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(7) Is a cell slack if each 2-dimensional compactum in the cellis 1-ULC in E"?

What is the minimal dimension & such that the 1-ULC property of k-dimensional
compacta implies that B is slack? (If dimB = m, then k<[(m+1)/2].)
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Metrizability of certain Pixley-Roy spaces
by
H. R. Bennett, W. G. Fleissner, and D. J. Lutzer * (Lubbock, Tex.)

Abstract. This paper studies metrizability of the Pixley—Roy hyperspace & [X] of a space X
where X is a generalized ordered space of a certain type. For those generalized ordered spaces.
constructed from separable linearly ordered spaces, necessary and sufficient conditions for metriz-
ability of & [X] are obtained. Metrization theorems for the hyperspace of other generalized ordered
spaces are obtained by placing restrictions on the one-sided nature of neighborhoods. For example,
it is proved that if X is any first-countable subspace of any ordinal, then 5 [X] is metrizable.

1. Introduction and definitions. In [PR] Carl Pixley and Prabir Roy presented
an easily described space which could be used in place of an older and more com-
plicated example given by Mary Ellen Rudin [R,]in her study of completable Moore
spaces. In today’s terminology, Pixley and Roy associated with each space X one
of its possible “hyperspaces”, i.e., topological spaces whose ground-set is the power
set #(X). Tt soon became apparent that Pixley and Roy had, in fact, discovered
an elegant and useful general technique for constructing certain kinds of examples,
and various versions of their construction have been studied in [PT], [vDTW]
and [vD,]. In this paper we give necessary and sufficient conditions for metrizability
of the Pixley-Roy hyperspace of certain lines.

The lines on which our Pixley-Roy spaces are constructed are certain general-
ized ordered spaces. Begin with a linearly ordered set (¥, <) and let 1 denote the
usual open-interval topology associated with <. Select three disjoint, possibly empty,
subsets 4, B, C= ¥ and let 7 be the topology on Y having the collection

AU {[x, ] xed, y>x} U {Ix,y]| x<ye B} u{{x}| xeC}

as a base. The space (¥, 7) is then called a generalized ordered space 911 Y, <)
and can be denoted by GOy(4, B, C). The standard reference for the basic proper-
ties of generalized ordered spaces is [L] whose terminology and notation we usually
follow. .

The Pixley-Roy hyperspace of any space X is constructed as follows. Let
F[X] be the collection of all nonempty finite subsets of X and topologize #[X]
by using basic open neighborhoods of the form

[F, W] = {Se #[X]| FeScW}

* Partially supported by NSF GRANT GMCS 76-84283.
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where Fe % [X] and where W is an open set containing F. (Here we are following
the notation of [vD,].) For each positive integer » let

FIX] = {Fe F[X]| card(F)<n}

be topologized as a subspace of & [X]. Our first main result is
I. TueoreM. Let (¥, <) be a linearly ordered set whose usual interval topology A is
separable, and let X = (Y, 1) be a generalized ordered space constructed on Y. Then
the following are equivalent:
a) F[X] is metrizable;
b) F,(X) is metrizable;
¢) if we define
I'={xe?| {x}er},
L={xe¥Y~I| ]« x]e1},
R={xe¥-I| [x,—[e1},
E=Y-(JuLuUR),
then
D E is countable,

(i) R and L are each F,-subsets of the space (S, tg) where S'= Ru L,
(iii) R can be written as R = ) {R,| n e wo} in such a way that if x e E n cl(R,)
then for some y<x, ]y, x[ N R, = &,

{iv) L can be written as L = J {L,| n e w,} in such a way that if x € E ~ cI(L,)
then for some z>x, Ix,z[ L, = @,

>

(V) the set Ky = {x e Y| x has a neighbor point (see below) x' in Y and neither x
nor x' is t-isolated} is countable.

The reader must not conclude that the sets R, L, and I defined in (c) of Theorem I
are the same as the sets 4, B, C used to construct the topology 7 from the topology A.
.It happens that R = 4, L = B, I = C in case the initial lincarly ordered set (Y, <)
is dense-ordered (i.e., if a<b then for some ce ¥, a<c<b), but it is not true in
general that R = 4, L = B and I = C. Consider the Alexandroff double arrow
space (¥, <), i.e., the lexicographically ordered set [0, 1] x {0, 1}, Construct a gen-
eralized ordered space X on ¥ by isolating each point (x,0)e ¥, i.e., by taking
C={(x,0)] x€[0,1]} and 4 = B = @. Then the sets I, R, L and E defined in
part a) of Theorem I are

I={(x,0)] xe[0, 1]},

L=g,
R={(x,1| xe[0, 1]},
E=g.

icm

Metrizability of certain Pixley-Roy spaces 53

(We remark that Theorem I tells us that #[X] is metrizable.) Obviously it is the
existence of neighbor points which allows this pathology to occur where, by neighbor
points in (Y, <) we mean two points p<z such that ]y, z[ = @&.

Let us mention several easy consequences of Theorem I in case the linearly
ordered set Y is the usual set R of real numbers.

1) If § is the Sorgenfrey line GOy (R, D, @) then F[S] is metrizable.

2) If M is the Michael line GOx(@, &, P), where P is the set of irrational num-
bers, then & [M] is metrizable.

3) If R = GOx(@, J, @) then F(R) is not metrizable.

4) If X is the mixed Sorgenfrey line X = GOg(P, @, @), where P and Q are
the scts of irrational and rational numbers respectively, then & [X] is not metrizable.

(The first two results were announced without proof by van Douwen in [vD,].)

Our paper is organized as follows. In Section 2 we introduce the Heath plane
H(X) associated with a generalized ordered space X and prove that H(X) is homeo-
morphic to &,[X]. It is this space which enables us to conduct a detailed study
of & ,[X] especially when X is a generalized ordered space constructed on R because
in that case H[X]is so easy to picture. In Section 3 we present our proof of The-
orem I, above. In Section 4 we comment on the Pixley-Roy hyperspace of certain
other lines—the Ostaszewski line, the Kunen line and the van Douwen line—and
prove the second main result of our paper:

1I. Tuzorem. Let X be a first-countable subspace of some space of ordinals.
Then F[X] is metrizable.

Readers are referred to a recent paper of Mary Ellen Rudin [R,] in which deli-
cate results are obtained copcerning metrizability of # [X] where X is a subspace
of a Souslin line.

2. The Heath plane of a generalized ordered space.

2.1. DerNiTION.  Let (¥, <) be a linearly
X = GOy(4, B, C). Define H(X) to be the set

H(X) = {(x,3) e Y| x<}

ordered set and let

and topologize H(X) as follows:

a) each point (x, y) e H(X) with x<y is isolated;

b) each point (x, x) with xe C is also isolated;

¢) each point (x,x) with xe& A has neighborhoods of the form {x} =[x, 51
where y>x;

d) each point (x, x) with xe B has ueighborhoods of the form ]y, x]x {x}
where y<x;

¢) each point (x, x) where xe Y—(4d U B v C) has neighborhoods of the form
1y, x]x{x}) v ({x} x [x, z[) where y<x<z, except if x is an endpoint of ¥, in
which case only the relevant half of the above neighborhood is used.
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2.2. Remark. If the generalized ordered space X = (¥, 7) in (2.1) happens
to be first countable (as it will be in our paper) we can specify a countable neigh-
borhood base at each point (@, a) e H(X) as follows.

If [a, —[ ¢ 7 choose a sequence a”'(0)<a'(1)<a’(2)<... having supremum a and
if ]« a] é v choose a sequence &''(0)>a’’(1)>a"(2)>... having infimum a. Then:

a) if ae 4, let hi(n, a) = {a} x[a, a”" (0],

b) if ae B, let h(n, @) = Ja'(n), a] x {a},

¢y if ae C let h(n, a) = {(a, a)},

d)if aeY—(AVBUC) let hn,a) = (I @), alx{a}) v ({a} x[a, a"(m).

2.3. Remark on terminology. In [H], R. W. Heath introduced a class of
particularly simple spaces which have since become standard in the study of Moore
spaces and which are often called “Heath V-spaces”. The reader will note that
H(R) as defined above, after 45°-rotation, is the usual Heath V-space and that
if X = GOg(P, 0, D) then (again after 45°rotation) H(X) is another familiar
example of the Heath-type. These observations explain our choice of a name
for the space H(X).

2.4. THEOREM. Let X = GOy(4, B, C). Then F,[X] is homeomorphic to H(X).

Proof. For {a} € #,[X] define g({a}) = (a, a) and for any two clement set
SeF,[X], define g(S) = (min(S), max(S)). The resulting function g is clearly
a bijection and the topology induced on H(X) by g is precisely the topology de-
scribed in Definition (2.1). B

2.5. LemMA. Let (Y, <) be a linearly ordered set whose usual open-interval
topology 1 is separable and let (Y, 1) = GOy(A, B, C). Let J = {xe Y| x has
a neighbor point y and neither x nor y is t-isolated}. If H(Y, <) is metrizable, then J is
countable.

Proof. Since (7, 1) is separable, (¥, 4) is hereditarily separable [BL] and there-
fore any uncountable subset of (Y, 1) contains a A-limit point of itself. Further-
more, since (¥, 1) is separable, it is first countable; hence so is (Y, 7). Let Q be any
countable dense subset of (¥, A).

For each x e Ylet basic neighborhoods of (x, x) in H. (7, 7) be defined as in (2.2).
Let % = {h(1,%)] xe ¥} 0{{(x,»}] in Y}. Since % is an open cover of
the metrizable space H(Y, 7) there must be a locally finite open cover ¥ of H(Y, 1)
which refines %. Foreach x e ¥, A (1, x) is the unique member of % containing (x, x)
so that if we choose ¥(x) € ¥ with x & V'(x) then V(x)=h(l, x) and hence if x, # x,
belong to Y then V(x;) # V(x,).

For contradiction, suppose J is uncountable. The points of J ocour in pairs,
namely x and its neighbor point y(x). Let J' = {xeJ| x<y(x)}. Then J’ is also
uncountable. For each x € J', x<y(x) and there is a point u (x) € Q having y(x) <u(x)
and {p(x)} x [y(x), u(x)[< V( y(x)). Since Q@ is countable and J* is uncountable,
there must be a point g, & Q such that the set J* = {xeJ'| u(x) = g,}is uncount-
able. But then, with respect to the topology A, J' contains a limit point, say p, of
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itself. Since J«, p] = J«, y(p)[ is a A-open set and since p is not t-isolated, there
must be a sequence x(1)<x(2)<... in J" which t-converges to p. But then every
neighborhood of (p, p) in the space H(Y, t) must intersect infinitely many of the
sets {y(x(m)}x [y(x()), go[= V{y(x(m)) and therefore ¥~ cannot be locally finite
at (p, p), which is impossible. &

An entirely analogous argument establishes

2.6. LemmA. Suppose (¥, 1) = GOy(d4, B, C) where the usual open-interval
topology A on Y is separable. Let E = {xe Y| each t-neighborhood of x contains
points on both sides of x}. If H(Y, ©) is metrizable, then E is countable. B

2.7. Lemma, Let (Y, 7) = GOy(4, B, C) where the usual open-interval top-
ology A on Y is separable. Suppose H(Y, <) is metrizable. Let I = {xe Y| {x} e},
R={xeY-I| [x,—[e7} and L = {xe Y—1I| ]~ x]et}. Then R and L can
be written as R = |J {R(m)| ne oy} and L = {) {L(n)] new,} in such a way that
if xeE=Y—-(RULul) and if xecl(R,) (respectively, xecl(L,) then there
is some point y<x (respectively, some point z>x) such that Iy, x[n R, = @ (re-
spectively, 1x,z[ n L, = @).

Proof. Let # = () {#(n)] new,} be a o-discrete base for H(Y, 7). Let Q be
a countable dense subset of (Y, A). For each x € ¥ choose a neighborhood system
{h(n, x)} for (x, x) € H(Y, 1) as explained in (2.2). Let R(n) = {x& R| for some
(unique) B(n, x) e B(n), xe B(n, x)=h(l, x)}. For each xe R(n) there is a point
u(n, x) € Q such that u(n, x)>x and {x}x[x,u(n, x)[=B(n, x). For each ge Q
define R(n, g) = {x e R(n)| u(n, x) = ¢q}. For each ge(Q n E)u(Q nL) select
a sequence g(0)<q(l)<g(2)<... having supremum ¢ and define R(n,gq, k)
= {xe R(n, q)] x<q(k)} while for each ge Q—(E v L) and each k let R(n, q, k)
= R(n,q). Clearly R = ) {R(n,q,%)| n,ke w, and ge Q}. Now fix n, ke w,
and ge Q and suppose that x € E n cl,(R(1, ¢, k)). Suppose there is a sequence
ry<r,<...of points of R(n, g, k) having x = sup{r,| i>1}. For eachi, ry<u(r) = ¢
so that x<gq. If x = ¢ then each point y of R(n, g, k) satisfies y<g(k) <g so that
g = x = sup{r,| i>1} is impossible. Hence x<gq. But then, because x ¢ E, every
basic neighborhood of (x, x) in H(X) meets infinitely many of the sets {r;} x [r,, ¢[
< B(n, r,) and it follows from our choice of B(n, r)<h(l, r) that the distinct points
r; correspond to distinct sets B(n, r;). But that is impossible because the collection
A (n) is discrete in H(Y, 1) and hence the assertion of (2.7) about R is established.
The corresponding assertion about the decomposition of L is analogously estab-
lished. H

2.8. LemMA. With notation as in (2.7) and writing S = R U L, each of R and L
is an F,-subspace of (S, ts).

Proof. Write R = {J {R(n, g, k)| n, ke w,, g€ @} as in the proof of (2.7).
We assert that for ¢ach n, g and k, L n cl(R(n, ¢, k)) = @. For fix y € L. The proof
given to show that (if x e E n cl(R(n, ¢, k)) then for some x'<x the set ]x’, x[ is
disjoint from R(n, g, k)) is still valid and yields a point y'<y having ]y, y[ n
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N R(n, g, k) = @. But then ]y, y] is a r-neighborhood of y which is disjoint from
R(n, q, k). Therefore we see that

R=U{(Sncl(R(n,q,0) n,kew,,qe @}

is indeed an F,-subspace of (S, z5). The assertion about L is proved similarly. B

2.9. Remark. After compleling this paper, the authors learned that Jerry
Vaughan had also observed that Heath V-spaces can be embedded in suitable
Pixley-Roy spaces.

3. Proof of Theorem I. Tn this section we complete the proof of Theorem I of
the Introduction. Obviously if X = (¥, 7) and if & [X] is metrizable then so is its
subspace #,[X]. Thus (a) implies (b). That (b) implies (¢) is the content of Section 2
so that it will be enough to prove that (c) implies (). Since F[X] is known to be
regular, we can complete the proof by exhibiting a o-locally finite base for the topo-
logy of #[X].

This section is divided into three parts. In (3.1) we define a collection @; in (3.2)
we prove that & is o-locally finite; in (3.3) we prove that ¢ is a base for #[X].
It will be convenient (in the proof of (3.3)) to assume that the linearly ordered set
(Y, <) has no endpoints. This assumption involves no loss of generality, for if ¥ has
a right endpoint ¢ we simply adjoina copy of w, to the right of ¢ and if ¥ hasa left
endpoint p we adjoin a copy of o}, the set o, with the ordering reversed, before p.

3.1. DEFINITION OF THE COLLECTION &. Let J be the usual open-interval topology
on Y and let Q be a countable dense subset of (¥, 2), Let J be a noncmpty finite
subset of Q, say J = {g| 0<i<k}, where gy<g,<..<gq;. We will say that an
element Fe #[X] interlaces J provided F~J = @ and for cach ie {1, 2, ..., k}
the set Fnlg;-y, ¢f is a non-empty order-convex subset of Y.

Next let K; = {xe X| x has a neighbor point x' in ¥ and at least one of x
and x' is A-isolated}. Because (Y, 1) is separable, K; is countable. Define

K =K, UK, UE where K, and E are as described in part (c) of the theorem.
Then K is countable.

Because R and L are each F,-subscts of (S, tg) there are t-closed sets
CocCicCye... and Dy= Dy =D, <... such that

L=U{SnClnew} and R=|J{Sn D,| new,},
and where
RnCy=@=LnD, forcach new,.
Now for each finite set J=Q and each finite set K= R and cach n & wy, define

F(J,K,n) = {Fe F[X]| Finterlaces J, Fn K = K,

ror=(UR)A (U D), Fo Lc(igol,,) N (igoc,)} .
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For each xe X, select a v-neighborhood base {g(n, x)| ne w,} at x such that
g(n, X)>g(n+1, x) and such that :

a) if xe I then g(n, x) = {x} for each n;

b) if xe R then g(n, x)<=[x, —[ for each n;

¢) if xeL then g(n, x)cl—, x] for each #n;

d) cach g(n, x) is order-convex.

For any finite set Fe F[X] define G(n, F) =) {g(n, x)| xe F} and for
each J, K and n as above and each /e w, define

o, K, n,l) = {[F, G(l, F)]| Fe #(J, K, n) and the collection
{9, x)| xeF} is pairwise digjoint and G(I, F) nJ = Q}.
Finally define
&= {®(,K,n | J=Q, K=K are finite; n, /€ wp} .

3.2. Lemma. Each collection ®(J, K, n,1) is locally finite in &#[X].

Proof. Fix Te #[X] and write ¢y = &(J, K,n, ). If TnJ # & then [T, X]
is a neighborhood of T meeting no member of ¥. If KT choose pe K-T; then
[T, X~ {p}] is a neighborhood of T’ meeting no member of . Hence assume that
both TnJ =& and KT,

We will define a 7-open set W containing T such that the open set [T, W 1
meets at most 4™ members of . We begin by letting

T' = {xe X| x is a neighbor point of some t(x) e T and neither x
nor #(x) is v-isolated} .
Let T= T U T'. Then card(T)<2 card(T). Because the set T is finite there is an
integer m so large that:

a) the collection {g(m, t)] teT} is pairwise disjoint and
Ja(U{gm, )| teT)) = &; .

b) if te R T then g(m, 1) O (U {cwl ogign}) =0 anfl if teLn T then
g(m, 1) n (U {DM)| 0<i<n}) = &;

o) if teEnT and if técl{R() for some ie{0,1,..,n} then
a(m, t) 0 R() = @ and if ¢ ¢ cl,(L())) for some je {0,1,2, ...,n} theng(m, 1) o
NL(j) = O;

d)if teEnT and if tecll(R(i)) for some ie{0,1,2,..,n} then
g(m, 1) Al [~ R@) = @ and if re cl(L()) for some je {0,1,...,n} then
g(m, 1) n 1, =" L{) = .

(Because of (iii) and (iv) in condition (¢) of Theorem I, we can arrange a).) Now
let W=Gm,T)=U{gm, 0| ieT}h

To complete the proof of (3.2) suppose [F, G, F)] ey and [F, G, ] n
A [T, W] # @. Since [F,G(, P)In T, W] @ we have TU I:'cG(l, F)n .W.
Woe will show that Fe T The major step in establishing F<T is the following
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SuBLEMMA. Suppose zeF and 1€ T satisfy teg(l,z) and zeg(m, t). Then
zeT. @

Proof. Iftelthen zeg(m, ) = {t} and there is nothing to prove, so assume
t¢LIfze Rthenze K n F= KT and again there is nothing to prove, so assume
z¢ K. Inparticular, z¢ Esoze RuTU L.If ze Jthen t e g (I, 7) = {z} which forces
z=teT,soassume z ¢ I; hence z € R U L. Consider the case where z & R (the other
case being analogous). Then teg(/, 2)c[z, —[ so that z<t. For contradiction,
suppose z<2. If te R then ze g(m, r)=[t, —[; since z<?, 1 ¢ R, We already know
that z¢ 7. Consider the case where teL. Then, by choice of m, g(m, t) N
n(U{Dj| 0<i<n}) =@ and that is impossible because z eg(m, t) A
A (U {Dy} 0<i<n}). Hence 1€ E. Choose ie {0, 1, ..., n} such that z e R,. Because
zeR,ng(m,1), it follows from our choice of m that te cl,(R). But then
g(m, 1) n J—t[ N R, = & contrary to the fact that zeg(m, £) A R, and z<t,
Therefore z = e T and the sublemma is proved.

We now return to the proof of (3.2). For contradiction, suppose some x satisfies

(#) xe F and yet x¢ T
Because Fn K = KT T we must have
(+) x¢ K.

Now choose the unique #e 7 having xe g(m,t). Choose the unique i having
xchn 14~ 1> qil. Because the convex set g(m, ¢) meets 19i-1,> ¢l and contains
neither g;_, nor g, 1€ g(m, t)<lg;_4, ¢,[. Hence the unique y € F having e g(l, y)
must have y N Jg;y, ¢l If y = x the sublemma could be applied (with z = x)
to conclude that x e T, contrary to (x). Therefore card(F n Jgy- 4, q)>1. If card
(Fn ]g:—1, ;D>3 then, because F interlaces J, we would have xe Fn lg,_,, ¢,
<K, =R, contrary to (x#). Therefore "

Cex) card(F 0 ]g;-q, g;)) = 2 and F A -1, all = {x, »}

where x and y are neighbor points.

Consider the case where x<y; the other case is analogous, If {x,y} " T # @
then x e T contrary to (¥); hence {x, y} N T = @. But then cither i <t<x<y<q,
or ?186 G-y <x<y<t<q. If t<x<y then g(l, y)=[y, —[ so that teg(,y) v;fould
be impossible. Hence x<yp <z But then because x &g(m, t), convexity of ¢(m, t)
forces y € [x, tlceg(m, t) and so we have yeg(n,t)and teg(, »). Now the sub-
- lemma may be applied (with z = 3) to conleude that yel. But then in the light
of (x#%), x & T} contrary to (%). Therefore, assumption (¥) is untenable and the proof
of (3.2) is complete. B ‘

' 3.3. LeMuA. The collection & = |} {9U, K, n, )| JeQ and K=K are both
Jinite and n, le w,} is « base for F[X).

.Proof. Suppose [F, W] is a basic open set in & [X]. Define an equivalence
relation ~ on F by the rule that x~y if the set {ze F| z lies between x and y} is

icm
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an order-convex subset of Y. Let Fy, F,, ..., F}, be the distinct equivalence classes
of ~ listed in such a way that if ¢e F; and b & F;,, then a<b. Let x; = min(¥F)
and x!' = max(Fy). Then x| <x' <x},. Furthermore Jx;’, x{..,[ # @ because the
equivalence classes F; and F,,, are distinct. Therefore for 1<i</k we may choose
g€ Q0 Ix', xi.,[. Since ¥ has no endpoints we may also choose o, gu€ Q
with go <} and x;’ <g,. Then Finterlaces the set /= {g;| 0<i<k}. Let K= RnF.
Since F is finite, there is an ne w, having

F o Re(U {Dy] 0<i<n)) n (U {Ry| 0<ign})
and
FnLe(U ¢ 0gisn)) n (U {L 0<ign}).

Then Fe % (J, K, n). Next observe that since {g(j, x)| j€wo} is a neighborhood
base at x for each x & F, it is possible to choose I so large that the collection
{90, X)| x & F} is disjoint and G(, F) nJ = @. But then [F, G(l, F)] belongs to
&(J, K,n,)c® and Fe[F, G, F)I<[F, W]. &

4. Certain other lines. In [vD,], van Douwen announced that F[[O, wl]] is
metrizable. This fact is a corollary of our first theorem as well as of Theorem II
of Section 1.

4.1. THEOREM. Suppose X is a first-countable Ty space in which each point has
a countable neighborhood. Then F[X] is metrizable.

Proof. Since X is first-countable, #[X] is a regular, metacompact, first-
countable space. Fix F e #[X] and for each x € X let B(x) be a countable open set
containing x. Let ¥ = | {B()| x& F}. The set [F, V] isa countable, open sub-
space of F[X]; since & [X]is first-countable, [F, V] is metrizabl(-&. Thus we have
proved that #[X] is locally separable metrizable and the conclusion now follows
from our next lemma.

4.2, LemMA. If Y is regular, metacompact, and locally separable metrizable,
then Y is metrizable.

Proof. Let % be a point-finite open cover of Y by separable, metrizable. subsets.
Then for each U, €%, the collection St(Us, %) = {Ue| Un U, # B} is count-
able. If n>1 define &t (U,, %) = {Ue%| for some Use yt"(qo, 2, Un
~ U;#@}. Bach " (Uo, W) is countable; hence‘ so is the _collecnon G(Uy)
= | {Ft(U,, U}: n=1}. Let C(Uy) = U €(Uy). Tt is clear that if C'(UO) # C.(l'Ji)
for Uy, U, e%, then C(Up)n C(Up = 2. Thusl {C(U)| Ue%} is a partition
of Y into open and closed subspaces, 50 it is sufﬁcu:n‘? to show that ea_ch subspace
C(U) is metrizable. But that is immediate since C(U) ‘1s regular and, being a count-
able union of open, second countable subspaces, is also second countable. =

4.3. COROLLARY. If X is any of the following spaces, then & [X] is metrizable:

a‘) [Oa wl[;
b) [0, " where n is finite;
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c) the Kunen line [JKR];

d) the Ostaszewski line [0];

€) the van Douwen line [vD,] or the van Douwen-Wicke line [vDW].
Proof. Each of the listed spaces is locally countable and first countable, B

Let us now turn to a proof of Theorem II of Section 1. Indeed, we prove a more
general, but more technical, result. We say that a generalized ordered space (X, 1)
is of Sorgenyrey type either if [x, —[ e for every xe X or if le, x]et for ez;ch
x€X. Obviously, the familiar Sorgenfrey line and any space of ordinals are of
Sorgenfrey type. We will prove:

4.4. THEOREM. Let X be a first-countable generalized ordered s :
space of Sorgengre
type. Then FF[X] is metrizable. senfrey

Proof. We consider the case where J«—, x] & v for each x e X. For each xe X
choose a sequence {a(x, n)) of points of X such that a(x,n) = x for every n if
{x} e and such that a(x, W)<a(x, n+1) has sup{a(x, n)] new,} = x otherwise
For each x and », let g (x, n) = Ja(x, n), x] if {x} ¢ v and g (x, 1) = {x}if {x} E'E-
'If F € F[X], we let n(F) be the least integer k such that the collection {g(x, )| xe F}:
is pairwise disjoint. For each ke wy, let G(k, F) = | {gx, 0| xeF }’

For each k e w,, define a collection & (k) by .

&(k) = {[F, Gk, F)]| Fe F[X], n(F)y<k}.

Clearly | {@(k)| ke w,} is a base for & [X], so that, #[X] being regular, it is
enough to show that each @(k) is locally finite in & [X]. To that end, fix /:c € W,
and f-ix TeF[X] Index T'as T = {t;| 1<i<m} where t,>1,>...> ¢ . ’Let iy = 10‘
Let ff“ be the first integer with ¢, 41 B9 (85 k). Since T ig~ finite, :t"his indtxctioﬂ
terminates after, say, J steps. Let T = {1, JISi<T) Let W= G(k,T"). Then Wis
open and T'< W so that [T”, W]is a neighborhood of T in & [X]. S’upp'ose [T, W]
meets a set [F, G(k, F)] € ®(k). Let x; = max(F). Then x, = ¢ so‘tha’t g(x, k)
= g(t,, k). Because kzn(F), the point x, = max(F—{x}) hasi1 "

X = max(F—g(x,, k))

an{ ;O.r_ tl}s same reason that x; = ¢, , x, = t;,. This induction continues, showing
hat F = T", and hence that T does have a neighborhood which mects only a {inite
number of members of d(k), as required, E

4.5. Remark. The technique of (4.4) can be modified slightly to show that

if X is a first countable space of Sorgcnfrc type, then &F[X s
, L FlAxX]i otriz
‘ Alizin . ( )' Yy typ hen [ X \] 183 ]ll(,tllltlblc,

4.6. QuesTioN. Is it true that for each ordj
. a ordinal o, the Pixley-Roy space
4 F [0, w)] is paracompact ? If so, then Theorem IT of the Intl"oduction is an imi,neclli'lte
corollary since for each first-countable subspace X of [0, @), #[X]is a closed Sl‘lb-
space of #[[0, )] so that F[X] would be a paracompact Moore space
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Added in proof. Question 4.6 was answered alfirmatively in the paper Ultraparacompactness
in certain Pixley-Roy spaces by Bennett, Fleissner and Lutzer. That paper will appear in
Fundamenta Mathematicac.

References

{BL] H. R. Bennett and D, J. Lutzer, Separability, the countable chain condition and the
Lindelof property in linearly orderable spaces, Proc. Amer. Math. Soc. 23 (1969),
pp. 664-667.

wD,]  E. K.vanDouwen, The Pixley~Roy topology on spaces of subsers, Set Theoretic Topology,
Academic Press, 1977, pp. 111-134,

WDyl  — A technique for constructing honest locally compact submetrizable spaces, preprint.

[vDW] — H. Wicke, 4 real, weird topology on the reals, preprint.

[VDTW] — E.D. Tall and W. A. Weiss, Nommnetrizable hereditarily Lindelof spaces with point-
countable bases from CH, Proc. Amer. Math. Scc. 64 (1977), pp. 139-145.

{H] R. W. Heath, Screenability, pointwise paracompactness, and metrization of Moore spaces,
Canad. J. Math. 16 (1964), pp. 763-770.

DPKR] I Juhész, K. Kunen and M. E. Rudin, Two more hereditarily separable non-Lindeldf
spaces, preprint.

[19] D. Lutzer, On generalized ordered spaces, Dissertationes Math. 89, 1971.

[0] A. Ostaszewski, On countably compact perfectly normal spaces, J. London Math. Soc.
14 (1976), pp. 505-516.

[PR] C. Pixley and P. Roy, Uncompletable Moore spaces, Proc. 1969 Auburn Univ. Topo-
logy Conf., Auburn University.

[PT] T. Przymusifski and F. Tall, The andécidability of the existence of a nonseparable
normal Moore space satisfying the countable chain condition, Fund, Math. 85 (1974),

pp. 291-297,
[Ry] M. E. Rudin (Bstill), Concerning abstract spaces, Duke Math. J. 17 (1950), pp. 317-327.
{R,] — Pixley-Roy and the Souslin line, Proc. Amer. Math. Soc., to appear.

TEXAS TECH UNIVERSITY
Lubbock, Texas

Accepté par la Rédaction le 26. 6. 1978



GUEST




