1/f). Using processes similar to those of Case I, we obtain sequences: -
Ulp G, mi, j=1), PG, mi, DI},
such that for each j, the sequence
{lpG, m, j—1), p(i, mg, HINZ;
converges to [p0), p;.;(0)] where p,(0) = Ii{npj_l(i) (possible by Lemma 3.2).
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(Note that for i/, each partial {-hook is contained in a partial j-hook from which
we obtain the points p;_;().).
We have:

Po(0)<pa(0)<p4(0) <... <p2,(0) <... <Py -1 (0) <o < p3(0) <p0).

It follows from the & hypothesis that {p,,(0)}»r while {p,,. (0)}}s such that s, r
are distinct points (at least & apart). But, without loss of generality, it follows that the
“diagonal” sequences

{p(is my, l""3)}> {p(l= m;, 1—2)}’ {P(li mi:i—l)}: {P(l, ”115 i)}’ i= 3: 414--7

each converge to s, 7, 5, r respectively, and the arcs formed by these four sequences
yield a zig-zag.

Hence, the lemma is true.

COROLLARY 3.4. Let ¢ be a positive real number. If the fan X contains no partial
k-hook for k = 1,2, ... of diameter less than ¢, then there exists a positive integer n
such that for each k>n, X contains no partial k-hook.

Proof. Let the nesting diameter of X be §. Since X is compact, we may suppose
that djameter X = 1. Choose [m—1] to be greater than say, 1/5. If [Pe15Pu] 18
a partial m-hook lying in X, then [p,-y, p,] is properly contained in a partial
(m—1)-hook which is properly contained in a partial (m—2)-hook ... which is
properly contained jn a partial 1-hook. By virtue of the property of the nesting
diameter, it follows that the diameter of [Pn—1,Pw] must be less than zero. This
being impossible, we have an upper bound n as desired. '

DEFINITION. Let X be a fan which satisfies the conditions of Corollary 3.4
(as well as satisfying the hypothesis of this chapter; namely, pairwise smooth, no
zig-zag, and no P-point). We say that X is an (¢, n)-fan. :

LemMA 3.5. Let X be an (g, n)-fan. Let k be a positive integer less than or equal
fo n and let py_, be the top of a partial k-hook. We claim that the union of those
partial k-hooks which contain the point Di—y Jorms a closed set and is also a partial
k-hook.

"Proof. Each summand of the union has the point DPi—1 a8 its top, by virtue of
Lemma 3.1. If k is even (respectively, k, odd), then the bottom of each summand
belongs- to {c; py—,> (respectively, {p,_,, e,> for some ae 4) and there is then
a point g which is the infimum (vespectively, supremum) of these bottom points.
If we.approach this limit point with a countable sequence {p (i, k)}%4 of the bottom
points, then we have:

@ {p(, O}l —g,

®) {pG, k=D}Z, = {Pk~1} = pr—y implies

© {[P(i: k), p(i, k_l)]}?;l = [Pe—1, 4] -

Tt follows from Lemma 3.2 that the set [Pe—1, q]is also a partial k-hook. This
set is thus contained in the union under consideration, but also contains the union

f
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by choice of g. The union is therefore equal to the partial k-hook [pr_4, g] and is
closed.

DEFINITION. A set of the form [p,_,, ¢] is called a k-hook. We drop the adjec-
tive “partial” since such a k-hook is complete in the sense that it does not properly
lie in another partial k-hook. It should be noted, however, that each k-hook also
satisfies the definition of a partial k-hook (Lemma 3.5), and every lemma or corollary
we prove concerning a partial k-hook is also true for a k-hook. Now, for any pair
of k-hooks, either the two are identical or else they do nof intersect, in view of
Lemma 3.1. We now refine this statement.

LemMA 3.6. Let X be an (e, n)-fan. There exists a positive real number § such
that for each ke<<n, and for each a € A, for each pair of k-hooks lying on the arc [c, e,
it is true that their 8-neighborhoods are mutually disjoint.

Proof. If the lemma fails, then we may choose a k-hook [p._,, p;] on an arc
[c, e,] with a sequence {[p(i, k—1), p(i, k)]}%; of k-hooks on [c, ¢,], each one of
which is mutually disjoint from [p,_y, p;] with the property that

d(pk-l H P(is k))<(l/‘)
(vespectively, d(py, p(i, k—1))<(1/)

depending upon whether the k-hooks converge to [p,_;, p,] from “above” or from
“below.” We may assume that {p(i, k)};2, converges to p(0, k) say, and that
{p(i, k—=1)}%, converges to p(0,k~1). From Lemma 32 we know that
{[p(i, k=1), p(i, k)]}i2, converges to [p(0, k—1), k(0, k)] and that the latter set
is at least a partial k-hook (of diameter at least ). Now the point p (0, k —1) (respect-
ively, p(0, k)) must lie outside the arc [p,_4,p.], but it follows from (s) that

()

p(0,k) = py_y
(respectively, p(0,k~1) = py) ,

which is contrary to Lemma 3.1. It therefore must be possible to find the desired
number §. '

LEMMA 3.7. Let X be an (e, n)-fan. There exists a positive real number t such
that for each partial n-hook lying in X, it is true that for éach k<n, and for each
partial k-hook, neither the top nor the bottom of that k-hook may lie inside the
t-neighborhood of the n-hook.

Proof. Let [p,-,,p, be a fixed partial n-hook, with top p,., and
bottom p,. If no = works for this particular case, then there exists a sequemnce
{lqi, k=1), g(i, k)I}i=1,2,... of partial k-hooks (for some k<n), which converges
to say, [¢(0, k—1), (0, k)], a partial k-hook itself (Lemma 3.2) and, with either
g0, k—1 or q(0, k) belonging to [p,_;; p,]. But [p,-1, p,] is contained in a partial
k-hook whose top lies outside of [p,_,, p,], by definition. Since' [¢(0, k—1), (0, k)]
intersects this partial k-hook, Lemma 3.1 implies that the top ¢(0, k—1) also must
lie outside of [p,—1, p,]- We are led then to the case where the bottom ¢(0, k) belongs
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t0 [py-15pa]- The partial n-hook [p,_y, p,] is contained in a partial (k4 1)-hook
[Pes Per1] by definition, with, say, the sequence {[p(m, k), p(m, kD=1,
converging to [py, Pyy] in the usual way. As in the proof of Lemma 3.1, we may
assume that there is a sequence {g;(m)},=1,,,.. of points belonging to
[p(m, k), p(m, k+1)]
for each m, which conveiges to g(0, k). There is also a sequence {¢(0, m, 3 -
of points, given by the definition of partial k-hooks, which converges to ¢(0, ).
It can be shown that meither of the pair {g(m)}e=y, {g(0, m, k)}®=y dominates
the other (using methods similar to those in the proof of Lemma 3.1), which is con-
trary to the pairwise smoothness of the fan X. We can therefore find a positive
real number ¢ such that for each k<n, the top or bottom of no partial %-hook
lies within 7 of [p,.4, p,]. Moreover, the minimum value of 7 we will need to choose
as we let the partial n-hook vary, will be greater than zero. If it is equal to zero, we
find a sequence {H,};=; of partial n-hooks requiring values of 7 say, 7, where
{tu}n=1 converges to zero. But then lim{H,}, which is itself a partial n-hook
n

(Lemma 3.2), will require a choice of © = 0 (using a diagonalization process as done
previously), which is contrary to the proof, just.completed, that eacia given partial
n-hook admits a positive value of .t. The lemma is therefore proved as stated.

LeMMA 3.8. Let X be an (g, n)~fan with n>1. There exists a map F from [0, 11x X
into X such that for each point p of X we have F(0, p) = p and such that F{1}x X)
is an (e, n—1)-fan and, moreover, for each time t in [0, 1], the map Frestricted to
{t} x X is monotone.

Proof. Can be found in [6].

Lemma 3.9. Let X be a fan which is pairwise smooth, contains no zig-zag, and no
P-point. There exists a map F from [0, 1]1x X into X such that Jor each x in X,
FQ0, x) = x and F({1}x X) contains no partial k-hooks except k = 1. Moreover,
F may be chosen so that F restricted to {t}x X is monotone Jor each t belonging to
[0, 11.

Proof. In view of Corollary 3.4, we may assume that for k = 1,2, ..., the
fan X contains-no partial k-hook of diameter less than 1/k. For some n> | we assume
that we have a map F so that the image F(1/n, X) contains no partial k-hook for
each k>n. That is to say F(1/n, X) is a (1/n, n)-fan. We may then apply Lemma 3.8
to obtain a (1/(n—1), n— 1)-hook during the time between = I/nand ¢t = 1/(n-1).
By composing these maps in the appropriate fashion and setting F(0, X) to be
the identity mapping, we obtain the desired result.

THEOREM 3.10. Let X be a fan which is Dpairwise smooth, contains no zig-zag and
no P-point. Then X is monotone contractible.

Proof. In view of Lemma 3.9, we may assume that for n>1 it is true that X
contains no n-hook. Let < denote the weak cut point order with respect to the top ¢
of X. We claim that X admits a metric o which is radially convex with respect to <.
It follows from [3] and [10] that this will be the case provided we show:
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If a sequence { p:,}u%; of points of X converges to a point p, in X, then it follows

that LS{L(p,)} is contained in L(p,). Let us say that p, belongs to [c, e (n)] for

n=29,1,2,.. Let z, = maxLs{c, e,(n)]. We may as well assume that there are
n

points z, belonging to [e, e,(n)] such that {z,}2., converges to z,. If Ls[z,, e, (n)]

contains a point different from z,, then wu let y, be the least such point. It follows
that [y,, z,] is a 2-hook, contrary to our above assumption. If, on the other hand,
Ls[z,, efn)] = zo, then for almost all n, p, .clongs to the arc [c, z,]. Since

n
{le, zaI}nx 1 comverges to [c, z,], Lemma 1.2 shows us that Ls[c, p,] is contained
n

in [¢, po], which was to be shown. It is now easy to see that X is monotone con-
tractible.

Appendix. This section is devoted to a discussion of various examples. The first
one we wish to consider is a dendroid which has the property that, although it is
contractible — no matter which choice of a contraction is made, thére nust be a time
at which the image is a noncontractible sub-dendroid. )

Fig. 1

The dendroid 4 consists of the triod abc with center d, together with a sequence
of arcs {[a, d,, b, €4, Cys fus gu)} Wheren =1, 2, ..., converging to the triod in the
manner indicated. i o - )

It is possible to contract 4 to the point {a} by the following informal recipe.
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Step 1. While keeping the points a, b, ¢ fixed in place you must push the point J
along the arc [db] all the way up to b, contracting the points in front of d «d, b))
into b, and stretching out those behind d ([a, d, [¢, 4>). At the same time and in

the same manner you must move the points {d,} for n = 1, 2, ..., {g,},= 1,205 and

{/idn=1,2,. Up to the points {b,}, {5,}, and {g,} respectively.

Step 2. Keep the arc [d,, e,] together as a single point (for each 1) and move
this point down from &, to e,. At the same time you keep the arc [g.: /.1 together
as a single point (for each n) and move it from g, down to f,. This forces the arc [d, b]
to remain together as a single point and to move from b down to 4. The arc [a, d,]is
now stretched out to cover [a, d,, b,, ¢,] while the arcs [e, ], [ess ea), [ens 1) slip
back to their original positions. The arc [a, d] covers [a, b, d] by going up to b and
folding back over itself to d.

At the end of this step the arcs (f}, g,] have .vanished.

Step 3. Push d along the arc [d, ¢], all the way out to ¢. At the same time you
must move the points ¢, (now the image. of [d,, e,]) out to ¢,, and move the points f,
(now the image of [g,, f;]) out to ¢,. This action collapses the arcs [dys by, €4 € fos 9]
down to the single point ¢, (for each n) and leaves the arcs [a, d,] stretched all the
way along [a, d,, b,, €,, ¢,]. The arc [ad] now is stretched up to b, folds back to d,
and then out to ¢. The arcs <c,, f;, 9,] have now vanished.

Step 4. Let the arcs [a, d,] snap back from [a, d,, b,, e,, ¢,] to cover just
la, d,, b,, e,]. This makes the arcs {dc], <e,, Cyy Jus 9] vanish,

Step 5. Let the arcs [a, d,] continue to reverse their stretching process so that
they are back to covering just [, d,]. The arcs {d, b, {d,, b,, e,, c,, f,» g,] have
now vanished. '

Step 6. Finally, contract [, d,] down to_ g (for each b), thus collapsing [da]
to the single point {a}. The dendroid A is therefore a contractible space. There
follows a sketch of the proof that for each possible contraction F of A, there exists
a time 7 in [0, 1] such that F(¢x 4) is not contractible.

Proof of the above remark. Let the set S consist of those times ¢ in [0, 1]
such that the arc [b, d] intersects Ls {F(tx4) 0 [c,, g,]}. Let the set T include the
times # in [0, 1] for which b belongs to Ls {Ftx A) ne,, g,]}. Now T is evidently
a proper subset of S. For ¢ belonging to S—17, the set F(t > A) would look like:

The dendroid (see Fig. 2) is not contractible since any contraction of it would
involve moving d along [de] to ¢. Since the sequence {d,} converges to d, almost all of
the points d, must slide up through Jus b, before dis moved to ¢ or else down through
{a} before d is moved to ¢. But this it not possible because the point & would then
move to b or a without the points { J»} being able to follow (since the arcs [h,, g,]
are no Jonger in the space). Therefore, the remark above is correct.

The fan below. was inspired by the example of F. Burton Jones. in 7.

The fan (see Fig. 3) consists of a countable sequence of arcs {[c, ,1} con-
verging to [c, al, together with a countable sequence of 2-hooked arcs [c, d,, a,].
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LH

Fig. 3

Fig. 4
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Out of the pair {a,}, {b,} each of which converge to {a}, it is not possible to find one
which dominates the other.

In fact, the arcs [a,, d,] converge to [, d] with no similar capability with respect
to the sequence {b,} and the arcs [c, b,] converge to [c, b] with no similar capability
on the part of the sequence {g,}. Hence this fan is not pairwise smooth.

This fan (see Fig. 4) consists of a countable sequence of 2-hooked arcs [¢, a,]
and a countable sequence of 3-hooked arcs [¢, b,]. Out of the pair {a,}, {b,}, it is
not possible to find one which dominates the other. The arcs [4,, d,] converge to [a, d]
with nothing similar for {5,} and the arcs [b,, ¢,] converge to [a, ] with nothing
similar for {a,}.

Our mext example is a fan which contains a zigzag. The sequence

{[(l,,, bn’ (,‘”, dn]}flo=1

of arcs converges to the arc [a, b] in the manner required by the definition of
a zig-zag.

by
dy
ap
I3 b
2
az dz
(3]
a b
Fig. 5§

Another possible way in which a fan may contain a zig-zag is illustrated below.

ap
€

by
d

Fig. 6

. Once again. the sequence {[g,, b,, c,, 4,]}2%, of arcs converges to the arc [a, b]
in the appropriate manner.

Tn the fan below, the point b is an example of a P-point. The set Ls[b, b,] is
n
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just the arc [b, d]. For n = 1, 2, ..., the arc which is irreducible between the point b,
and the set Ls[b, b,] is simply the arc [b,, b).
» .

1
2]
[3]
{41
{5]
[6]
[71
[8]
191
[10]

{11]

This concludes our collection of examples.

b b, by
Fig. 7
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