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A characterization of well-orders

by

Brian M. Scott (Cleveland, Ohio)

Abstract. Let (X, <) be a lincar order. X is cushioned if, for every x € X and every order-
isomorphism f; X - X, x<f(x). We prove the following results. THEOREM. If X is cushioned,
then X is a well-order or a densely-ordered sum of well-orders. COROLLARY. X is a well-order iff X
is both cushioned and scattered. COROLLARY. X is a well-order iff X is hereditarily cushioned.
TuEOREM. If | X|<w, X is a well-order iff X is cushioned; however, assuming the GCH, for any =#>w
there are both dense a(ld non-dense cushioned orders of power x% which are not well-orders.

0. Introduction. Let (X, <) be a linear order; if, for every x e X and every
order-isomorphism f: X — X, x<f(x), we shall say that (X, <) is cushioned.
Obviously every well-order is cushioned, and it is natural to ask whether the converse
ts also true. The answer, as one might guess, is “no”: there is a dense subset, X, of
ihe real line, of power 2%, such that the only order-isomorphism of X into itself is
the identity (see 3.2). In this note we characterize cushioned linear orders and use
this characterization to derive two mew characterizations of well-orders ().

0.0- THEOREM. If a linear order is cushioned, then it is either a well-order or
a densely ordered sum of well-orders.

0.1. COROLLARY. A linear order is a well-order iff it is both cushioned and scattered
(i.e., no infinite subset is dense — in — itself). )

0.2. COROLLARY. A linear order is a well-order iff it is hereditarily cushioned.

1. Notation. We adhere to the convention that an ordinal number is the set
of smaller ordinals, and that a cardinal number is an initial ordinal; these will be
denoted by lower-case Greek letters. According to context, ¢ may also designate the

" order-type of the well-order (a, €). Indeed, if 4 is any set with some linear order

on A understood, we usc 4 also to denote the order-type of 4; 4* denotes the inverse
order-type obtained by “turning 4 around.” We use the standard notation for open
and closed intervals, e.g., (x,») = {z: x<z<y}, and [x,—) = {y: yzx}

() T am grateful to the excellent referee for bringing to my attention a serious oversight in
the original statement of 4.0, for suggestions leading to significant improvements in the readability
of 3.1-3.4, and for his efforts in attempting to track down the reference mentioned in the footnote
to 3.3, .
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[Z]and [W] will denote two generalized order-types, as follows: [Z] is any order-
type of the form a*4-f, and [W] is any order-type of the form Y {or: ne o},
where o and B are limit ordinals. (As usual, if {4, <,) and {B,, <,> are linear
orders (for ae A), then Y {B,: as A} is the order-type of ) {{a}x B,: ae 4}
ordered so that {a, bp><{(a’,b") iff a 4a', or a = a’ and b ,b')

Finally, Q denotes the set of rational numbers (with the customary order).

2. The proofs. We begin by assigning to each linear order, X, an ordinal rank
r(X). Suppose that R is a convex equivalence relation on X, i.e., an equivalence
relation with convex equivalence classes. For xe X, let R(x) = {ye X: xRy};
since R is convex, X/R = {R(x): x€ X} is the image of X under an order-homo-
morphism whereby if R(x) ¢ R(y), then R(x)<R(y) iff x<y. We define from R
a new equivalence relation, R¥, on X as follows. If x, ye X with x<y, put xR*y
iff there is a finite family {x,,.., %,}SX such that x = xp<x,<...<x, =y,
[x:, X;41)/R is a well-order if i <n is even, and [x;, x;,,)/R is an inverted well-order
if i<nis odd; and if y<x, put xR¥*y iff y R* x. Clearly RCR* and R* is a convex
equivalence relation on X.

Now let R, be the identity relation on X, and, for each ordinal a>0, let
R, = (U {Rf: E<a}); then each R, is a convex equivalence relation on X, and

__R,, whenever o<f. Define r(X) = inf{a: R, = R,.,}; clearly r(X) exists,
since it must in fact be less than |X|*. Note also that if « = r(X), then ecither
JX/R,| = 1, (.e., R, = Xx X), or X/R,is a dense linear order; and that X is scattered
iff |X|R,| = 1. We say that X is elementary if X is scattered and r(X)<1.
0. LemMa. Let X be elementary, and let xe X be arbitrary. Then the order-type
of [x, —) can be represented as a+1+Yy. {T,: ne o}, where each T, is of some type
[Z]+1, or as a+1+([Z]+ D) +...+([Z]+ 1)+ [W] (for some finite number of terms
[Z]1+1), or as an initial segment of either of these generic forms. T is a possible order-
type for («—, x] iff T* is a possible type for [x,—).

The proof of 2.0 is strajghtforward but tedious and is omitted. (It would be

. possible to formulate this result without reference to [Z] and [W], but it is useful
to think of these generalized types as being pictorially “like” Z and “like” w,
respectively.)

2.1. LemMma. If X is elementary and cushioned, then X is a well-order.

Proof. Since. no inverse (infinite) well-order is. cushioned, it is clear from 2.0
that if X is not a well-order, then it is of the form [W]*; thus, it suffices to show
that X has a first element. If not, let (x,: ne w) be a strictly decreasing sequence
co-initial in X, and, for n>m, let o(n, m) be the order-type of the segment [%5 X)-
If there were a strictly increasing sequence {n(i): i € @) such that

a(nli+2), n(i+ 1))z a(n(i+1), n(i)) for each icw,
then clearly X would not be cushioned; thus, there must be a strictly increasing
sequence <{n(i); i€ w) such that

a(n2i+1), n@2))>a(n(2i+3), nQ2i+2)) for all icw,
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which is impossible. Thus, X has a first element and is therefore a well-order.

Proof of Theorem 0.0. Suppose that X is a cushioned linear order; then
r(X)<1. For if not, there must be points x, y e X such that R,(x) and R,(y) are
adjacent in X/R,; but by Lemma 2.1, R,(x) and R,(y) are well-ordered subsets of X,
which implies that xR;y, i.e., that R,(x) = Ry(¥), a contradiction. If, however,
X is cushioned, and r(X)<1, then either X is scattered, in which case |X/R,| =1
and X is a well-order, or X is not scattered, in which case X is a densely ordered sum
of well-orders.

Proof of Corollary 0.1. Immediate from Theorem 0.0.

~ Proof of Corollary 0.2. Immediate from Corollary 0.1 and the observation
that every dense linear order, and hence every non-scattered linear order, contains
an infinite, decreasing sequence and is therefore not hereditarily cushioned.

3. A Special Case. We retain the notation of Section 2. )

3.0. TuEOREM. If X is a cushioned linear order, and | X/R,|<w, then X is a well-
order. (In particular, a countable, cushioned linear order is a well-order.)

Proof. By Corollary 0.1, it suffices to show that X is scattered. Suppose not;
then, as is well known, X/R, is isomorphic to one of Q, Qn [0,1], Q n [0, 1),
or QO n (0, 1], none of which is cushioned, so we must have r(x) = 1. It follows that
there are non-zero ordinals o, (p € Q) such that some convex subset of X is iso-
morphic to Y =3 {#,: peQ}. Let 4= {x,: peQ}, and, for aed, let
0() = {pe O: a,>a}. We may without loss of generality assume that Q(c) is
dense in Q for each xe 4. (For if not, there are a f,e 4 and an open interval
Jo< Q such that «,< f, for each p € Jy; but then either Q(a,) is dense in J, for each
pelJ,, or there are a f; <p, and an open interval J, £J, such that a,<f, for each
pelJ,. Strictly decreasing sequences of ordinals being finite, this reduction must
terminate after a finite number of steps, at which point — after suitable relabling —
we have the desired Y.) But then Y is not cushioned, for we can construct a “bad”
order-isomorphism of ¥ as follows.

Enumerate 0 = {p(n): new}. By induction on n, choose distinct g(n) e O
so that g(0)<p(0), <oy for each ne o, and, for n<m<w, gM<q(m) iff
p)<p@m). Then f: Y—=Y: (p(n), &) v <{q(n); &> is the desired function.

This completes the proof, since X is cushioned iff every convex subset of X is
cushioned.

As the following results show, however, it is at least consistent with the usual
axioms of set theory (with choice) that |X/R,|< o be the jnly such special case.

3.1. LeMMaA. Let x be an infinite cardinal such that 2% = x. (By definition,
2% = sup {2’“: A<x}.) Then there is a complete, dense, linear order, {X, <), such that

W 1X] =27

@) if x,ye X, and x<y, then |(x,y)| = 2*; and

(3) X has a dense subset, D, such that |D| = x%. (That is, D is dense in the order
topology on X.)
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Outline oftheproof. Let ¥'= "2, the set of all functions from x to 2(= {0, 1}),
and let R be the relation on Y that identifies adjacent points in the lexicographic
ordering of Y; that is,

R={{,We¥xY:x=ypv g

vﬂme%([(x(oc) =0Ay@=1AVBex\@+1)(x(B = 1Ay() =0)v

V{x(@ = 1ay@ = 0AYB e x\@+ D) (x(B) = 0Ay(f) = 1))| A

, o AYBeu(x(B) = y(B))}.

Let X' = ¥/R, and let < be the ordering on X induced (as in Section 2) by the lexi-
cographic ordering on Y. Finally, let D consist of those points of X that derive from
adjacent pairs in ¥: D = {R(y): ye Y A|R(¥)| = 2}. It is straightforward to verify
that {X, <) satisfies all requirements except possibly that | D] = %, which follows
from the easy observation that |D| = 2%,

3.2. THEOREM. Let %2 be such that 2° = x. Then there is a dense linear order
of power 2* swhich admits no non-trivial order-isomorphism into itself.

Proof. Let (X, <) be the lincar order given by Lemma 3.1, with dense subset D
of power . View X as a topological space with the order topology. X has a base
of power % (consisting of open intervals with endpoints in D), so every subspace
of X has a dense subset of power at most x. Let & be the set of 1-1, order-preserving
functions from Xinto X, and, for fe &, let B(f) = {xe X: fis discontinuous at x}
IED(f) is a dense subset of X\B(f) of power x, then f PXNB(S )) is completely
deterriined by f1D(f), so there are only | X|1° < 2* possibilities for f(XN\B(f )).
Moreover, each fe & is monotone, so |B(f)|<x, and theré are at most 2* possi-
bilities for f+B(f). Finally, X has 2* subsets of power %, so |F| = 2% let
F = {f,t «e2"} and let {¥,: o €2} be an enumeration of the non-empty, open
intervals of X.

Let {p,: €2} be an enumeration of 2*x2% and let my: 2% — 2% and
my: 2% — 2% be such that p, = {my(®), 7,()) for each o & 2% By recursion on o e 2¥
choose points x, and y, in X so that for each « e 2%

() %€ V(g2 B<a} U {np: f<al);

(D) v = fro(®) € {37 f<a} U {3: f<a}; and

(i) if fro Vayey is not the identity on Vaiw» then y, # x,.

Condition (2) of Lemma 3.1 and the fact that oty 18 1-1 ensure that (i) and (ii)
are always satisfiable. The satisfiability of (iii) follows from, (2) of Lemma 3.1 and the
fact that f,() is monotone. (E. g., taking f'= Jrotwy a0d V=V, (), if x € Vand f (x)>x,
choose y e ¥V n (x, £()), and note that ' (z)>z for all ze (x, )S V) -

Let Y= {x,: «ae2}. Clearly |¥ n (x, )| = 2* whenever x, y € X and x<y,
so Y is a dense linear order of power 2 (with respect to the order inherited from X ).
Suppose that f* ¥ — ¥ is 1-1 and order-preserving. X is complete, so f may be ex-
tended to a function g: X=X by setting - '

g(x}‘= {f(x)i,i' if xeV,

sup{f(»): ye Yay<x}, if xeX\V,
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where the supremum is taken with respect to the ordering on X. Clearly g € &,
say g = f,. Moreover, if g is not the ideatity on X, there is a e 2* such thatg } ¥, r
is mot the identity on V. Then, choosing y € 2* so that p, = <o, B>, we see that
Jx) = fix,) = y,¢ ¥, which is absurd. It follows that f is the identity on ¥, so
that there is indeed no non-trivial order-isomorphism of Y into itself.

3.3. Remarks. Of course, 2% = o, and in that case we may take X to be the
real line (*). For %> the condition is more restrictive. For instance, if »% = A%,
then 2% = 2% 50 that % = 2% iff 2* = 1*. More generally, if the Generalized Con-
tinuam Hypothesis (GCH) holds, then x = sup{A™: A<x} = sup{2*: A<x} = 2%
for all x> o.

3.4. THEOREM. Assume the GCH. Then for any x> there is a dense, cushioned
order of power x.

Proof. If % is a successor carainal, the result follows from Lemma 3.2 and
Remarks 3.3. If x is a limit cardinal, let 2 = cf%, and write x = sup{x): a e 1},
where %, <%y whenever a<f <. For each a e A let X, be a dense, cushioned order
of power %, without endpoints, as constructed in the proof of Theorem 3.2. Observe
that each xe X, has x] predecessors in ¥,. Let X = N {X: aeld}; | X =1
X is densely ordered, and, if xe X,= X, then x has x predecessors in X. Thus,
if f1 X X 18 1-1 and order-preserving, x e X,=X, and f(x)<x, then f maps
{ j}e X,: y<x} into a proper initial segment of itself, which is impossible; thus,
X must be cushioned.

4. Remarks. Although the techniques of Lemma 3.2 and Theorem 3.4 produce
only dense, cushioned orders, they can be combined with the following proposition
to produce cushioned orders of rank 1 which are not well-orders.

4.0. PROPOSITION. Let X be a dense, cushioned order, and let Y be any order
such that YR, is isomorphic to X and R,(y) is a well-ordered subset of Y for each
yeY; then Y is cushioned. )

Proof. View Y as {{x, £): xe X a¢ e a,}, ordered lexicographically, for some
non-zero ordinals «,. Suppose that f: ¥Y—Y is an order-isomorphism, and define
F: X— X by F(x) = y if f({x, 0)) = {», & for some & ea,. Then F is an order-
isomorphism; for otherwise there are x,ye X with x<y such that F(»)<F(x)
and f({x, D) <f((y, 0)), i.e., there are a ze X and §,neq, such that &<y,
S«x,00) =<z, 8, and f((y,00) =<z,7>; but then f maps the mon-scattered
interval [{x,0>,{y,0))] order-isomorphically into the scattered interval
[Kz, &, {z, #], which is impossible. If, now, f ({x, &))<{x, & for some {x, {H e ¥,
then clearly f({x,0))<<{x, 0, since o, is a well-order; but then F(x)<x in X,
which, sinc X 1s cushioned, is impossible. Hence Y is cushioned.

Finally, we may note the following existence theorem.

4.1. PROPOSITION. For each ordinal o there are linear orders X, and Y, such that:

(). T have been told that Sierpifiski proved this case of Theorem 3.2 in the 1930, but neither
the referee nor T was able to find a referencs.
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@ r(X)=r¥)=a

(b) X, is scattered, and Y, is not;

© 1Y) = lo}+0; and

(D X = lel+o unless o = 0, in which case | X, = 1. .

Proof. Let Z be the integers (with the usual order). Given X let X,y =2Zx X,
ordered lexicographically, and Jet Y, = O x X,, also ordered lexicographically.
If o is a limit ordinal, let X, = {f: a-+1— Z: fis continuous (with respect to order
topologies on a+1 and Z) and f(#) = 0}; if f,geX, with fs g, let

B = max{{<a: f(&) # g(&)}, and write f<g if FB<g(P). It is casily checked
that X, has the desired properties.
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On contractible fans
by

Barry Glenn Graham (Riverside, Ca.)

Abstract. The purpose of this paper is to give a characterization of weakly confluent-con-
tractible fans. After giving several definitions, it is shown that such a fan must be pairwise smooth,
must contain no ziz-zag, and lastly must contain no P-point. It is then shown that a fan which
satisfies these three properties must be monotone-contractible. This implies the fan is weakly con-
fluent-contractible in as ‘much as monotone functions are always weakly confluent. Hence these
properties also yield a characterization of monotone contractible fans.

Introduction. Several mathematicians (see [1], [4], [5], [7]) in recent years have
studied the contractibility of dendroids. We will use the term dendroid to designate
a compact metric continuum which is arc-wise connected and is also hereditarily
unicoherent. A ramification point of a dendroid is a point which is the intersection
of three or more arcs. K. Borsuk [2] has described simple types of dendroids, con-
taining only one ramification point, which are called fans. The ramification point
is called the top of the fan.

A topological space X is contractible if there exists a continuous map
F: [0, 1]x X — X such that F(0, p) is p, for each point p'of X; and there is a point g
in X such that F(1, p) is ¢ for each point p of X. The map F is called a contraction
of X.

Figure 1 in the Appendix is a contractible dendroid 4 with the surprising
property that for each choice of a contraction F, there must be a time 7 in [0, 1]
for which F(¢tx A)is a noncontractible sub-dendroid of 4. In order to restrict the
spaces it was decided to place a stronger requirement on the maps involved. The
property chosen was first defined by A. Lelek [9], that of weak-confluence of the

- maps. It was found that for dendroids, even with weakly-confluent maps, examples

of the type found in Figure 1 are still admissible. The investigation was further
restricted to the case of fans. It will be shown that a fan is weakly-confluent con-
tractible if and only if it is confluent contractible, if and only if it is monotone con-'
tractible.

A continuous map is said to be monotone if the pre-image of each continuum
lying in its image is itself a continuum. A contraction F on a space X is a monotone
contraction provided that for each time ¢ in [0, 1], the map F restricted to {¢} x X is
monaotone. .
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