Hereditarily indecomposable tree-like continua, IK
by

W. T. Ingram (Houston, Tex.)

Abstract, In this paper is presented an example of an hereditarily indecomposabie tree-like
continzum such that each non-degenerate subcontinuum of it has positive span.

L Introduction. In an abstract in 1951 Anderson [1] stated that there is an heredi-
tarjly indecomposable tree-like continuum which contains only degenerate chainable
continua. In 1959 Anderson and Choquet [2] constructed a tree-like continuum in
the plane such that no two of its non-degenerate subcontinua are homeomorphic.
In 1967 Cook [3] constructed a continuum with the property that the identity is the
only non-constant mapping of the continuum into itself. The purpose of this paper
is to present an example of an hereditarily indecomposable tree-like continuum con-
taining only degenerate subcontinua with span zero. Thus, the example of this paper
contains only degencrate chainable continua. The construction of this continuum
(in Section 5) is similar to that employed by Cook and the reader familiar with that
paper will notice arguments here which are quite similar to those in that paper.

Throughout this paper the term mapping means continuous function and the
term continuum means compact, connected metric space,

2. Atomic maps, span, and atriodic continua. In this section we establish the main
lemmias for the constructions of this paper.

DerINITION. Suppose f is a mapping of a continuum X into a continuum Y.
The statement that f is atomic means if K is a subcontinuum of X such that f(K)
is nan-degenerate then K = f~(f(K)). (In [3, p. 242] Cook called such a map
preatomic, but in [5, Theorem 1] Emeryk and Horbanowicz showed that such
mappings are monotone making the nsage here consistent with that of Anderson
and Choquet [2, p. 347].) The span of f, denoted of, is the least upper bound of the
set to which the number ¢ belongs if and only if there exists a subcontinuum Z of
Xx X such that p,(Z) = p,(Z) (p; and p, denote the two projections of Xx X
onto  X) and if (x, ¥) is in Z then a(fex.f (»)=e. The span of X, denoted ¢X,
is the span of the identity mapping of X onto X.
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‘ TFEOREM 1. Suppose X is a continuum and f is an atomic mapping of X onto 4
atriodic continuum. Y. If, for each point y of Y, £~ () is atriodic, then X is az‘riodi:
Proof. Suppose H is a triod lying in X. Then H is the union of three continua

H,, H,, and Hj such that the common part of each two of them is the commo
part of all three of them and is a proper subcontinuum of each one of the Bn
hypothesis f(H) is non-degenerate. . "
‘ W.c now show f(H,) is not f(H) for i =1,2,3. If i is an integer such that
f (Hi') is f(H) then f(H)) is non-degenerate and f~( f(H,)) = H,. However, in
}I(j;{]);é i, there is a point Q; not in H,. It is easy to see that that f(Q,) is nogt in
' Further, if H; and Hj are two of H,, H,, and Hj, then f(H) U f(H) is not
JF(H). To see this, for convenience suppose f(H,)u f (}[2) Iis f (H)j Sinc
J(H, uHZ? =f(H) and f(H) is non-degenerate, f~f(H, u H,) = H- v 15(e
But, t?xere is a point Q; of Hj not in H, U H, and £(Q,) is not infz(H ) ulf(H 2)
‘Since f (H) is the union of three continua, f(H,), f (H,), and f (Ha)l, such thz.el;

no one of them is a subset of the union of the ot} i
ot her two, f(H) cont. (i
This involves a contradiction. +J (H) contains  triod [12].

T}!BOREM 2: If X is a continuum, f is a mono tone mapping of X onto a continuum Y,
and & is a positive number such that cY>s¢, then 6 X>0 and af>¢

Proof. Suppose ¢ is a positive number such that i i i
! > oY>e. Since fis uniforml
continuous, there is a positive number- & such that if (x, ) i i :
,p) is t
d(x, )<8 then d(f(x), f(»)<e. (#9718 & poiat of Xx X and
~We now show ¢X>9. There is continuum Zin ¥
’ s X> X Y such that p,(Z) = p,(Z)
and if (P, Q) is a point of Z, d(P, Q)>¢. Let Z' -1 l ¥
. i ’ 28, = X y4 'is
a continuum because f is monotone. (/)7 E) and note that 2735
- v’g) see that p,(Z’) = p,(Z’), suppose (x, ) is a point of Z’. Then (f(x),f(y))
1(sf1;1 ) .S;nce Pi(Z) = py(Z), there are points P and Q of ¥ such that (P, f(x)) and
¥), @)-are in Z. If s and ¢ are points of X such that = , =
then (s, x) and (y, t) are in Z". f@=FPmdi0=0
If (x,) is in Z’, then d(x, y)=6; for if d(.
D=8 x,y)<é then d| s
but (f(x),f(y)) is in Z. Since fXf(Z') = Z, af >e. ) (e JO)se

s . . .
e hsls gapzlraz :(]; 1: Sl;lg: triod. The crucial difference between the construction
i r and that o ok [3]4is our need here to have a “spiral” i
. f piral” to a simple
?:c;d such .that the mapping f of T onto T (see below for a definition of ) will extexr)ld
) thmam;:]lg of t-he closure of th'e “spiral” to itself. The mapping f does not extend
ao“d e gi .(stri.lght ar_ound) sl?n*al to a simple triod. In this section we construct
ouble spiral” to a simple triod which we will employ in the main constructi
of this paper. . en
Oin:Ne rt:{;all' sgme deﬁniti(?ns and notations from [7]. Denote by T the set of alt
]{)0 ;‘ (ﬁi ;Dm :hcbplznih in polar coordinates such that 0<g<1 and 8 is in
(0 2™, T;. Donote by 4 the point (1, 4m), by B the poi i
(1,0), and by O the point (0,0). .) y, ;e post {lo 7k by © the pet
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Denote by f the mapping of T onto T defined as follows:

(1-2,m if 0<g<}and 8=0,
(2¢-1,0) if 1<e<l and 6=0,
(1-3g,m if O<o<tand f=m,
(Be—-1,%m) if i<e<iandf=r,
@2-30,%m) it i<e<}andb=m,
(30—2),0) if 3%<g¢<landf=m,
(1—-4g,m) if 0<g<%}and 6=im,
(4g—1,%m) if 3<e<?oand 6=1im,
(3—4g,4m) if i<e<%and 6=im,
(4¢-3,0) if $<¢<1 and 6 = im.

S, 0) =

Denote by M the inverse limit of the inverse limit sequence {Ty, f;} where, for
each i, T, = T and f; = f. In [7] the author showed that M is an atriodic tree-like
continuum with positive span. ) i

Denote by K the composant of M containing the point (C, C, C, ...). Note
that K is a topological ray, and let i denote a homeomorphism throwing (0, 11
onto K. Then k(1) is (C, C, C, ...). Denote by R the subset of M x[—1, 1] to which
the point (x, ¥) belongs if and only if it is true that if y is O then x is in M, if y>0
then x is (), and if y<O0 then x is s(—y). This is a “double spiral” to M. Denote
by Fthe mapping of M onto M induced by f, i.e. F(x;, X35 ... = (G0 Xq5 X2, )
Note that G, defined as follows is a mapping of R onto R:

(F(x), 0) it y=0,
G(x,y) = {(FG), " Fr(y) . if y>0,
(F(x), —h™'Fa(~y) if y<O0.

Denote by S the “spiral” to T, R/n; (m, is the projection of M onto T;). The
mapping G of R onto R induces a mapping @ of S onto S [4, p. 126] and ¢|T is f.

4. The main constructions. In this section we describe the inverse limit systems
that produce the main examples of the paper.

DernNiTIONS. If f is a mapping of the continuum X onto the continuum Y,
£ is called an 4*-map if it is atomic and there do not exist infinitely many points
y of Y such that f~ }(y) is non-degenerate.

TrEOREM 3. There exists an inverse limit sequence {X,, fi} such that WXy isT
and, for each positive integer n, X, is a continyum, (2) for each m, f, is an A*-map,
@B)if xisin X, and f; (x) is non-degenerate then x is interior to an arc lying in X,
and f;7X(x) is a simple triod, (4) if x is in X, and f; 1(x) is non-degenerate and o. is an
are containing x in its interior such that o contains no other point with a non-degenerate
inverse image, then fy *(c) is homeomorphic to S, (5) if T is a maximal simple triod
lying in X, then F7NT) is not a simple triod, and (6) if o is an atc lying in X, then
there exists an integer m>n Tuch that f™~*(a) is not an arc.
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We adopt the following notation used by Cook [3]. If « is an ordered pair (i, j)
of positive integers, denote i by n,(2), denote j by ny(«), denote the ordered pair
(i+1,5) by o*, and denote the ordered pair (i, /+1) by «'. Let D denote the set of
all ordered pairs of positive integers directed by the relation < where a<f if and
only if o and B are two elements of D such that either () <#n(f) or (o) = ny(B)
and n,(o) <ny(B).

Recall from Section 3 that M denotes the atriodic tree-like continuum with
positive span from [7].

THEOREM 4. There exists an inverse limit sequence {X;, fi} such that, (1) X, is M
and for each n, X, is an dtriodic tree-like continuum with ¢ X,>0, (2) for each n and m
with n<m, fi" is an atomic mapping and if x is in X; where [ is a positive integer then
()" (%) is either degenerate or homeomorphic to M, and (3) if n is a positive integer
and I is an arc lying in X,, then there exists an integer m>n such that (f;)™'(I) contains
a homeomorphic copy of M.

Proof. There exists an inverse mapping system {7, 78} over D such that,
(1) for each w in D, T, is a continuum, (2) if oy, o5, ..., 0, is a sequence of elements
of D such that, for each i<n, a4, is either o or of then n is the composite
om0 omar_,, (3)if ¢ is in D, T, contains only finitely many mutually exclusive
simple triods, (4)'if « is in D and n,(«) = 1 then T} is a simple triod and 7 is f,
(5) for each positive integer 7, then inverse limit sequence {T},,;), nET:f)’l satisfies all
the conditions of Theorem 3, and (6) if # is a positive integer and K is a maximal
simple triod in Ty, ; which is thrown by nfﬁj{,’ onto a simple triod in T, then
K s £ '

For each 7 let X, be the inverse limit of the inverse limit sequence {T¢,,, nind}
and let f, be the mapping of X, , onto X, induced by n{i;{¥), z{is1?, 7tk ..
Con [3, Theorem 1, p. 242] has shown that £, is atomic, thus £ is atomic if m>n.
Each X, is atriodic by Theorem 1. By (6), for each », X,, contains a copy of M. Thus,
for each n, X, has positive span.

THEOREM 5. The inverse limit of an inverse limit sequence satisfying the conditions
of Theorem 4 is an atriodic tree-like contimuum containing only degenerate subcontinua
with span zero. i

Proof. Such.an inverse limit is atriodic because an inverse limit with each factor
space an attiodic continyum is atriodic. Suppose X is 2 non-degenerate subcontinuum
of the inverse limit:, By condition (3) of Theorem 4, some projection of K contains
a copy of M. This projection is atomic [3, Theorem 2, p. 242] so by Theorem 2 K con-
tains a subcontinium with positive span. Thus X has positive span,

In the final section of this paper it is shown that each member of the collection H
fleﬁned in [10] has positive span. Denote by N the member of the collection H which
is obtained by using an inverse limit on simple triods with odd numbered bonding
maps “crooked” and even numbered bonding maps the mapping f of section 3 of
this paper. | ‘ :

THEOREM 6. There exists an inverse mapping sequence {Y,g,} such that, (1) Y,

-

icm
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is N and for each i, Y; is-an hereditarily indecomposable tree-like continuum with
positive span, (2) for each i, g;'is an atomic mapping of Y44 onto Y;, and, if y is
a point of Y;, gi "(v) is either degenerate or is homeomorphic to N, (3) if i is a positive
integer and P is a pseudo-arc Iying in Y; then there is an integer j>1 such that (gh=1(P)
contains an hereditarily indecomposable tree-like continuum with positive span.
Proof. We wish to construct an inverse mapping system {7, nZ} over 4 as in
the proof of Theorem 4 except that if we restrict our attention to an inverse limit
sequence {7, n‘f} such that n,(y) = n,(5) = i then the inverse limit of this sequence
is hereditarily indecomposable. This can be achieved by inserting sufficiently crooked
mappings into the inverse mapping system of Theorem 4, so that each mapping of
a maximal simple triod onto a simple triod is crooked in the manner described in [10].
It should be noted that such a crooked mapping of a simple triod extends to a crooked
mapping of S onto S. Let ¥; be the inverse limit of the sequence {T,, 7%} where

7,(p) = n,(8) = i and g; the mapping of ¥;,, onto ¥;induced by &Y, alhy?,

2413 Using again the result of Cook [3, Theorem I, p. 242] g; is atomic. Since
for each i, Y; contains a copy of N, Y; has positive span.

TuEOREM 7. The inverse limit of an inverse limit sequence satisfying the conditions
of Theorem 6 is an hereditarily indecomposable tree-like continuum containing only
degenerate continua with span zero.

Proof. Such an inverse limit is hereditarily indecomposable because any in-
verse limit on hereditarily indecomposable continua is hereditarily indecomposable.
That each non-degenerate subcontinuum has positive span may be seen using con-
dition (3) of Theorem 6, the fact that the projections are atomic [3, Theorem 2,
p. 242] and Theorem 2 as in the proof of Theorem 5.

5. Span. In this section we prove that each of the continua in the collection H
defined in [10] has positive span. The proof is similar in nature to the proof that the
continuum M of [7] has positive span. However, so much modification of the
argument has been made that a complete argument is given here.

The function f was defined in Section 3 of this paper. The homeomorphism 7 of T
onto T [8] is defined as follows:

(0, 3m) if 0= %m,
r(o, 0) = (0, ) if 0=0,
l(e.O) if 6=n

. . A
Notation. If p and ¢ are positive integers and* p<g, the point 1—77 denotes
¢

(R, TE) 1)3 denotes (E, n) and ‘If denotes (‘l—,, 0). The notation (o, By implies
q 2/ q q q q

that <a, B is a subcontinuum of T'x T such that p,(<a, B) is «, po(<a, B) is f and
« and p are arcs in 7. 1f X and Y are points of T, the arc from X to Y in T'is
denoted by XY.

DEFINITION. A subset Z of T'x T is said to have property L' provided Z is the
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union of twenty-four continua {04, BC), {BC, 04>, {OA,OB), (OB, 04>,
A
{OB, ACY,{AC, OB),{0C, AB),{AB, OC)», {04, 0C} . {0C, 04>, <()—5, BC>,

A A
<BC,0%>, <OB,%C>, <»2«c, OB>, {0B, 0C5, £0C, 0By, <oc, 2B>,

4 4 4 A 4 A 4 A A\ /4 4

e i B, AN (O, Zd) (24,050, (=4,
<2B’OC>’<2A 2B> <2 2 >< 2'2 ><2 2> <2A 2C>’
a (2c. 44
an 36 54)

Lemma 1. Suppose [a, b] and {c, d] are arcs und H and K are subcontinua of
{a, bl x [c, d]. If both a and b belong to p,(H) and both ¢ and d belong to p,(K), then H
and K contain a common point,

Lemma 1 is used often in-the proofs of Lemmas 2, 3, 4, and 5, below. It was
also a useful tool in some of the proofs of [9].
LemMa 2. If Z is a subset of TxT with property L', then Z is a continuum,

4
Proof. Each of (AC, OB),{AB, 0C),{0A, 0B, {04,0C), and <0 ; BC>
intersects (OA, BC) (use Lemma 1) so the union of these six continua is a con-

~ RO 4
. timum, C,. Each of (BC, 04), (4B, OCY, (OB, 043, (0B, OC, <BC, o-7>,

272
tinua is a-eontinuum, C,: Each of (BC, 04), {AC, OB}, (OC, 04), LOC, 0B,

A A A\
<—i C,~2-A>, and <OC, 2B> intersects (OC, AB) so the -union of thesc seven

A AN\ A ~
<fB, ——A>, and <OB"3 C> intersects (OB, AC) so the union of these eight con-

continua is a continuum, Cj. Since C, intersects both C, and Cj, the union of these
three continua is a continuum. Further, denote by C{ (i = 1,2, 3) the continuum
. resulting from the union of all continua {«, 8 where (B, %) is a subset of C;.
Then, C{ intersects C,, C; intersects Cy, and Cj intersects C,, so the union of

, ‘ . . . A 4 .
GG Gy C1{, C;, and Cj is a continuum, The continuum 0 eR »2A> intersects C

at a-point of <14 B, £A> while<f—1 A, 0 f>1ntcrsecls C; ata point of <A A, 'A B>
WA X A AT R , 2 ’
s0.Z is a continugm

Lemma 3. If Z is a subcontinuum of Tx T with propc’rty L', then there exists
a subcontinuum Z, with property L' such that rxr(Z,) =

LemMA 4. Suppose k is a mapping of T onto T such that k Yx) = {x} for x in
A4
{0 3 oA, B C}, and Z is a subcontinuum of Tx T with property L'. Then there

exisis a subcontinuum: Z; of T'x T with ~,prqpeﬁty L' such that kxk(Zy) = Z.

icm
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Proof. If & and B are in {OA, OB, OC, O%, %A, AB, AC, BC, %B, %C}

then k|ox k| B is a mapping of « x f onto « x f which is essential on the boundary,
S, of ax B. Thus k|ax k| is not homotopic to a mapping g of «x g to S* which
bas the property that g|S* = (klaxk[B)|St. By a theorem of Mazurkiewicz
{11, Theorem I, p. 328] k|« x k| B is weakly confluent. For each continuum <o, 8>
of the twenty-four whose union is Z let {a, )’ be the component of (kjaxk|f)~*
({a, B>) which is thrown by k|uxk|B onto <, B>. The union of the twenty-four
continua thus obtained is the desired continuum Z,.

LemMA 5. If Z is a subcontinuum of TxT with property L', then there exists
a subcontinuum Z; of Tx T with property L' such that fxf(Z;) = Z

Proof. We adopt the notation used in [8] as follows: if {¢, &) is a subcontinuum
of Z and v and w are arcs in T such that f|v is a homeomorphism throwing v onto ¢
and f'|w is a homeomorphism throwing w onto u then L = ( f|o) ™ x (f|w) (¢, ©)
is a continuum thrown by fxf onto <{¢,u) such that p,(L) =v and p,(L) = w.
This continuum will be denoted by L({z,u)>, v, w).

Let

A 2B 4 A 34 4
oy —Lj((AB ocy, 0 —, ?B) L2(<2 -EC ) o B)U

B
2’2
ori({44 oA\ 34 A B2BY (/4 A\ 454 B2B\
3’2’2’8223 “\WN27""2/"28"23
: A54 BB A A\ AS54 B
ULl YN ool (=4,=2B)Y, - T, 0=]u
28732 2727 287
A
uILi(cdc, OB), )uL5<(AC OB), 4,0
434 C 44 C
uLi{<o4, 0B, 5 =, 0 uLi(<¢o4, 0B, 55,05 )u

A4 A c '
u Ll [¢o4, Bc>,~— oC)uLi,|4B, 0C), 0= 5 2 .

With four exceptions, successive terms of the sequence Li, L}, ..., Li, may be seen
to intersect with the aid of Lemma 1. For example.L} and L} are continua lying in

A B A . B
0»;, x—iB,plL} contains both O and 3 while p,L% contains both 3 and B. The

exceptions to using Lemma 1 here are to see that L§ intersects L,i,L}, intersects

2
A B2B\! . . A\,
50 (-,< f l—i —3~> (P,)) is in both L! and L. There is a pomt( 2y ;) in

. /A A
L}, L7 intersect L3, and L} intersects L}o. There is a point (4, P,) in <—§A , 0 —>

2
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A 4 AS4\Y B
<§A,03> $0 ((f—i ?) (PZ)’E) is in both L} and L} and there is a

point (P3,B) in {OA,OB) which lifts to a point of both Lj and L},.
Let'a, =ayl, o =L} UL} U... UL and oy = 071, Let

A 2
cx5 =y UL} (<0c AB), = Ba 0 2) U L§<<oc, 0B), —3}33, 0 ﬁ}) V)
2B C A
UL (<oc, 085, %°8,0 5) v Li(<-i c, OB>, 25,0 f) o

v L3 OA BC 528 , 0C
s 237 '
By using Lemma 1 it can be seen that L} intersects L3, L] intersects Lf, and L§
intersects L3, A point (Ps, B) of (OC, OB lifts to a point lying in both L3 and L.
R . 2B A .
Now, a, contains (L1)™! = L<<0C, ABY, 73~B, 0] -5> and since this is L, as

is a continuum. Let og = a3 ',
Let

o= (0. 4¢).0 --B)u[,z(@c,o 40622
13({se.0%) 002 2o i({oc. 25).Sc. %)
%)

<0C, OB, ~ e

B C A
C, L C, ,=C,0—
> V] ((0 , OB) 2C 04>u

lof A A A
OC, AB)y,~C,0= 7 , gl
< > 5 2)uL3(<BC 045y, 0cC, y 2>u

>u 10((01&' 04>, OQ fﬁ)u

uLs(
uL7(
U L9 ((OB, 04>, 0 5 %

h l

. A\
By using Lemma 1 and the facts that <BC, 0 §> contains a point with second

C A
2’4
C A
272

((OB ACy, 0

coordinate > {OC, 0B} contains a point with second coordinate B, and (OB, 04}

contains a point with second coordinate 4, as before it can be seen that o is a con-
tinwum. Let ag = a7* and let og = L7 U L] U ... UL], and oy = o5 ™.
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Let

A 2B A A \ 344 B
=L <4B,0C), 0%, Mz 42 ==
Oy 1 (<A ocy 33 )ULz (<2A,2C>, 3 2‘2B)U
A A\ 344 B2B A A\ 344 BB
o ((Za,02), 2L 22V o ((Z4,02), 22 22
3(<2 2 % 2a3) R\ (3192w w33
4

A A4 344 B A B
U Lj ( A, =By, —, 0= UL 04,08y~ —,0=}u
2 2 2’72 42 3

((OA OB, 3 (<0A, BC),% ‘é, 00) .

. A A
Here Lemma 1 and the facts that <—2A 03> contains a point with second

A
coordinate 5 and {OA, OB) contains a point with second coordinate B may be

used to see that x,, is a continuum. Let o, = o
Let

L3 AB oc oB cluLl? oA BC 5B ocC
a3 = L1’ ((3 8. 0€). 07, 5C| v L3 PR AT Yt et
A B 2B A B C
3{{o=,BC),=—, ) L ((=C,0B), =B, 0~

uL3(<2B ,230(},‘.)4 5C 3 2u

A B A 2B . 4
B3((C,0B),~B,0=)uLi®(<0OC,4B),— B, 0=]}.

U Ls (<2C5 >;2 s pl uLg? (< > 3 5

That o, is a continuum may be seen with the aid of Lemma 1 and the facts that
A . . . A A .
<0—5, BC> contains a point with first coordinate 3 and <3 C, OB ) contains a

. . . - 13 3
point with second coordinate B. Let a4 = apy and o5 = Li> UL}® U L3* ULL
and o5 = ajs.

Let

. A\ C 34 c A
oyg = aleuL{7(<OC, 513> ~C,0 g)uL;7<<oc,AB>, »2~C, o§>.

That L7 intersects L7 may be seen using Lemma 1. Since (L;*)™" is a subset of

P A C B A . . i
a6 (L;7)"P =L{(OC, EB R —2«C, % 5) and ( OC, —iB contaihs a point with
second coordinate B, L!7 may be seen to intersect (LYH™L. Thus o, is a con-
tinuum. Let ‘o g = 77
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Let

34 A A
P (<oc, ABY, 34». A0 2> UL ((AC. 0B, 4.0 z) U

A B A 4 454 OB
L”(Ac OB )uL -4, B i
¢ Py A 22w )Y
A\ A54 BB A 454 B2B
<<’z>zs 3o (o) 1 755)
ASd B
u LY 4,5¢C -B).
7(<2 2872

Since {AC, OB) contains a point with second coordinate B and <A

A
A, 0O~ con-
5 ()2> con

- L . A
tains a point with second coordinate — > it may be seen that L3° intersects LY and

L}® intersects L®. Thus, by using Lemma 1,
Let apy = Li° UL and oy, = a3y
Let

tys -.a21uL23((AC 0BY,= A 0- >uL§3(<0A BCY,”

e is @ continnum. Let o,y = afy.

oc).

Using Lemma 1, L% intersects Lis. Since (AC, OB) contains a point with second

. coordinate- B, it may be.seen that L3® intersects L3® and so o, is a continuum.

=] )

vLet g =023 » .
- Let Z;y = oy Uy U ... U dyg. By Lemma 2 Z; is a continuum. The continua
Oy, Oy ey Olpy Are, in order thc continua Lequued so that Z ', have property L'.

By construction fxf(Z,) = '

Let #" denote the set to Wthh k belongs if and only if & is a mapping of T'onto T

4 34
24

such that k™ '(x) = {x} for each point x of IA B,C,0, —~}

LE}MM} 6. Suppose for -each n, jj, is in A v {f, r}. Then, if a>1, of} =1 where
1 2
Proof. Let
zZ, = ((04 X {B}),U ({4} x BC)) U ((BCx {A}) U ({B} x 04)) L
U ((04% (B} U ({4} x OB)) U (0B x {4}) L ({B} x 04)) U
U ((0Bx {4}) U ({B}x AC)) U ({4} x OB) U (AC x {B})) U
U ((0Cx {4}y U ({C}x 4B)) U ({4} x OC) U (ABx {C}) U
U ((0Cx{4}) U ({€} % 04)) U ({4} x OC) L (A x{CH) U

(o) {3 o) (em=%) - (ee {51 -

{05

Hereditarily indecomposable tree-like continua, II

] ((OBX <chH u({B} xi;c)) U (({C} x OB) U (%Cx {B})) v

U ((0Bx{CH U ({B}x0C)) U (({C}x 0B) U (OCx {B})) v

floex sy r+48))o (0 000 (£axic)
u<(f§Ax{B})u{A}X%B)U<<{B}X%A>U(%B><{A}))U
(e (1502 o (10 24) o (02t
o((5ax1e1) ot )o o((terga) o (Gexim))

M (p,q)is in Z, then d(p, ¢)>% and Z; has property L. The lemma follows by

induction using Lemmas 3, 4, and 5.

THEOREM 8. Suppose, for each n, T, is T and f, is in A" U {r,
inverse limit of the inverse limit sequence {T,f,}. Then aM>0.

Proof. Apply Lemma 6 and Theorem 4 ot [7].

THEOREM 9. Each contimium in the collection H has positive span.

THEOREM 10. No continuum in the collection H is homogeneous.

Proof. Suppose X is a member of H which is homogeneous. In the proof that X
has positive span we show that for each positive integer n there exists a subcontinuum
¥, of TxT such that p,(V,) = OB and p,(V,) = OC and fixfi(V,) is a subset.
of @ continuum Z; in Ty x T, with the property that d(x, )=+ if (v, ») is in Z,.
The continuum X is the inverse limit of {T, m}} where 7; = T and - n{*' is in
ko fokyor-f1 with k; “crooked”.

Since .Y is homogeneous, by a theorem of Hagopian [6] there exists a positive
aumber 8 such that if P and Q are points of X and d(P, Q)<J then there is
a homeomorphism /1 of X onto X such that #(P) = Q and if xis a point of X then
d{x. h(x))<}. There exists a positive integer N such that if x and y are points of X
such that xy_, = yy_, then d(x,y)<d. Let P and Q be points of X such that Py
is B and Qy is C. Then Py_; = Oy~ 50 d(P, Q)<3. Let h be a homeomorphism
of M onto M such that h(P) =-Q and if x is in M, d(x, h(x))<%. Consider a sub-
continuum K of X containing P such that nyK = [OB]. Since h(P) = Q, nyh(K)
contains C.

Case . If my/s(K) is a subset of [OC], then L = {(x, y)| (x,»)isin Tx T and
there is a point z of K such that x = my(z) and y = nyh(z)} is a continuum in
[0B)x[OC] such that p;L = OB and p,L is a subset of OC. Thus, L contains
a point of V. This gives a point z of K such that (wx(2), nyh(z)) is in ¥y, so
(mi(2), m h(2)) is in Z;. This means d(z, h(2))=%, a contradiction.

f}and M is the
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Case 2. If OC is a subset of nyh(K), there is a subcontinuum K, of K such
that nyh(Ky) = OC. Then L = {(x, »)} (x, »)is in Tx T and there is a point z of K,
such that x = my(z) and y = nyh(z)} is a subcontinuum of Tx T such that Py(L)
is a subset of OB and P,(L) = OC. Thus, L. contains a point of V. As before, this
involves a contradiction.
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Convexity on a topological space
by

H. Komiya (Tokyo)

Abstract. Although convexity is an attribute of subsets of linear spaces in general, we define
convexity on topological spaces without linear structures. paying attention to the concept of convex
hull, Then some theorems which have been obtained in linear topological spaces are given in these
spaces.

Takahashi [5] discussed a convexity on a metric space. In this paper, we discuss
a convexity on a topological space without linear space structure. We introduce
a convexity on a topological space and several concepts concerning the convexity,
and obtain some theorems which generalize the theorems proved by Browder [1],
Fan [2] and Sion [4]. All topological structures are implicitly assumed to satisfy
Hausdorfl" separation axiom.

The author tenders his very warm thanks to Professor W. Takahashi for his
advice in preparing this paper.

1. Definitions and some elementary properties. Let X be a topological space,
/(X)) the family of all subsets of X and & (X) the family of all finite subsets of X.
An H-operator on X is a mapping {-> from o (X) into o (X) satisfying the following
conditions:

(a) (@) = @, where @ is the empty set;

(b) {x}> = {x}, xe X;

(€) LAy =LA, Ae A(X);

(d) (A = U {(F): FcA, Fe F(X)}.

The image {(A) of A is said to be the convex hull of 4. A convex setin X is
a subset of X which is equal to its convex hull.

PROPOSITION 1. (i) An H-operator is monotone, i.e. if A< B, then {4y =(B>.

(i) The convex hull {A> of Ae oZ(X) is the smallest convex set containing A.

(iii) The entire space X and the empty set & are convex sets.

@) If {C,}yer s a family of convex sets, then [\ C, is a convex sei.
vel

) If {C,}yer is a family of convex sets such that for any two indices v, and v,

there exists an index p with C,=C,, ( C,,, then ) C, is a convex set.
vel


GUEST




