The assertion that this formula is indeed true in this model is a Σ_1 statement about Ω in Levy's hierarchy, by routine computations. Being true for Ω, it must therefore be true for all countable ordinals in some closed unbounded set $C \subseteq \Omega$. But for $\alpha \in C$ the truth of this statement about α is readily seen to imply that for some/any $x \in W$ with order type $A(x) = \alpha$ we have $3\psi^\beta(r, x, y)$. It follows that $C \subseteq S$, so $\Omega - S$ is not stationary after all, a contradiction.

References

DEPARTMENT OF PHILOSOPHY
PRINCETON UNIVERSITY
Princeton, New Jersey

Accepté par la Rédaction le 19.7.1978

Analytic sets with countable sections

by

Ashok Maitra (Calcutta)

Abstract. This article contains a new proof of Luzin's theorem that an analytic set in the product of two Polish spaces, having countable (vertical) sections, is a countable union of analytic graphs.

1. Introduction. Suppose X, Y are Polish spaces. If $E \subseteq X \times Y$ and $x \in X$, we denote by E^x the set $\{y \in Y : (x, y) \in E\}$. A set $E \subseteq X \times Y$ is said to be a graph if E^x contains at most one point for each $x \in X$. We denote the family of Borel graphs in $X \times Y$ by \mathcal{G}. Let $\pi_1(\mathcal{G})$ be the projection of $X \times Y$ to the first (second) coordinate.

Luzin proved the following fundamental results on Borel and analytic sets with countable (vertical) sections in his celebrated monographs [2]:

(i) If E is a Borel set in $X \times Y$ such that $(\forall x \in X) (E_x^x$ is countable), then $\pi_1(E)$ is Borel in X ([2], p. 178).

(ii) If E is a Borel set in $X \times Y$ such that E^x is countable, then $E \in \mathcal{G}$ ([2], p. 244).

(iii) If E is an analytic set in $X \times Y$ such that $(\forall x \in X) (E_x^y$ is countable), then there is a Borel set B in $X \times Y$ such that $E \subseteq B$ and $(\forall x \in X) (E_x^y$ is countable) ([2], p. 247).

Finally, combining (ii) and (iii), Luzin obtained

(iv) If E is an analytic set in $X \times Y$ such that $(\forall x \in X) (E_x^y$ is countable), then E is a countable union of analytic graphs ([2], p. 252).

We shall prove the following:

THEOREM. If A is analytic in $X \times Y$ such that $(\forall x \in X) (A_x^y$ is countable), then there is $H \in \mathcal{G}$ such that $A \subseteq H$.

A notable feature of our proof of the above theorem is that we do not use results (i)-(iv), so that these results fall out as easy consequences of our theorem. Our proof, though quite different from Luzin's proof of (iii), is based on ideas contained in Luzin's proof of (ii) and also on certain ideas in a recent article of Saint Raymond [3].
2. Proof of theorem. We will prove a sequence of lemmas from which the theorem will be deduced.

Let, then, \(X, Y \) be Polish spaces. If \(E \subseteq X \times Y \), we define
\[
M(E) = \{ (x, y) \in E : E^* \text{ contains at least two points} \}.
\]

Lemma 1. If \(E \subseteq X \times Y \) is analytic, then \(M(E) \) is analytic.

Proof. Let \(\{ F_\alpha \} \) be an open base for \(Y \). Then
\[
M(E) = \bigcup \{ \pi_1(E \cap (X \times F_\alpha)) : \alpha \in \text{PID} \},
\]
where the union extends over all ordered pairs \((n, \alpha)\) such that \(P_n \cap P_\alpha = \emptyset \).

The sets within square brackets being analytic, so is \(M(E) \).

For the rest of the proof, \(A \) will denote the fixed analytic subset of \(X \times Y \). (To start with we do not assume that \(A \) has countable sections.) Fix a continuous function \(f \) on \(E \), the space of irrationals, onto \(A \). Let \(\{ W_\alpha \} \) be an open base for \(E \). For \(Z \subseteq E \), we define
\[
D(Z) = \{ (x, y) \in M(f(V \cap Z)) : \text{ for every open neighbourhood } V \}.
\]

It is easy to see that
\[
D(Z) = \bigcap_{n \geq 1} E_n(Z),
\]
where \(E_n(Z) = \{ (x, y) \in W_\alpha \rightarrow \pi_1(f(y)) \in M(f(W_\alpha \cap Z)) \}, \eta \geq 1 \). Next we define sets \(Z_\alpha, \alpha < \alpha_0, \) by transfinite induction as follows. We put
\[
Z_0 = \emptyset, \quad Z_\alpha = D(Z_{\alpha-1}) \quad \text{if } \alpha = \beta + 1,
\]
\[
Z_\alpha = \cap_{\gamma < \alpha} Z_\gamma \quad \text{if } \alpha \text{ is a limit ordinal}.
\]

Lemma 2. If \(Z \subseteq \emptyset \) is analytic, then \(E(Z) \) is analytic for each \(n \geq 1 \). Consequently, if \(Z \) is analytic, then so is \(D(Z) \).

Proof. Observe that
\[
E_n(Z) = Z \cap \{ (x, y) \in (W_\alpha \cap (V \cap Z)) \}
\]
That \(E_n(Z) \) is analytic follows from Lemma 1. The second assertion of Lemma 2 is now obvious.

Lemma 3. \(\forall \alpha < \alpha_0 \), \(Z_\alpha \) is analytic.

Proof. Use transfinite induction on \(\alpha \) and the previous lemma.

Before stating the key lemma (Lemma 6), we state two results which will be used in its proof. The first result is due to V. I. Golenko, the second is the generalized first separation principle for analytic sets due to P. S. Novikov.

Lemma 4. If \(G \subseteq \emptyset \times Y \) is an analytic graph, then there is \(H \subseteq \emptyset \) such that \(G \subseteq H \).

Proof (by S. M. Srivastava). Let \(f : \pi_1(G) \rightarrow Y \) be the function whose graph is \(G \). Since \(G \) is analytic, \(g \) is Borel measurable ([1], p. 398). So, by an extension theorem of Kuratowski ([1], p. 341), there is a Borel subset \(B \subseteq X \) and a Borel measurable function \(h : B \rightarrow Y \) such that \(\pi_1(G) \subseteq B \) and \(h = g \) on \(\pi_1(G) \). Let \(H \) be the graph of \(h \). Then, as is easy to check, \(H \subseteq \emptyset \) and \(G \subseteq H \).

Lemma 5. If \(A, n \geq 1 \), are analytic subsets of a Polish space \(P \) such that \(\bigcap_{n \geq 1} A_n = \emptyset \), then there exist Borel subsets \(B_n, n \geq 1 \), of \(P \) such that \(\bigcap_{n \geq 1} (A_n \subseteq B_n) \) and \(\bigcap_{n \geq 1} B_n = \emptyset \).

We omit the proof. The reader is referred to ([1], p. 418) or [3] for a proof.

Lemma 6. If \(Z \subseteq \emptyset \) is analytic and \(D(Z) \subseteq B \) for some Borel subset \(B \) of \(\emptyset \), then there is \(H \subseteq Z \) such that \(f(Z - B) \subseteq H \).

Proof. Since \(Z \) is a fixed set in this proof, we will suppress the dependence of \(E_n(Z) \) on \(Z \) and write \(E_n \) for \(E_n(Z) \).

By Lemma 2, the sets \(E_n = Z \cap (B \cap \emptyset) \), \(n \geq 1 \), are analytic. Moreover, \(\bigcap_{n \geq 1} (E_n \cap B) = \emptyset \) since \(\bigcap_{n \geq 1} E_n = D(Z) \subseteq B \). So, by Lemma 5, there exist Borel subsets \(B_n, n \geq 1 \), of \(\emptyset \) such that \(E_n \subseteq B_n, n \geq 1 \), and \(\bigcap_{n \geq 1} B_n = \emptyset \). Hence, we have:

1. \(E_n \subseteq B_n \),
2. \(Z - (B \cup B_1) \subseteq Z = E_n \subseteq W_\alpha \cap Z \)
3. \(Z - B = \bigcup_{n \geq 1} (Z - (B \cup B_n)) \).

If we prove that the sets \(f(Z - (B \cup B_n)) \) are analytic graphs, we will be done.

For then, by virtue of Lemma 4, there will exist sets \(H_n \subseteq \emptyset \) such that
\[
f(Z - (B \cup B_n)) \subseteq H_n,
\]
from which and (3) it will follow that
\[
f(Z - B) \subseteq \bigcup_{n \geq 1} f(Z - (B \cup B_n)) \subseteq \bigcup_{n \geq 1} H_n \subseteq \emptyset.
\]

Similarly, the set \(f(Z - (B \cup B_n)) \) is analytic. To show that \(f(Z - (B \cup B_n)) \) is a graph, let \(x \in \pi_1 f(Z - (B \cup B_n)) \). Then \(x = \pi_1(f(y)) \) for some \(y \in Z - (B \cup B_n) \), so that \(y \in W_\alpha \cap Z \) and \(\alpha \notin E_n \) by (2). It follows that \(x = \pi_1(f(y)) \notin M(f(W_\alpha \cap Z)) \).

Hence, the \(x \)-section of \(f(W_\alpha \cap Z) \) is at most a singleton, and since \(f(Z - (B \cup B_n)) \subseteq f(W_\alpha \cap Z) \) by (2), this implies that the \(x \)-section of \(f(Z - (B \cup B_n)) \) is exactly a singleton. Consequently, \(f(Z - (B \cup B_n)) \) is a graph.

Lemma 7. If $Z_\alpha \subseteq B$ for some Borel set $B \in \Sigma$, then there is $H \in \mathcal{G}_\alpha$ such that $f(\Sigma \cup B) \subseteq H$.

Proof. We prove the result by induction on α. The result is obviously true for $\alpha = 0$. Suppose it is true for all $\beta < \alpha$.

Case 1. α is a limit ordinal. Since $\bigcap_{\beta < \alpha} Z_\beta \subseteq B$, it follows that $\left(\bigcap_{\beta < \alpha} Z_\beta \cap B' \right) = \emptyset$. Moreover, by Lemma 3, the sets $Z_\beta \cap B'$ are analytic. So, according to Lemma 5, there exist Borel subsets B_β of Σ such that $Z_\beta \cap B' \subseteq B_\beta$, $\beta < \alpha$, and $\bigcap_{\beta < \alpha} B_\beta = \emptyset$. By induction hypothesis, there exist $H_\beta \in \mathcal{G}_\beta$, such that $f(\Sigma \cup B_\beta) \subseteq H_\beta$, $\beta < \alpha$. But $\Sigma - B = \bigcup_{\beta < \alpha} (\Sigma - (B \cup B_\beta))$ since $\bigcap_{\beta < \alpha} B_\beta = \emptyset$. Hence

$$f(\Sigma - B) = \bigcup_{\beta < \alpha} f(\Sigma - (B \cup B_\beta)) \subseteq \bigcup_{\beta < \alpha} H_\beta \in \mathcal{G}_\alpha.$$

Case 2. $\alpha = \beta + 1$. Since $D(Z_\alpha) = Z_\alpha \subseteq B$, we use Lemma 4 to get $H_\alpha \in \mathcal{G}_\alpha$ such that $f(Z_\alpha - B) \subseteq H_\alpha$, so that $Z_\alpha \subseteq f^{-1}(H_\alpha) \cup B$. As the set $f^{-1}(H_\alpha) \cup B$ is a Borel subset of Σ, the induction hypothesis yields a set $H_\beta \in \mathcal{G}_\beta$ such that

$$f(\Sigma - f^{-1}(H_\beta) \cup B) \subseteq H_\beta.$$

Hence

$$f(\Sigma - B) \subseteq f(\Sigma - f^{-1}(H_\beta) \cup B) \cup f(f^{-1}(H_\beta)) \subseteq H_\beta \cup H_\beta \in \mathcal{G}_\alpha.$$

We show next that, if $Z_\alpha \neq \emptyset$ for some $\alpha < \alpha_0$, then some vertical section of A is uncountable. Towards this end, we introduce some terminology. Say that a system of sets $\{V_1, V_2, V_3, \ldots, V_k\}$ is admissible if

(a) $V_i, i \in I$, are open in (Σ, Y), respectively, $i = 1, \ldots, k$,
(b) $\pi_i(f(V_i)) \subseteq Q_i$, $i = 1, \ldots, k$,
(c) $\bigcap_{i=1}^k \pi_i(f(V_i \cap Z_\alpha)) \neq \emptyset$ for all $\alpha < \alpha_0$.

Lemma 8. Suppose $\{V_1, V_2, V_3, \ldots, V_k\}$ is an admissible system. Let $\mathcal{A}(V_i), \mathcal{A}(Q_i)$ be countable open bases for V_i, Q_i, respectively, $i = 1, \ldots, k$. Then there exists an admissible system $\{U_1, U_2, V_1, V_2, U_3, U_4, U_5, V_3, U_6, U_7, \ldots, \}$ in Σ and $\bigcap_{i=1}^k \pi_i(U_i) = \emptyset$, $j = 0, 1, i = 1, \ldots, k$.

Proof. Fix $\alpha < \alpha_0$. Then

$$x = \pi_i(f(a_i)) \quad \text{for some} \quad a_i \in V_i \cap Z_{\alpha+1}, \quad i = 1, \ldots, k.$$

It follows that $x = \pi_i(f(a_i)) \in M(f(V_i \cap Z_\alpha), i = 1, \ldots, k$. So there exist $y_{i0} \neq y_{i1}$ such that $(x, y_{i0}) \in f(V_i \cap Z_\alpha), j = 0, 1, i = 1, \ldots, k$. Hence we can find $a_i \in V_i \cap Z_{\alpha+1}$ such that $f(a_i) = (x, y_{i0}), f(a_i) = (x, y_{i1}), j = 0, 1, i = 1, \ldots, k$. Condition (b) now implies that $y_{i0} \in Q_i$. So we can choose sets $Q_i(a_i) \subseteq \mathcal{A}(Q_i)$ such that $y_{i0} \in Q_i(a_i)$ and $\bigcap_{i=1}^k \pi_i(f(V_i \cap Z_\alpha)) = \emptyset$. Next we use continuity of the function $\pi_i(f)$ to choose sets $V_i(a_i) \subseteq \mathcal{A}(V_i)$ such that $\pi_i(V_i(a_i)) \subseteq \pi_i(f(V_i \cap Z_\alpha))$. It is now easy to see that

$$x = \bigcap_{i=1}^k \pi_i(f(V_i(a_i) \cap Z_i)).$$

Thus, for each $\alpha < \alpha_0$, there is a system of sets

$$\{V_{i0}(\alpha), V_{i1}(\alpha), \ldots, V_{k0}(\alpha), V_{k1}(\alpha), \ldots, V_{k0}(\alpha)\}$$

such that $V_{i0}(\alpha) \subseteq \mathcal{A}(V_i), \pi_i(f(V_i(a_i) \cap Z_i)) \subseteq \mathcal{A}(Q_i)$, and satisfying conditions (a), (b) and the condition $\bigcap_{i=1}^k \pi_i(f(V_i \cap Z_\alpha)) = \emptyset$. Since $\mathcal{A}(V_i), \mathcal{A}(Q_i)$ are countable for $i = 1, \ldots, k$, it follows that there are only countably many such systems. Consequently, there is a system

$$\{V_{i0}(\alpha), V_{i1}(\alpha), \ldots, V_{k0}(\alpha), V_{k1}(\alpha), \ldots, V_{k0}(\alpha)\}$$

for uncountably many α. Using the fact that the Z_α's are nonincreasing, one verifies easily that the system $\{V_{i0}(\alpha), V_{i1}(\alpha), \ldots, V_{k0}(\alpha), V_{k1}(\alpha), \ldots, V_{k0}(\alpha)\}$ has all the required properties.

Lemma 9. If $Z_\alpha \neq \emptyset$ for all $\alpha < \alpha_0$, then there is $x_0 \in X$ such that x_0^8 contains a homeomorph of the Cantor set.

Proof. Fix a metric d in Σ. Since $Z_\alpha \neq \emptyset$ for each $\alpha < \alpha_0$, it follows that the system $\{\Sigma, Y\}$ is admissible. By repeatedly using Lemma 8, we get, for each finite sequence $(s_1, s_2, \ldots, s_k) \subseteq S$, an open set $U_{s_1s_2\cdots s_k}$ in Σ such that, for each $k \geq 1$, $i = 1, \ldots, k$.

(i) $U_{s_1s_2\cdots s_k} \subseteq U_{s_1s_2\cdots s_{k-1}} \cap \{U_{s_k} \in \mathcal{U}_k \}$, $\bigcap_{i=1}^k U_{s_1s_2\cdots s_k} = \emptyset$.

(ii) $\{U_{s_1s_2\cdots s_k} \subseteq U_{s_1s_2\cdots s_{k-1}} \cap \{U_{s_k} \in \mathcal{U}_k \}$, $\bigcap_{i=1}^k U_{s_1s_2\cdots s_k} = \emptyset$.

(iii) d-diameter of $U_{s_1s_2\cdots s_k} < 1/k$.

(iv) $U_{s_1s_2\cdots s_k} \subseteq U_{s_1s_2\cdots s_{k-1}} \cap \{U_{s_k} \in \mathcal{U}_k \}$ is admissible.

Define $C = \bigcup_{k=1}^\infty U_{s_1s_2\cdots s_k}$, where the union extends over all infinite sequences (s_1, s_2, \ldots) of 0's and 1's. Using conditions (i)-(iv), one checks that C is
On pure semi-simple Grothendieck categories II

by

Daniel Simson (Toruń)

Abstract. Given a pure semi-simple Grothendieck category A, we construct a new pure-
semi-simple functor category $I(A)$ such that gl.dim$A = gl.dimI(A)$. The map $A \to I(A)$ defines
a one-one correspondence between equivalence classes of hereditary pure semi-simple Grothendieck
categories and equivalence classes of hereditary pure semi-simple functor categories. Applications
of this result are given.

Introduction. In [13] the notion of a pure semi-simple Grothendieck category is
introduced as a "pure" counterpart of semi-simple categories (cf. [9]). We recall
that a Grothendieck category is pure semi-simple if each of its objects is a direct
sum of finitely presented objects. Pure semi-simple Grothendieck categories are
investigated in [11]-[17].

In the present paper we give two constructions of new pure semi-simple
Grothendieck categories from a given pure semi-simple one. Given a pure semi-
simple Grothendieck category A of a pure semi-simple functor category $I(A)$ is
constructed in such a way that gl.dim$A = gl.dimI(A)$ and the category of all
noetherian injective objects in $I(A)$ is equivalent to the category of all finitely generated
projective objects in $I(A)$. Further, given a skeletal small additive category \mathcal{F} such
that the functor category \mathcal{F}-Mod is locally coherent and \mathcal{F}-Mod is pure semi-
simple, a pure semi-simple Grothendieck category \mathcal{F} is constructed. The map
$A \mapsto I(A)$ is the inverse (with respect to an equivalence) of the map $I(A)$-Mod $\to \mathcal{F}$,
and conversely. These maps define a one-one correspondence between equivalence
classes of hereditary pure semi-simple Grothendieck categories and equivalence
classes of hereditary pure semi-simple functor categories. In Section 2 we illustrate
our constructions by simple examples.

In Section 1 we recall from [12]-[14] some background material on functor
categories and pure semi-simple Grothendieck categories. An extension of
Theorem A in [3] is given.

Section 2 contains the constructions and main results mentioned above. As
a consequence of our general considerations we get the following two corollaries.
Any injective noetherian object of a pure semi-simple Grothendieck category has
a right pure semi-simple endomorphism ring. If \mathcal{F} is a skeletal small abelian
category such that the category \mathcal{F}-Mod is perfect, then \mathcal{F}-Mod is locally noetherian.