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Ultraparacompactness in certain Pixley—Roy hyperspaces
by

H. R. Bennett (Lubbock, Tex.), W. G. Fleissner (Athens, Ohio)
and D. J. Lutzer* (Lubbock, Tex.)

Abstract. A Ty-space Z is ultraparacompact if each open cover of Z has a disjoint .open re-
finement. In this paper we present a sequence of results which guarantee that for-certain spaces X,
the Pixley-Roy hyperspace construction has the property that for each finite m and n, (F[X™])" is
ultraparacompact. We also investigate ultrameirizability of certain PR-hyperspaces.

1. Introduction. This paper continues the study of the Pixley-Roy hyperspace
initiated in [BFL]. Recall that for each space X, the space & [X], called the Pix/ey-
Roy hyperspace of X, is the collection of all nonempty finite subsets of X topologized
by using all sets of the form

[F, V] = {Fe&F[X]: FcF'<V}

as a neighborhood base at Fe # [X], where V is allowed to be any open subset
of X which contains F, In [BFL] we proved that if X is any first-countable subspace
of any ordinal, then & [X]is metrizable. In [L,] it was asserted that, for such an X,
even F[X?] is metrizable. In this paper we significantly sharpen (and simplify)
both results by proving that if X is any subspace of any ordinal then for each m,
n<wg, (F[X")" is ultraparacompact, i.e., each open cover admits an open refine-
ment which partitions the space. (Indeed, we prove a stronger, but more technical,
result — see Section 2.) Tt follows immediately that if X is a first-countable subspace
of any ordinal then (% [X™])" is a Moore space (cf. [vD] or [L,]) and is ultrapara-
compact and hence has a base of open sets which is the union of countably many
subcollections, each of which is a disjoint open cover of the entire space. Spaces
having such a base are called ultrametrizable and admit a compatible metric d which
satisfies a very strong triangle inequality, viz., for any points x, y and z,

d(x, y)<max{d(x, 2), d(z, )} -

‘Another result in [BFL] characterized those generalized ordered spaces X
built on a separable linearly ordered space (see Section 3 for definitions) for

* Partially supported by NSF Grant GMCS 76-84283.
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which # [X] is metrizable. In this paper we refine the techniques of [BFL] to show
that for such spaces, if #[X] is metrizable then it is ultrametiizable.

Our terminology and notation for hyperspaces follows [vD] and [L,]. Termin-
ology and notation for ordered spaces generally follows [L,].

After completing this paper, the authors learned that T. Przymusifiski had
also obtained our Theorem 2.4 in the special case where X is a subspace of an
ordinal. Interested readers should ‘consult his paper [P].

2. Pixley-Roy spaces and partial orderings. The main theorem jn this section
deals with T';-spaces which can be partially ordered in a special way. Throughout
this section, we will say that a partial ordering < of a space Z is acceptable pro-
vided the set L(z) = {xeZ: X<z} is open for each zeZ. Let us hasten to add
that we view this notion as a technical convenience only, and not as a proper object
of study in its own right. The property is named only to avoid repeating its defi-
nition over and over. '

Before giving examples of spaces which can or cannot carry an acceptable partial
ordering, let us observe

2.1. Lemma. If {Z,: ae A} is a collection of spaces each admiiting an acceptable
partial ordering, then the box-product [{Z,: ae 4} also has an acceptable partial
ordering. In particular, if the index set A is finite then the usual product space
I{Z,: «e 4} has an acceptable partial ordering.

Proof. If <, is an acceptable partial ordering for Z, define < on
Z=[1{Z,: xe A} by the rule that (et ae ALz we A provided z <,z

o o Ry Sy

for each «. The order < is acceptable because as sets
Lz aed)) = I{L(z,): acd}. B

2.2. EXAMPLES. The following types of spaces admit acceptable partial
orderings:

) any subspace of any ordinal;

b) any Sorgenfrey space, i.c., any linearly ordered set (X, <) endowed with
the topology having the collection {x,3]: x<y,yeX } as a base of open sets.

There is also a general construction which yields spaces with acceptable partial
orderings. .

¢) Given any partially ordered set (Z, <); the collection {L(z): zeZ} can be
used as the basis for some tcpology on Z. In order to obtain a T, topology on Z,
we must use the collection {L(z)—F: zeZ, Fis a finite subset of Z~—{z}}. Then
< will also be acceptable for any stronger topology on' Z.

d) Any finite product, or any box product, of spaces of types a), b) or ). B

2.3. EXAMPLES. Most “nice” spaces do not admit an acceptable partial order.

a) If X is any uncountable Ty-space which is second countable (having a
countable network would suffice), then & [X] is not Lindeléf (since the collection
{Fe #[X]: card(F) = 1} is an uncountable closed discrete subspace of & [X])

Utraparacompactress in certain Pixley-Roy hyperspaces 13

and satisfies the countable chain condition. If X could carry an acceptable partial .
ordering, it would follow from (2.4), below, that #[X] is ultraparacompact. But
an vltraparacompact space satisfying the countable chain condition must be Lindelof.

b) The Alexandroff double-arrow space A, i.e., the lexicographic product
[0, 11x {0, 1} endowed with the usual open interval topology, cannot carry an
acceptable partial ordering in the light of [2.4), since % [4] is known to be non-
paracompact (cf. [BFL], [L,]). &

We now turn to the main positive result of this section.

2.4. THEOREM. Let Z be a T space which has an acceptable partial order. Then
F[Z] is ultraparacompact.

Proof. Let & be any open covering of & = % [Z]. For each Fe & select
a member %(F)e® containing F and an open subset N(F) of Z having
[F, N(F)]<%(F). We next define open sets I(x, F) of Z for each Fe & and each
x € F by induction on card(F). If card(F) = 1 then F = {x} and we let I(x, F)
be any open set in Z having x € I(x, F)cL(x) n N(F). Let ¥ (F) = [F, I(x, F)].
For induction hypothesis, suppose k>z and that sets J(x, F) have been defined
for each Fe # having card(F)<k in such a way that:

@) I(x, F) is open and xe I(x, F)cL(x);

(ii) if F' is a nonempty proper subset of F and if x'e F’ and x e F have
xeI(x', F), then I(x, F)cI(x', F');

(iii) the set " (F) = [F, U {I(x, F): xe F}] is a subset of #(F).

Now consider a set F, € & with card(Fy) = k, and let x, € F,. Define a set
P(xg, Fo) by P(xg, Fy) = {(x', F): x¥’ € F' and F' is a proper subset of F, and
xo€1(x', F))}. Clearly P(x,, Fy) is finite, so that there is an open set I(xy, Fy)
satisfying

xo € I(xg, Fo)= N(Fo) n L{xo) n (N {IG', F'): (x', Fy e P(x,, F)}).

Then the three induction hypotheses are satisfied for the pair (x,, F,), and the
induction continues, defining I(x, F) for every Fe # and every x € F. Observe
that the second induction hypothesis yields .

(iv) if @ # F'cF'cF satisfy Fe ¥ (F') and F'e¥ (F"), then Fe¥ (F")
from which we can deduce :

(v) if Fe &, then there is an F' € # satisfying F'cF, Fe"/f.(F’) and F’' is
minimal, where we define that an element S of & is minimal provided S¢ ¥ (T)
for every proper nonempty subset T of S.

Therefore the collection’ ‘

¥ = {#(F): Fe & and F is minimal}

is an open cover of & which refines ¢. We assert that ¥ is a disjoint open cover,
as required to establish ultraparacompactness. To prove that assertion it will be
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enough to prove that if S and T are minimal and if ¥'(S) N ¥ (T) s @, then S = T.
‘We begin by decomposing S and T in a special way. Let S; be the set of maximal
elements of S. Let S, be the set of maximal elements of S—{J {I(x, Sl) xe Sy}
and, in general, let S,,; be the set of maximal elements of

S=Ux, S0 USY: xeS U uUS).
Since S is finite, this induction terminates at some stage m. Then
SeU{(x,S;u..u8,): xeS; u...uS,}

so that if we write §' = S1 u. S, S € (S"). But S is minimal and S’'<§ so
that S=8"= S, U S+ In an analogous way we write T=T; U ..uT,
where T, is the set of maximal elements of

T-U{(y,Tyu..uTY): yeTyu..uT,} whenever k<n.
Because 7°(S) n ¥ (T) # & we have
(%) SuTc(U{Ix, $): xeS)an (U Iy, T): yeT}).

Fix se 8;. According to (x), se I(z, T) for some ze T and so s<t. Then there is
a t; e T, having £<t,. Again according to (), there is an ' € S with tyel{s’, §)
<L(s') so that s<¢<#, <s'. Then maximality of s yields 5 = ty = §' so that se T,.
Hence §;<=T;. An analogous argument shows that TycS; so that T, = §,.
For induction hypothesis, suppose k<m and that we have established .S =T,
for 1<i<k. Let s € Sy. From (%), there is some teT baving s e I(z, T'). We assert
U, Tyv.a. T ) yeT U U Ty} For suppose there is a

el .Vl =T
baving teI(z’, T"). We could then apply (ii), above, to conclude
sel(t, <I(t',T).
But by induction hypothesis, T' = 5,
sel {I(x,S; v
contrary to our definition of the set ,. Therefore
teT-U{(p, Ty v..uT_): yeTy u...u Ty}

and so there must be a member #, e T} having #<7,. But then since I(t, TY=L(1),
we have s<#,. Applying () to 7, we find a point § € S having #, € I(3, S). We assert

8¢ U {(x, S, U WU Siog}.

For suppose there is an '€ 8’ = §; U ... U S;_; with § e J(5", §’). Because §" is
a proper subset of S it follows from (ii) that #, € I(8, S)<I(s', §*). But by induction
hypothesis, S = T} U ... u T;_, so that we are forced to conclude

heU{I(p, Tyv ..U T D yeT v UT_}

U ... U S;_; so that

WU SEg): XES UL U S},

wUS ) xeS; v

icm®
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contradicting the fact that 7, e 7,. Therefore
SeS—-U {I(x, S v

so that there is an element s* € S, having §<s*. But then, combining #, e 1(3, S)
<L(8) with s<t, and 8<s* we obtain s<7,<3<s*. Because both s and s* are
maximal elements of the set

S—U {I(x,S; u wUSy}

we conclude that s = 1, thereby showing that s, =T}. An analogous argument shows
that TS so that T, = S, and the induction continues and proves

S =U {8 1<ism} = Y {Ty: I<ism}cT. '

U8 xeS; U ..U Sp_q}F

US D xeS; U

An analogous argument shows that T'<S, so T'=S. B

The study of products of Pixley-Roy spaces is greatly facilitated by the next
theorem.

2.5. THEOREM. Let X, X,,...,X, be any Ti-spaces. Then the space
FLX ] F[X,]x ... x F[X,] is homeomorphic to a closed subspace of F [X; x X, x

Xl

Proof. For notational simplicity we consider the case where z = 2. The general
case can be treated similarly, or can be deduced by an obvious inductive use of the
special case.

Define a  function p: F[XIXxF[X,]— F[X,xX,] by the rule that
= AXB Let # = {AxB: Ae F[X{], Be F[X,]}. Then & is the image
of p and p is a homeomorphism because p([4, UIx[B, V) = #n [AxB, UxV].
To see that 2 is closed in # [X; x X,], let Fe F[X, x X,]—%. Let F; be the projec~
tion of F onto X;; then FoF;xF, and the containment is proper. Choose
(p,q)e (Fyx Fy)—F. Then [F,(X;xX,)—{(p,q)}] is a neighborhood of F in
F[X, x X;] which is disjoint from %Z. B

2.6. COROLLARY. Let Z be any Ty-space which admits an acceptable partial
order. Let m,n<wy. Then (F[Z™)" is ultraparacompact.

Proof. According to (2.6), (F[Z™])" embeds as a closed subspace of F[Z™],
and the latter space is ultraparacompact in the light of (2.1) and (2.4). The usual
argument shows that ultraparacompactness is inherited by closed subspaces, so the
proof is complete. ®

It is easy to see that (2.6) cannot be sharpened to assert that & [Z“°] is ultra-
paracompact, as our next example shows.

2.7. ExaMmpLE, Let X be any nondegenerate T, space. Then % [X*°] is not
even normal. _» i

Proof. Choose distinct points a, b in X. As a subspace of X. D = {a, b} is
discrete and . D®°, which is the Cantor set, is a subspace of X“°. But then & [D”°]
is a closed subspace of F [X™°] since X is T (cf. [vD]) and it is well-known that
F[D*] is not normal, B
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2.8. QUESTION. Suppose that Z is a Ty-space which admits an acceptable par-‘

tial ordering. Must (% [Z])*° be ultraparacompact? We do not know the answer
even in the case where Z is a subspace of an ordinal. H

2.9. Remark. In Section 3 we will prove that for any space X, &[X] is ultra-
paracompact whenever & [X] is paracompact — see (3.2).

3. Ultrametrizability of PR -spaces. The authors wish to thank T. Przymusifiski
for helpful observations which greatly simplified and improved results in this section
of an earlier version of our paper.

There are three general situations in which metrizability of #[X] is well-
understood:

1) where X is a first-countable space which admits an acceptable partial order
in the sense of Section 2 (because then & [X] is paracompact in the light of (2.4) and
is a Moore space [vD], whence & [X] is metrizable);

2) where X'is a generalized ordered space constructed from a separable linearly
ordered space — see [BFL] for details and (3.5) below for a related example;

3) where X is a subspace of a Souslin line — see [R] for details, and (3.4),
below.

The purpose of this section is to show that in each of those situations, and
indeed for any space X, the hyperspace % [X] is ultrametrizable whenever it is
metrizable.

We begin with a lemma, pointed out to us by Przymusifiski. The proof is
straightforward.

3.1. LEMMA. Suppose a space Z can be written as Z = \J {Z(n): n<w,} where
each Z(n) is a discrete (but not necessarily closed) subspace of Z and where each set
UA{Z(): 0<sn<k} is closed in Z. Suppose also that ind(X) = 0 (i.e., each point
of Z has a clopen neighborhood base). Then the following are equivalent:

a) Z is ultraparacompact;

b) Z is paracompact;

c) Z is collectionwise normal,;

d) Z is strongly collectionwise Hausdorff, i.e., if D is a closed discrete subspace
of Z then there is a discrete collection {U(d): de D} of open subsets of Z having
de U(d) for each de D. B

3.2. COROLLARY. For any space X, the following are equivalent:

a) F[X] is ultraparacompact;

b) F[X] is paracompact;

©) #[X] is collectionwise normal,

d) FX] is strongly collectionwise Hausdorff. @

3.3. THEOREM. For any space X, F[X] is ultrametrizable if and only if #[X ]
is metrizable.

icm®
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Proof. To prove the non-trivial half, suppose & [X] is metrizable. Then it
is paracompact, whence ultraparacompact, and has a development {¥ (#): n<w,}.
For each n<w, let ¥'(n) be a disjoint open cover of % [X] which refines ¥ (n).
Then U {¥'(n): n<wo} is the required base for F[X]. B

In [R, Theorem 2} a characterization is given of those subspaces X of a con-
nected Souslin line for which # [X] is metrizable. It is possible to reformulate part
of Rudin’s result, obtaining a condition which is internal to X (i.e., does not refer
to the connected Souslin line which contains X) and is slightly easier to use as
a sufficient condition for metrizability of #[X]. The proof requires only minor
modifications of Rudin’s proof, and the reader is referred to [R] for details.

3.4. PROPOSITION. Let X' be a first-countable generalized ordered space. Suppose
X =U{Y(): a<w} where:

a) each Y(«) is countable;

b) if a<f<wy, then Y(o)= Y(B);

c) the set {a<w,: U Y(B) is not closed} is not stationary.

B<a

Then F[X] is ultrametrizable. @

3.5. Remark. In [BFL] we characterized metrizability of #[X]in terms of
the structure of X, where X was a generalized ordered space constructed on a sepa-
rable linearly ordered space. It is natural to ask whether separability of the underlying
linearly ordered space could be relaxed, perhaps to countable cellularity. The answer
is “consistently, no.”

3.6. Examprk, If there is a Souslin space, then there is a linearly ordered
space X which is dense-in-itself, uncountable, and satisfies the countable chain
condition and for which #[X] is metrizable. However, X does not satisfy the con-
ditions of [BFL, Theorem I] since, in particular, the set

E = {xe X: each neighborhood of x contains points on both sides of x}

is not countable.

Let S be a connected Souslin line. Write § = |J {K(e): a<w.} where each K(x)
is a compact metrizable subspace of S. Each K (¢) contains a countable dense set D (a).
Define sets ¥(a) recursively on a<w; by the rule that

Y = [D(a)—cls(ﬁg Y v [ﬁg Y(g].

Each Y(x) is countable and Y(¢)<= Y(«) whenever a<a'<aw;. Let

X =U{Y(): a<aw,}
and topologize X as a subspace of S. It is easy to sce that X is dense in § so that X,
in its relative topology, is a linearly ordered space which satisfies the countable
chain condition (but is not separable). We assert that for each limit ordinal 1, the
set {J {¥(@): a<i} is closed in X. For suppose some pe X belongs to

clg( L(JlY(u))—- rHlllf'(oc) .

2 — Fundamenta Mathematicae z. 111/1
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Let « be the first ordinal such that p € ¥(a). Then a>4. From minimality of «, it
follows that p e D(a)—cls( U ¥(B)) so that
B<a

¢ Cls(pya Y(B)= CIS(pgA ¥(p)

which is impossible. Hence |J ¥(x) is a relatively closed subset of X. According

a<i

to (3.3), #[X] is metrizable. And yet the set E of condition (%) (where 7 denotes
the topology of X as a subspace of §) is all of X and so is uncountable. (Here we use
the fact that X is dense in .§ and S has no “jumps”, i.e., no points a<b where
[a, B] = {a, B}.)

3.7. QuEsTION (Przymusifiski). For any space X, ind(F[X]) =0 and
(see [P]) if #[X] is normal, then dim(# [X]) = 0 (here dim denotes covering
dimension.) Is there any space X for which dim(# [X])>07?

®
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On some test spaces in dimension theory
by

Ali A. Fora (Irbid)

Abstract. Let § and Sy denote the Sorgenfrey and Modified Sorgenfrey lines, respectively.
Then the following result is proved in this paper: If X is any topological space, then Xx S is
strongly zero-dimensional if and only if X'x .S, is strongly zero-dimensional.

1. Introduction. The question of whether dim(X¥x ¥)<dimX+dim ¥ for
topological spaces X and ¥ has long been considered (see e.g., [G], p. 263 and 277).
By dim X, or the covering dimension of X, we mean the least integer, n, such that
each finite cozero cover of X has a finite cozero refinement of order #. (A cover
is of order nif and only if each point of the space is contained in at most 7+ 1 elements
of the cover. All spaces considered are completely regular.)

Researchers worked out the above problem but the recent discovery shows
that Wage [W] and Przymusidski [Pr] construct a Lindeldf space X such that
dimX = 0 and X? is normal but dim(X?)>0.

The aim of this paper is to give a full answer to one of the observations raised
by Mréwka [Mr,] in the conference of 1972 concerning the product problem which
says: “Strong 0-dimensionality of various product spaces remains undecided.
One group of such spaces are powers of certain generalizations of the Sorgenfrey
space. Consider, for instance the product (reals)x [0, 1] ordered lexicographically
and let S, be this product with the Sorgenfrey topology (i.e., the base consists of
half-open intervals). .

Sy is N-compact and strong 0-dimensional, we do not know if S2 is strongly
0-dimensional”, ‘

In this regard, Tan [Ta] showed that certain zero-sets in SZ are countable
intersection of clopen sets. However, he was unable to establish the strong zero-
dimensionality of S%.

The familiar Sorgenfrey space S is defined to be the space of real numbers with
the class of all half open intervals [a, b), a<b, as a base. It is a well-known fact
that S is Lindelsf, first couatable, N-compact and also has dim.S = 0.

A topological space X is called zero-dimensional if and only if X has a base
consisting of clopen’ sets.

A Tychonoff space X is called strongly zero-dimensional provided that
dim X = 0.

2%
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