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By Proposition 1 from [7],

I(K, w(F)x W(g’-z))<l(“(y1)—X1a W(F )+ I((F,), w(F ).
It is easy to see that (Theorem 3.2 and Theorem 1.7 from [5]) the right part of this
inequality is equal to R-I(X,, w(F D)+I(Xy, w(F ). Finally, it is easy to see that
Theorem 3.2 completes the proof.

4.6. COROLLARY. If X is not realcompact and X, is realcompact, then
R-I(X, % X, BX, x BX,)< R-Ind, X, +1Ind, X, .
Furthermore, if X, x X, is z-embedded in BX, 1 X BX,, then
R-Indo(X; x X;) < R-Indy X, +Ind, X, .

It should be observed that the corresponding statements (Propositions 44,45
and Corollary 4.6) hold also for covering realcompactness degree.
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The cohomological dimension of the ordered set
of real numbers equals three

by

Stanistaw Balcerzyk (Torur)

Abstract. The purpose of the paper is to show that the cohomological dimension of the ordered
set of real numbers equals three. An appropriate resolution is constructed.

We preserve the terminology and the notation of [1].

Let C be a small K-category where K denotes a commutative ring, then
C® = C*®yC is an enveloping category of C and Homg(= C for abbreviation) is
a K-functor C®— K-Mod. The cohomological dimension dimgC is defined as
homological (projective) dimension of C in the category of K-functors K-Mod®”,

Any partially ordered set = may be viewed as a small category with a set of
objects = and 2 unique map x — y for any x< yin 7. dimg Kr is denoted by dimg,
where K7 is a K-category generated by 7. Let R denote the ordered set of real
numbers.

The purpose of the present paper is to show that dimg R = 3 for any commuta-
tive ring K. We construct a particular projective resolution of R. In [1] Mitchell
proved that 2<dimy R<3 assuming continuum hypothesis and expected this di-
mension to be 3; he proved even more, that dimg R<n+2 if |R] = ,.

I like to thank Dr. Andrzej Prészysiski for correcting a detail of the proof.

1. We denote by R(x,y) for x, ye R a K-free generator of Homygp(x, )
(i.e. a unique map x — y of R) if x<y and zero in the opposite case. ® means .
We remind that R(., ))®R(b, .) denotes a K-functor R®— K-Mod which is re-
presented by the object (a, b) of R°. It associates with an object (x, ) of R the free
K-module on R(x, ) ®R(b, y) if x<a, b<y and zero in the opposite case. Functors
R(., ))®R(b, .) are projective in the category (K-Mod)®® of K-functors.

We denote by Q the ordered set of 2-rational numbers, i.e., numbers of the
form m/2" for some n = 0,1, ... and some integer m. We define a projective re-
solution 0—P, 3 P, % p, 5 Q — 0 of the functor Q in the category (K-Mod)®”
as follows :

Po= @ 0(, 980, ),

0

Pi=P=® @ Q(.m2)®0(m+D)2,.)

n=0 m=-cw
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. 0 2 . . .
and denote by 7, #),, tmn the structural injections of direct summands. The

maps ¢, dy, d, are defined by
E) 0 DO, d®Q(a, ) = 0(x,3),
d, tnlz,n = t&.+ 1),'2""‘112/zn ,

2 _ 1 1
Dotyn = by =Tt 1= Papt f st -
Then we have

2 1 1 1
d dz Ly = dl(tm,n"‘ Domnt 1tz 10t )

_ 0 0 ) o o
= lin+ 1)/27«“1»:/2"—’(2»-~|—1)/7."+1'i‘fz»./z"*‘l"’(2m+2)/2'=+1""’(°2m+1)/2n'H =0
and

e(x, Y)dy(x, ) Q (x, m2)® Q((m+1)/2", y)
= &(x, DI (x, (n+1/2)@ O((m+1)/2", 1)~ 0 (x, m29@ O (m[2", )]
= 0(x,5)~Q(x,) = 0. '

Since Kere(x, y) is generated by elements of the form Y= Qx, DR b, y)—
—0O(x, )® Q(a, j) with a<b then if g = k[2", b = [j2" we get
1-1

Y= :Z;c @ Q(x, 2@ Q((i+1)/2", ) e Imdy (x, 1) .
Let us assume that 71 € Kerd(x, y) for x<y (in the case x> y we have
Py(x, ) = 0) then
71 = Z Am.n Q()C, m/20)® Q((m+ ])/2”: )’)
with 4, . € K and for x<mf2"<(m+1)/2"<y we have
O(x, m2)®@ Q((m+1)/2", y)
= 00x, 2m/2"H@ Q(@m+1)2"*%, y)+ O (x, @m+ 12 9@ Q((2m+2)/2"*1, y)

modulo Imd,(x, y). Then for sufficiently large n we have

n= T 406 HIRO(E2,))
and d, y; = 0 implies
0 = 43 0(x, (+1)29® Q((1+1)/2", ) +...
and thel terms omitted do not contain the generator Ox, (1+ 2Y® QI+ 1)/2", ).
Thus 4; = 0 and so all 4;, are zero. Consequently y; € Imdy(x, y) and the sequence
0—P, 3P, 8P 5 0o

is a projective resolution,

I.t is easy to see that if we change in this resolution functors Q(,,,y.) into R(.,.)
also in terms Py, Py, P, then we get a sequence 0— P, — P, — P, — R0 of
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fumctors on R’, which becomes exact on all objects (x, y7) of R® with x 5 ¥; itis not
true for objects (x, x).

2. Letters p, p', p;, ... will denote real numbers which are not 2-rational and

P = (D +ey(p)2+cy(p)f22 +...,

where ¢,(p) = 0,1 for n =1,2,... and ¢y(p) = [p]. Forn =0, 1, ... let k(p) be
such an integer that k,(p)/2"<p<(k.(p)+1)2". We put r,(p) = k(p)2", s.(p)
= (k,(p)+1)/2" then r,(p)<p<s,(p). We have -

1:(P) = 1y s(p) < 5,11(P)<5,(P) < €yus(p) =0
and similarly for s,(p) = s5,4.(p).
We define zero-dimensional component of a projective resolution
0T, 31,57, 51,5 R-0

of the functor R in the category (X-Mod)®" as
To= @ R(.,)®R(a;.)
aeR

and let v, R(., ))®@R(a, .) > T, be the structural injection. T}, is projective and
an epimorphic map &: Tp — R is defined by

(sua)(x, PR, a)®R(aa = R(x,9).. -

It is easy to see that Kere(x, y) is zero for x>y and is generated by elements of the
form R(x, @R, y)—R(x, )@R(a, y) for x<a<b<y.
We define one-dimensional component of a resolution as

T, = @ [R(., OR(so(p), DOR(., ro(M)BR(p, )@
14
<) @1 R(.,p®R(s(p), )® @1 R(., r(p)®R(p, )1®

en(p)=0 cn(p)=1
© + oo

@@ @ R(,m2V@R((m+1)2",.)
n=0 m=—ow
and let Wy 0, Wo,p» o> Wy,ps Wi, be the structural injections. Clearly 7y(x, y) =0
for x>y and T, is projective.
The differential dy: Ty — T, is defined for x<y by

dy(x, Y)R(x, @R, y) = R(x, Y®R(b, y)— R(x, @R (a, y)

with a, b € R such that x<a<b<y.

It is clear that sd; = 0. To see that Imd(x, ) = Kere(x, ) let x<a<b<y
for some a, b € R. Let us assume at first that both a, b are 2-irrational. Then there
exists such n>0 that a<s,(a)<r,(b)<b and consequently
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R(x, ))@R(b, »)—R(x, )®R(a, )
= R(x, DOR(D, y)—R(x, r,(B)@R{r,(b), y)+
+R(x, 5,@)R@R(s,(@), y)— R(x, )@ R(a, )+
+R(x, rB)OR(r(B), y)— R(x, s{a)) @R (s,(a), ») -
The first and the second terms are cleatly in Imd;(x, y). The third one is equal to
; dy(x, ) R(x, i2VQR((+1)/2", ) where k(a)+1<i<k,(b), then it belongs

to Imd,(x, y) too. L
If one of a, b or both are 2-rational then the discussion is similar. We have

d .
proved that the sequence Ty = T, 5 R—0 is exact.
3. We define two dimensional components of a resolytion as

T:’. = @ [ @ R(.,p)@R(S,,(P), )@ @1 R(: ru(p))®R(ps )("B
P nz1 nz

en(p)=0 eap)=1

® éﬁ R(., ) ®R((D), )1 é @ R, m2)@R((n+ D2, )

and denote by v,.,, U, Uppns U, the structural injections. For any n such that
¢,(p) = 0 we denote by n*>n the least index such that c(p) = 0 and similarly
for the case ¢,(p) = 1 and n**,
Clearly Ty(x,y) = 0 for x>y and T, is projective.
- The differential d,: T, — T; is defined by

dytp, = Wy — wl;_,,‘ ~ Wk (mhsn(n) 2

a0y = Wap=Wyrs o= Wr (phura(s) »
AUy pn = Won+ Wy p— Wen)sup) 2

dz Vg = Wi = Wopmpa g — Wamt1n+1 s

where we omit all “restriction” functors (fi. Wy 18 in fact the composition

R(., ))®R(s.(p), .)— R(.. P)®R(s,4(p), .) vt T, where the first map is induced
by the map s5,4(p) — s5,(p)) and for a fixed n>0 and my<m, we write

wmxl?-",mz/2"(x’ » = Z Wi,n(x: », mySi<m,.
i

To simplify notation we use symbol . (resp. Un,p> Wpins W,,;) also in the case
¢,(p) = 1 and we mean by it the structural injection Ot R(., DOR(s(p), )T,

where k is the least integer such that s, ) = 5,(p) (we could write Uy su(p) inStead
of v,,).

1t is quite easy to check that d,d, = 0, f.i. if we denote for fixed x, y the ge-

nerator R(x, @)®R(a, y) by f(a), then
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dl dz U_p,n(x> y)R(x3 p)®R(Sn(p)5 y)
= d,(x, MR, DOR(5,(P), 1)~ R(x, p)BR(s,0(p), ¥)—
——-lz R(x, i2N@R(G+1)/2", »)

= (52 =S (D)1 (s () +F ()~ (5(2)) +1 (5:0()) = O,
where k,u(p)+1<i<2" "k (p)+1] and similarly for other terms.
We show that Kerd,(x, y) = Imd,(x, y). This is obvious for x> y, then let
us assume that x<y and y e Kerd,(x, ). Thus y is a linear form in generators
R(x, p)®R(s,(p), ) for  x<p<s(p)<y,
R(x, r(D)®R(p, ) for  x<r(p)<p<y,
R(x, m2YQR((m+1)/2", ) for x<m/2"<(m+1)/2"<y

for some finite number of p’s, #’s and »r’s. If p<y and ¢,(p) = 1, then for some j>n
such that ¢,(p) = 0 we have p<si(p)<y. Thus

R(x, r(0)®R(p, y) = R(x, 1{(p))®R(p,») = —R(x, NOR(s,(p), ¥),

where = denotes the congruence modulo Imd,(x, y)+ Py(x, ), P;(x, y) being the

last group of terms in T (x, 3). In y several terms with fixed p and different # may
appear and we can choose one sufficiently large j for such n.

If some of p’s is equal to y then for some sufficiently large />n we have
R(x, r())®R(y, 5) = R{x, r(3))®R(», )

for all needed n. Also for terms of the first type we can choose sufficiently large k>n
such that ¢(p) = 1 and

R(x, Y®R(s{p), ¥) = R(x, )RR(s(p), ¥)

for all needed ». Thus we have a congruence

It

¥ 'ZI‘AIR(x:Pt)®-R(Sﬁ(p;’), W+AR(x, r(0))OR(,y)

where x<p; <...<p,<y and 4 = 0if y is 2-rational. Since = is mapped by d; into
a congruence modulo Py(x, 3), then

0 =di(x, )y = 3 A1 (5; 0D) =S @)+ A (S )~ (1))
which implies 4; = ... = 4, = 4 = 0 and y e Imd,(x, y)+P,(x, y). We know that
Ker(di(x, ¥)|Py(x, 7)) = da(x, 1) Pa(x, »)

by the remark at the end of Part 1. Thus we have proved that the sequence
dz dy .
T, = Ty = T, is exact.
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4. We define three-dimensional component of a resolution as
T3 = @ @OR(.’ r,,([)))@.R(S"([)), °)
P =

and denote by ¢,, the structural injections. Clearly Ty(x, y) = 0 for x>y and T is
projective.

The differential dy: Ty — T, is defined by

dyt

pn = Unpin ™ Uy + Lpn+1 U+ Urutp)n
wherev = v, ifc,, (p) = Oandv = y,p if 6,4 1(p) = 1 and we omit all “restriction”
functors.

If ¢,+4(p) = 0, then

daydyt,, = AUy = Vet e 1 Up.oF Vka(pn)

= ) — -—W — 1
Wt W™ Wrotp),su() = Wt 1, Womd £ F W), sne 1y =

T Wt Wo e b W ir(o),ute) T Whn(ayn — Waku(pynt 1= Wk (py+ 1,01 = 0

because #* = n+1, w,, 1.p = Wpe If ,4(p) = 1 the computation is similar, We
have proved that d,d; = 0.

We show that Kerd,(x, y) = Imdy(x, y). This is obvious for x> y then let us
assume that x<y and y e Kerd,(x, y). Then v is 2 linear form in generators

R(x, YOR(sp), ¥) for . x<p<s(p)<y,
R(x, r(P)®R(p, ) for x<r(p<p<y,
R(x, r(m)@R(s,(p), ») for  x<r(p)<s,(p)<y,

R(x, m2DQR((m+1)/2",y) for x<m2"<(m+1)/2<y

for some finite number of p’s, n’s and m’s. Let = be the congruence modulo
Imd,(x, y). By the definition of dyt,, it follows that y = y, where 7y is of the form
r 1]
Y1 =i=21 j;l A R(x, Pi)@-R(Snu(Pi)’ )+
L o
+% j;l AR, 1y (PD)®R (P}, )+

+i§1A‘{’R (x’ r"’/ i”))®R (Sn{’(pél) ) y) +z

vsihere x§p;<...<p,<y, X<pL<..<pL<y, X<pi<.<plii<y, Ay < S Hyy,
Ny <e.. <t and ¢, (p) = 0, &P = 1, ze Py(x, ) and dyy; = 0. We denote
by Gy, Gy, G, the first, second and the third summand of p, 80 p; = Gy +G,+Gy+2
Let us assume that Ap, # 0 and put p = Drs n= M, fhen BT

& )R>, PYOR(s,(1), 3) = R(x, D@ R(5,(p), »)=R(x,p) ®R(Sk@} P)+z1,

icm
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where z; € P,(x, »). We have moreover
() dox, W R(x, 1(pN®R(s(p), )
= R(x, 7(P)®R(p, )+ R(x, P)RR(s(p), 1)+ 2’

for some z' € P, (x, y). We consider two cases: (a) all Pis .., P are different from p,
(b) p = p for some k.

"Let us assume that (a) holds. The generator R(x, P)®R(s,(p), y) does not
appear in d; G, and appears only once in d, G;. The generator R({x, r,.(n))®R(p, ¥)
does not appear in d,G; and d,G,. From (1) for / = n* and d,y, = 0 it follows
that 4;, =0 contrary to our assumption.

Let us assume that (b) holds. The generator R(x, p)@R(s,,.(p), y) does not
appear in d, G, and appears only once in 4,G,. So it must appear in d, G;. By (1)
for I = n* and d,y, = 0 it follows that the generator R(x, r,,(p))®R(p, y) appears
in d,G,, then it appears in d,G; too. Let « be the least integer such that
rdp) = r,(p) thus .

R(x, ra(P)®R(p, ) = R(x, r{p)@R(P,¥)
and by ’

dy(, YR, I{D)BR(P, ) = R(x, ()@ R(P, 1)~ R(x, (D) ®R(p, 1)+,

(where z, e P(x, ) it follows that in d, G, appears either R(x, r(2))®R(p, )
or R(x, rip))®R(p,y) where p** = a. These generators do not appear in d,G,
consequently in d,G; appear R(x, 7,(p))®R(p, y) and either R(x, rs(p))QR(p, ¥)
or R(x,ry(p))®R(p,y). This is impossible, because r p)<rs(p), ro(p)<rLp)
and in G, we have only one term for each py, ..., p,.. We have proved that 4;; = 0
for all i, j.

The proof that all 4;; are zero is analogous to the proof in case (a).

By (1) it follows easily that all 47’ are zero too.

Consequently 7, = zeP,(x,») and dyz=0 implies z=0 and finally
y € Imd,(x, ). We have proved that the sequence T Ed T, d T, is exact.

5. We show that the'sequence 0 — T Lt T, is exact, i.e., that Kerds(x, ») = 0.
This is obvious for x>y then let us assume that x<y and ye Kerds(x, y). Let

!
=3
i=1 J
where ¥ <py <...<p;<y, nj <..<ny and let us assume A, # 0. Weputn =n,,,
p = p, then
0 = ds(x, 1) = Au[R(%, r(P)®R(5,(P), ») = R(x, 44 1(P))® R (801 1(P), D) +...

and the second term in the brackets appears only once, so A;, = 0 — contradiction.
Consequently y = 0 and we have proved that the sequence

1

y Aif‘R(x’ r"lj(])i))®R(Snu(pi)’ y)

0T, 27,57, %7,5R-0

is a projective resolution of R.
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6. Now we can prove the main theorem of the paper.

THEOREM. The cohomological dimension dimyR of the ordered set of real num-
bers R is equal to three for any commutative ring K.

Proof. It is sufficient to prove that the sequence 0 — 7T 4 T, does not split.
Suppose the converse, thus there exists a map g: T) — T3 such that gdy = 1g,.

Let us remark that a mnon-zero map R(.,)®R(b, D= R(., YQR®, )
exists if and only if aa’ and B'<b, morcover each map R(., d)@R(b,.)
— @ R(., a,)®R(b,, .) factorizes through a finite direct sum.

'

We denote by =,: Ts— @ R(., r,( p))@R(s,,(p), .) a projection map thus
901 R(, DOR(5,(2), )~ S R(., n(p)®R(s(p), )

and m,gv,,, = 0 becayse p>r,(p) for all n. Similarly we show that Ty, = 0.
There exists a countable set 4 < R such that all maps gu,,, factorizes through @ @.

. . red
We fix a 2-irrational element p € R\ 4, then- %3GV = 0 for all m, n and by the above

equalities we get
Tplpn = Tpddsty, = 7,9 (vn,p,n'_vn‘{-l,p,n'l'l_U+vkn(l7),n)
= oGVt~ TGVt 1, pin+1
In—Gn+1
where g, = p9npms 2 =0,1,.. and v =v,, or Up- Maps f, = m,t,, are
structural injections of a direct sum @ R(., rn(p))®R(sn(p), .)-and let =, be 4 cor-
" e

responding projection onto nth summand. Then we have In = t,+g,+q and siﬁ‘ce‘ do

factorizes through a finite sum then there exists such k=0 that n,g, = 0 for n>F.
Since

I

Go = lot gy = lotti4; = .. = fot oot tyi  FGies
then iy, 19 = My tieq = 1 because
Tri1Gis2t R, ’k+z(P))®R(Sk+z(IJ), ) —R(., "k+1(P))®R(Sk+1(P)= )
is a zero map. We get a contradiction thus d; does not split.
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The space of maximal convex sets
by

Robert E. Jamison (Clemson, S.C.)

Abstract, This paper is devoted to the study of hypercones (also called “semispaces™) ~— maximal
convex sets missing a point in a vector space of arbitrary dimension over a totally ordered field..
It is shown how the hypercones can be organized into a compact Hausdorff space with an intrinsic
system of “convex” sets. Relationships of “convexity” to topology on the hypercone space are
studied. Also metrizability, separatility, and other topological properties of the hypercone space are
characterized in terms of the underlying ordered field and the dimension of the given vector space.

1. Introduction. Maximal convex sets missing a given point have arisen nat-
urally in connection with separation properties of convex sets. In a series of lectures
in 1951, T. S. Motzkin [15] described such sets in detail for 3-dimensional Euclidean
space and used them in some separation theorems. Kothe [12] also makes use of
the maximal convex sets missing a point — which he calls hypercones — in his proof
of the geometric form of the Hahn-Banach Theorem. Related ideas are attributed
by Kelley, Namioka, et al. [10] to Stone and Kakutani. In 1955 Preston Hammer 41
independently noted some of the elementary properties of hypercones in real vector
spaces. (Although Hammer’s term “semispace” is often used, K&the’s term “hyper-
cone” seems better. There is a Jarger class of convex sets deserving to be called
“semispaces”, and the term “semispace” is inappropriate in situations as in [71
where spaces more general than vector spaces are treated.)

The first deeper results on hypercones were given in [11] by V. L. Klee, who gave
(among other results) a complete characterization of hypercones in real vector spaces.
In the setting of topological vector spaces, a certain class of hypercones compatible
with the topological structure was studied by C. E. Moore [14]. Using his separation
results, Moore achieved a mew characterization of reflexive Banach spaces.

In this paper the structure of hypercones will again be investigated — not
individually, but rather as a space. It will be shown that the collection of hypercones
can be made into a totally disconnected compact Hausdorff space which can be
endowed in a natural way with a notion of “convexity”. The questions of metriz-
ability, separability and first countability of the hypercone space will be investigated.
In addition, we shall study the basic similarities and dissimilarities of its convexity
structure with ‘ordinary convexity.
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