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On a stability theorem for the fixed-point property

by

Chung-wu Ho (Edwardsville, I1.)

Abstract. The author studies the relationship between the ordinary fixed point property (f.p.p.)
and the proximate fixed point property (p.f.p.p.) for a class of spaces known as AANR’s. He
shows in particular that for a compact or a locally compact ANR, f.p.p. always implies p.f.p.p.
This can be interpreted as to say that for such a space the fixed point property is stable in the sense
that if the space possesses the fixed point property then a nearly continuous function always has
a nearly invariant point. This generalizes a previous result of V. Klee. The author also shows that
to each nearly continuous function on-a compact ANR, a Lefschetz number can be assigned, which
can.be used to determine whether the function possesses any nearly invariant point. An application
is then given for such functions on an n-sphere. Finally some related unsolved problems are
discussed. .

1. Introduction. In 1961, V. Klee published a stability theorem for the fixed-
point property for compact absolute retracts [17]. As is well-known, every compact
absolute retract 4 has the fixed-point property, i.e., if a function ¢ of 4 into itself
is continuous, then some point of 4 is invariant under ¢. Klee’s theorem says roughly
that if a function ¢ of 4 into itself is “nearly continuous”, then some point of 4 is
“nearly invariant” under ¢. In this note we shall extend this result to a much wider
class of spaces, a class which contains all the compact or locally compact absolute
neighborhood retracts. (All manifolds and polyhedra are absolute neighborhood
vetracts, and an absolute retract is a contractible absolute neighborhood retract).

.. Specifically, let X be a topological space and (¥, 0) be a metric space. For
a.6>0, a function f: X - Y is said to be §-continuous if each point x of X admits
a neighborhood U, such that the o-diameter of the set F(U,) is at most 5. A metric
spate (M, g) is said to have the proximate fixed-point property if for each £>0, there
exiets a 0>0 such that every §-continuous function f: M — M possesses an
¢-invariant point, i.e., a point x € M such that o( f (x), x)<e. In this note, we study
the -relationship between the ordinary fixed-point property (f.p.p.) and the proxi-
mate fixed-point property (p.f.p.p.) for a class of spaces known as approximative
absolute neighborhood retracts (AANR). These are a-generalization of the ordinary
absolute neighborhood retracts. The definitions will be given in Section II. We shall
shew that for any locally compact and locally connected AANR, f.p.p. implies
p.f.p-P., and for any compact AANR, f.p.p. and p.f.p.p. are equivalent to each
other. (In particular, the fixed-point property is stable for these spaces). However,
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a noncompact AANR may possess p.{.p.p. without having f.p.p. These results will
all be shown in Section II. Then in Section ITI, we shall shift our attention to indi-
vidual mappings of a given space. We shall show in particular that for each compuct
ANR, there is 2 §>0 such that each §-continuous function of the space can be
assigned a Lefschetz number, which can be used to determine whether the function
has any proximate fixed points. Finally, we shall list a few related questions in
Section IV.

An junterest in the concepts of g-invariance and &-continuity was motivated by
mathematical modelling of physical problems where there may be strong empirical
evidence for the §-continuity of a function even though its full continuity cannot
be tested experimentally. Indeed, in many applied situations, the conclusions as well
as the hypotheses are naturally of a proximate nature. Moreover, there are spaces
which have p.f.p.p. but not f.p.p. (see for instance Theorem 2.4 below). Thus,
a proximate theory not only seems more natural in application, but may also be
applied to a wider class of spaces. It is also of interest to note that L. E. J. Brouwer
argues that only e-fixed points have meaning for the intuitionist [5]. The proximate
concepts of e-invariance and §-continuity studied here were introduced by V. Kiee
in 1961 [17]. An extensive study on these concepts was made by Klee and
Yandl ([27], [18]), and by A. Finbow [7]. For the proximate fixed-point property
for the multi-valued functions, see Muenzenberger [21], Muenzenberger and Smith-
son [22], Smithson [25], and Schirmer [24].

The author has been informed that the first two theorems and lemmas in
Section II were also established by A.. Finbow [7]. However, the approaches are
-different. The author is grateful to Professor Klee for introducing to him these
proximate mathematical concepts, and he would also like to thank Dr. Finbow for
reading over a preliminary vevsion of this paper and making many useful comments.

II. The proximate fixed point property. To state our result, we need first describe
a class of spaces known as approximate absolute neighborhood retracts (AANR).
The concept of AANR was introduced by H. Noguchi in 1953 [23] (Noguchi used
the term g-ANR). It was then studied by A. Gmurczyk [9], A. Granas [I2], and
L. Gérniewicz [10]. The concept was further generalized by M. H. Clapp in 1971 [6].
For further work on AANR and related concepts see the work of S. A. Bogatyi [1].
V. Klee and Yandl [18]. In this note, we shall follow the more general definilion
of Clapp, except that we do not assume an AANR to be compact or even sepatable.
The definition is given as follows.

DerINITION 2.1. A subset X of a metric space (M, g) is an approximative
neighborhood retract of M if for each positive number 8, there is a neighborhood
U=U(e) of X in M and a mapping r,: U— X such that for each x in X,
2(rx), x)<e. :

A metric space X is an absolute approximative neighborhood retract (AANR)
if for every homeomorphism % mapping X onto a subset of a metric space M, the
set 2{X) is an approximative neighborhood retract of M.
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Remark 2.1. In Noguchi’s original definition of approximative neighborhood
retract, the neighborhood U is assumed to be independent of &. The resulting AANR’s
turn out to be a proper subset of the AANR’s defined above (see [6]). On the other
hand, if we let ANR to denote the ordinary absolute neighborhood retract, it can
be shown that ANR’s form a proper subset of AANR’s in the sense of Noguchi
(see for instance [23, Example 3.6]). For more examples of AANR’s see pp. 110
and 123 of [6].

DErFINITION 2.2. Let X be a topological space, (Y, p) be a metric space and
J: X— Y be a (not necessarily continuous) function. Let a positive number & be
given. By a contimuous &-dpproximation for f, we mean a continuous mapping
gt X — Y such that o( f(x),g(x))<e for every x of X.

LemMma 2.1. Let X be a paracompact topological space and V be a normed linear
space. Then each &-continuous function f: X — V has a continuous §-approximation.
In particular, if X is a convex subset of a normed linear space, then each §-continuous
Junction f1 X — X has a continuous §-approximation.

Proof. Let a §-continuous function f* X — ¥ be given. We may choose a locally
finite open covering {U,},.4 for X such that for each a € 4, the sct £(U,) in V has
a diameter <J. Then for each o e 4, fix a point p, € U, and define g,: U, V by
g.(x) = f(p,) for every x € U,. Now, let {,},. . be a partition of unity subordinating
to the open covering {U,},.4 and define g: X — V by

g(x) = ZA/"-,(X)gu(X) .

g is continuous.
For any ye X, y belongs to only finitely many U,'s, say U,,, U,,, ..., U,
Then

=gl =i ZA?»I()')f (J’)“'gfz(_\‘)gu(jl’)”

<

. Zad M () =g,

i

‘M: I =

. Za (LSO =1 ()]

[

<63 Al
i=1

<5Y M) =4,
acA

Thus, g is a continuous §-approximation for f.

Now, let X be a convex subset of a normed linear space ¥, and f: X — X(<=V)
be a §-continuous function. Define a continuous §-approximation g: X — V as
above. By the fact that {2,},. isa partition of unity subordinating to a Iocally.ﬁni.te
open covering {U,}yc 4. it is easy to see that for each xe X, the point g(x) lies in
the convex hull of the set {g, ()] i=1,2,...,n} = {f(p)l i=1,2,....n,
where U,,, U,,, ..., U,, are the only sets in the open covering {U,},« 4 Which contain x.
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But X is convex and each f(p,) belongs to X. Hence, g(x)e X for cach xe X.
Thus, g: X X is a continuous §-approximation to f.

We remark in passing that V. Klee proved a similar statement for compact
convex polyhedra in a finite-dimensional normed linear space [17, Proposition 2].
Our lemma is a generalization of Klee’s proposition.

TaeoREM 2.1. Let X be a compact, AANR with a metric g. For each >0, there
oxists a 6>0 such that every §-continuous function f: X — X has a continuous
g-approximation. .

Proof. It is well known that X can be embedded as a subset of some normed
linear space ¥ (in fact, since X is compact, X’ can be embedded as a subset of the
Hilbert cube). Let X, be the image of such an embedding. By an argument similar
to that used in the proof of {17, Proposition 5), it can be shown that to prove the
theorem for the space X, it is sufficient to prove the assertion for the set X,.

Let an &>0 be given, we shall find a §>0 such that every §-continuous function
f: X, - X, has a continuous e-approximation. Since X is the image of an
embedding of an AANR, there exists an open neighborhood U of X, in ¥ and
a continuous mapping r: U - X, such that for each x & X, [[r{x)—x|| <o We
claim that there exists an open set W in ¥, Xoc W< U, such that for each
xe W, |[r(x)—x||<%e This can be seen as follows. For each point x in ¥ and each,
positive number s, we let B(x; s) be the open ball in ¥ with center x and radius s.
Now, for each point pe X,, let

W(p) = {xe Un B(p; o)l r(x) e B(r(p);se); - ,
Then let W = {W(p)| p € X,}. Clearly, W is openin ¥ and Xy Wa U. Further-
more, for each xe W, x e W(p) for some pe X, Then
Hr Gy =l <[lr ) =r ()1 +lir (p) —pll +[1p i
<getgetie = ke,
We may now choose a >0 such that
1. d<4e,
2. s<dist(X,, V—-W).
Now, consider any &-continuous function f: X, — X;. By Lemuma 2.1, there

exists a continuous §-approximation g: X, — V. From our choice of 4, it is clear
that rog: X, — X, is a well-defined continuous function, and for each xe X,

1) —=rg IS (x) =g G| +1lg () —rg (O]
<b+ie<tet+ie=ce.
This finishes the proof. : '
TueoREM 2.2. Let X be a compact AANR, X possesses f.p.p. if and only if ¥
possesses p.f.p.p. ' ' '
Proof. It is easy to see that for a compact metric space, p.f.p.p. always implies
f.p.p. On the other hand, if X is a compact AANR which possesses f.p.p.. then for
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any >0, there is a >0 such that each §-continuous f: X — X has a.continuous
s-approximation g. Then any fixed point for g is an e-invariant point for f. Hence,
X also possesses p.f.p.p. :

THEOREM 2.3. Let X be a locally compact and locally connected AANR. If X
has f.p.p., then f must also have p.f.p.p. -

Proof. By a theorem of V. Klee [16, Theorem 2.7}, if X is a locally compact
and locally connected metric space which has f.p.p., then X must also be compact.
Henee the assertion follows immediately from Theorem 2.2.

’ Remark 2.2. It is well known that any topological manifold or any locally
compact CW complex is an ANR (see [13] and [26]). On the other hand, an ANR
is always a locally connected AANR. Thus, for a compact manifold or CW complex,
f.p.p. and p.f.p.p. are equivalent, and for a general locally finite CW complex,
f.p.p. implies p.f.p.p.

 The converse of Theorem 2.3 is false, even for such a nice space as the
n-dimensional unit open ball. In the following, we shall show that each 7-dimen-
sional open ball has p.f.p.p. On the other hand, they clearly lack f.p.p. To describe
our next result, we shall adopt the following convention: if {(X;, ¢l 7 =1,2.3, .}

i

o
is a family of metric spaces with ¢,(X;)<1 Toreach #, then the preduct space IT x:
i=1

o
is ulso considered as a metric space with the metric ¢ = Y 27'g;.

i=1

THEOREM 2.4. Let X be any of the following spaces:
1. X = an open ball in the euclidean space E", or

2. X =[] 1, the product space of a family of intervals, where A is either finite
: ied
or countably infinite and for each i€ A, I is the open, the closed, or the half-open unit
interval.

- Let an >0 be given. Then for each positive number §<e, every d-continuous

Junction of X possesses an g-invariant point.

Outline of a proof. The idea is basically that used in Proposition 3.4
and Corollary 3.5 of [18]. However, by means of our Lemma 2.1, we are able to give
a sharper estimate for the & in terms of the & for the spaces considered here. Let
220 be given and let 6<¢ be an arbitrary positive number. Suppose ft X — X is
S-continuous.. By Lemma 2.1, f has a continuous §-approximation g: X — X.
New, let = (e~ 8). Following the idea of Proposition 3.4 and Corollary 3.5 of [18]
(see also [8]), it is not difficult to find a compact subset Y<X and a continuous
mapping r: X— Y such that

1. Y has the f.p.p.

" 2. For each x € X, o(x, r(x))<rt where g is the metricin X. Ifweletj: ¥ — X
be the inclusion function, then any fixed point of regej: ¥ — Yis an g-invariant
point for f. The details of the proof are omitted.
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ILI. ¢-Tnvariant points for a given function. Having considered spaces with the
proximate fixed point property, we now consider individual functions of a given
space. Let X be a metric space which does not necessarily have the proximate fixed-
point property, and & be a positive number. For a given J-continuous function
f: X— X, how can we determine whether f has an g-invariant point? For the analo-
gous question on the fixed-points for a continuous function of a compact ANR,
one of the most important tools is the Lefschetz fixed-point theorem (lirst proved
by S. Lefschetz for manifolds [19], and by H. Hopf for polyhedra [14], and gener-
alized by S. Lefschetz for all compact ANR spaces [20]). In the following, we shall
show that a Lefschetz number can also be assigned to a suitable d-continuous
function of certain compact AANR’s, and this number can be used in a sufficient
condition for the function to possess an g-invariant point. To describe these AANR's,
recall that a topological space X is said to be of a finite homology type if (1) the
homology groups H,(X, Q) of X with rational coefficients are finite dimensional for
all ¢, and (ii) H, (X, Q) = 0 for all but finitely many ¢'s. We shall consider compact
AANR spaces of a finite homology type. These spaces include, in particular, all
the compact ANR’s.

THEOREM 3.1. For each compact AANR space X of a finite homology type and
for each positive number &, there exists a >0 such that each 5-continuous function
f: X — X can be assigned a unique Lefschetz number A(f) in such a manner thut
the following conditions are satisfied:

1. If f1 X — X is continuous, A(f) = the usual Lefschetz number of f.

2. If f: X X is 8-continuous and g: X — X is a continuous &-approximation
Jor f. then A(f) = A(g).

3. For any §-continuous function f: X — X, if A(f) # 0, then f must have
an g-invariant point,

Proof. We first note that for each compact AANR space X of a finite homology
type with a metric g, there exists a §; >0 such that for any two continuous mappings
fr9: X=X, if o(f(x),g(x))<é, for all x € X, then f and g are homotopic (see
[11, Theorem 2.3, p. 11]).

Now let an £>0 be given, First fix a positive number d,<2¢ as above. Then
use Theorem 2.1 to fix a §<d,/2 such that each §-continuous function f: X' — X
has a continuous (§,/2)-approximation g. Since any two such continuous
(8,/2)-approximations for f are homotopic, we may define the Lefschetz number
of fto be the Lefschetz number of any such continuous (8,/2)-approximation g of /.
This definition of Lefschetz number for the §-continuous functions clearly satisiies
the conditions | and 2 of the theorem. Furthermore, if A(f) s 0 for some §-con-

tinuous function f. Then A(g) # 0 for any continuous (8,/2)-approximation g of /'

(by Theorem 2.1, there exists at least one such.g). Since §,/2<¢, any fixed point
for g is an g-invariant point for f. '

Remark 3.1. Even though the Lefschetz number of a §-continuous function fis
defined by means of that of a continuous approximation of f; it is possible in some
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cases to compute A( /) directly from f by looking at the image under f of a finite
s-dense subset of the space. This can be seen as follows. For a given d-continuous
function f of a compact AANR of finite homology type, from the proofs of our
Lemma 2.1 and Theorem 2.1, a continuous approximation to f can always be made
to agree with f on amy finite e-dense subset of the space for a sufficient small &.
Since the Lefschetz number for a continuous function can be found by looking
at the image of a suitable finite e-dense subset of the space (for instance, when the
space is a simplicial complex, the e-dense subset is the set of vertices of a subdiv-
ision), it is also possible to do the same for a §-continuous function.

Remark 3.2. For a general compact AANR, it is well-known that two conti-
nuous function of the space can be arbitrarily close to each other without being
homotopic, Therefore, the proof of our Theorem 3.1 is not valid for a general com-
pact AANR. We do not know whether the theorem is still true for such a space,

Remark 3.3. Our Theorems 2.1 and 3.1 do not give an explicit dependence of
the &’s on the given &’s, However, in certain cases, when the space is already embedded
in a normed linear space, it is possible to estimate such a . For instance, if Xis
a eunclidean n-sphere in E™1 with a radius R, it can be shown that for any £>0,
a §<Inf(e/2, R/2) will satisfy both Theorems 2.1 and. 3.1.

In fact, for euclidean spheres, many classical fixed-point theorems for continu-
ous functions can be carried over for the J-continuous functions. As a sample,
we shall state the following theorem, whose proof is straightforward once we observe
that for each §< R/2, any §-continuous function of the sphere can be approximated
within /28 by a continuous function (cf. Theorem 2.1). The detail for the proof
will be omitted.

THEOREM 3.2. Let S™ be a euclidean n-sphere with a radius R, and & be any positive
number <R/2. If n is an even integer, then cach §-continuous function f: §* — S"
either has a /2 §~invariant point, or sends some point, within a distance \J2 8, to its
antipodal point. ’

1V. Some questions. Recently, Klee and Yandl introduced the concepts of strong
proximate absolute neighborhood retract (SPANR), and proximate absolute neigh-
borhood retract (PANR) [27], [18]. 1t is known that (sce )

ANR = AANRy < SPANR = FANR = PANR

where AANRy stands for the absolute approximative neighborhood retract in
the sense of Noguchi [23], FANR stands for the fundamental absolute neighborhood
retract introduced by K. Borsuk [4], and all the spaces are assumed to be compact.
Since each AANRy is an AANR in the sense of Clapp (AANRc), and we have
proved that for a compact AANRg, f.p.p. and p.f.p.p. are equivalent (Theorem 2.2),
for each AANRy or each SPANR, f.p.p. and p.f.p.p. must also be equivalent.
On the other hand, for a compact PANR, f.p.p. does not necessarily imply p.f.p.p.
This can be seen as follows. In [17, p. 45], Klee described a plane continuum K
which has f.p.p. but lacks p.f.p.p. With the help of [18, Theorem 2.3, it is easy

¢ — Fundamenta Mathematicae CXI, 2
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to see that the plane continuum X is in fact a PANR. In view of these, it is naturaf
to ask the following.

QUESTION 4.1. For a compact FANR, does f.p.p. always imply p.f.p.p.?

A positive answer would also settle a question of Finbow that whether compact
FANR’s are the same as compact PANR’s [7]. Finbow also suggested the following
two problems in a communication, First note that by our Remark 3.2, our method
of assigning Lefschetz numbers may not determine a unique number for a §-con-
tinuous function on a compact AANR. Suppose such a function fis given. We may
then consider a set L,(f), the set of Lefschetz numbers obtained from the con-
tinuous e-approximations of £, If f is continuous, we may let L(f) = () L(f).

2>0 .

QUESTION 4.2. What do L,(f) and L(f) say about f in general? What does
L(idy) say about the space X?

In our Theorem 3.1, we have used two properties of certain compact AANR
space X. (1) There is a >0 such that any two 5-close continuous maps of X are
homotopic. (2) For each ¢>0, there exists a §>0 such that each §-continuous
function of X has an e-approximation. .

The second of these characterizes compact- AANR¢’s. The first does not
quite characterize compact ANR’s, though a slightly stronger property does (see
[15, p. 114, Theorem 1.3]).

QUESTION 4.3. What Kind of spaces satisfies the conjunction of properties (1)
and (2)?

Finally, we shall list a question raised by Professor Klee in a private communi-
cation. .

QUESTION 4.4. Suppose X is a compact metric space which is connected and
locally connected. Jf X has f.p.p., must it also have p.f.p.p.?

Note that a finite-dimensional compact metric space X is'an ANR if and only
if it is locally contractible (see [2, p. 240] or [3, p. 122]), Iif there exists a counter-

example to Question 4.4, then by our Theorem 2.2, the space must either be infinite
dimensional or not locally contractible.
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