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The space of ultrafilters on N covered by nowhere dense sets
by
Bohuslav Balcar, Jan Pelant, and Petr Simon (Praha)

Abstract. An estimate of a number of nowhere dense subsets of N* necessary to cover it is
given. The main tool for this estimate, so called base matrix, is defined and its properties are
investigated. Several consistency results are established.

1. Introduction. Baire number in the Boolean algebraic context. Throughout
this article, N* denotes the space of all uniform ultrafilters on @ with the usual
topology; this is the same as the remainder AN~ N in the Cech-Stone compactifi-
cation of integers or the Stone representation space of the Boolean algebra 2 (w)/fin
@.e. the power set of & modulo the ideal of finite sets).

Let P be a dense-in-itself topological space. Define n(P), the Baire number of
P, to be the minimal cardinality of a family of nowhere dense sets covering the
whole P.

The Polish topologists called this cardinal invariant Novik number (cf. [KcS]),
since J. Novdk was among the first topologists who studied this characterization of
general topological spaces ([N]).

The literature concerning the Baire number of various topological spaces
is not too extensive. It contains above all the papers proving consistency results
for n(2), where 2 is the real line ([H], [MS], [VH] and others). In [BV] it is shown,
for » uncountable regular cardinal, under the assumption = 2% that U(x),
the space of all uniform ultrafilters on %, has n(U(:)) = %, (see also [CN]). A general
estimation of n(P) is given in [K1S], this result was generalized in [S]. The only
non-trivial result independent on additional axioms of set theory that is known to
the authors is the theorem stating that n(P) = &, for P nowhere separable metric
space. This was proved by Stépanek and Vopénka [SVI].

Professor J. Mioduszewski asked the question, how small n(N *) can be.

The aim of the present paper is to discuss the possible cardinalities 7(N*).
The estimates are proved and some consistencies are shown. The technique de-
veloped in this paper clarifies the role of the set-theoretical assumption n(N*)>¢
in some constructions. Another motivation for the investigation of n(N*) stems from
the following easy

Fact. n(N*) = a(«*) for each infinite cardinal =.


GUEST


12 B. Balcar, J. Pelant, and P. Simon

1t turns out that Baire number is useful not only as a topological concept,
but as a Boolean-algebraic one, too ([RS], [Bu]). Let us translate our mainc result
to the Boolean language. (We use the Boolean terminology that of [Si].)

Let B be an atomless Boolean algebra, let 1(B) be the Stone space of B. De-
note by Part (B) the set of all partitions of unity of B. Given nonempty & < Part(B),
an ultrafilter & on B is called to be & -generic if p 0 F # & for every partition
pedd.

CLAM. The minimal cardinal n such that there is a family o cPart(B), || = n,
for which no ultrafilter on B is &£ -generic, equals precisely the Baire number of
Ft(B).

Because the genericity property depends only on a dense subset of B, we have
immediately n(St(B)) = n{#t{Comp (B))), where @omp(B) denotes the com-
pletion of B. This observation is slightly generalized in Proposition 4.10.

Now we restrict ourselves to the case B = #(w)/fin and formulate the main
estimation of n(N*) given in the present paper:

Let % be the least cardinal for which B is not (x, ¢)-distributive. Then the results
of 2.5, 29, 3.5(1), 3.5@), 4.2, 45 read as follows:

s, <xn<e and % is a regular cardinal;

if x<e, then x<R(N¥)<x™;

if % = ¢, then e<n(N¥)<2%

x<cf(e);

%<|4| for each A<=“w unbounded.

From now on, the absolute majority of authors of this paper being topologists,
all is formulated in a topological language with one exception: Chapter 5 on con-
sistency results. For the unexplained notation, sce [CN].

Acknowledgment. The authors would like to express their gratitude to B. Bey-
rové and M. Dusek, whose support and understanding made this research possible.
We are obliged to J. Mioduszewski for his stimulating suggestions and comments.

2. The base matrix lemma. Perhaps nobody can be satisfied with an obvious
inequality 8, <n(N*)<2° To improve it, we need to introduce several notions.

2.1. DEEINITION. Let P be a dense-in-itself topological space. Call a family
@ cOpen(P) to be an almost-partition (of P), if ¢ is pairwisc disjoint and {J ¢ is
dense in P.

If @ and o are almost-partitions of P, then ¢ refines o# (9 ~a) if for each
Ge% there is an He & with G H.

Recall that a n-basis for a space P is a collection 4 of non-void open subscts
of P such that each non-empty open set in P contains at least one member of 2.

2.2, DepNITION. Let P be a dense-in-itself topolegical space. The family
© cP(Open(P)) will be called a matrix (for P) if cach ¥ € © is an almost-partition
of P.
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A matrix © will be called shattering, if for each non-void open set UcP there
is some ¥ e ® such that U meets at least two members of @.

A matrix © will be called refining, if the ordering & well-orders the whole .

A matrix @ will be called a base matrix (for P)if it is refining, if | ) © is a n-basis
for P and, if for no refining matiix &’ with |®'|<|0|, U @' is a n-basis for P.

Indeed, there are spaces where no base matrices exist. We shall show that N*
is not the casc (2.11.(c)).

Given two matrices © and @', then @' refines @ (0'<@) if for each ¥ e ©
thereis an # € @' such that # <<%. Furthermore, @' strongly refines 8 (0'< <<@)
if |©| = |@’| and there is a bijection b: @ — @' such that b(#) ¥ for each ¥ € O.

2.3, OBSERVATION, Let @, @' be two matrices for P, @' 0. If @ is shattering,
sois @' If |J @ is a =-basis for P, sois |J &', B

2.4. DEFINITION. Let P be a dense-in-itself topological space. Define

%(P) = min{|@|: @ is a shattering matrix for P}.

Recall that ©(P), the n-weight of P, denotes the smallest cardinality of a z-basis
for P (see e.g. [Jul).

2.5. LeMMA. %x(P)Y<n(P) for each regular space P without isolated points. In
particular, x(N*)<e. )

Proof. Indeed, a matrix © = {{B,Int(P—B)}: BeH} is shattering when-
ever 4 is a m-basis for a regular space P. H

2.6. LEMMA. Let © be a matrix for N*, |@| <x(N*). Then there exists an almost-
partition G of N* such that 42 for each # € @ and such that % c@lopen (N*).

Proof. We may and shall assume that (J @ c%lopen(*). For each non-
void M e ¥lopen(N*) pick a non-void clopen By <M such that for each # €0,
[{Hed#: Hn By # @} = 1. Such a choice is always possible, otherwise there
would be an M e @lopen(N*) such that the trace of @ on M be a shattering matrix
for M, which contradicts the assumption |@] <x(N*) as M is homeomorphic to N*.
Now take a maximal pairwise disjoint subfamily & of {By: M € Clopen(N*)}.
Necessarily, @ is the desired almost-partition. H

2.7. LemmA. If @ is a shattering matrix for N*, |0] = x(N*), then there exists
a refining matrix @' with @'<<-30 such that U @ =%lopen(N*).

Proof. Well-order @ = {#5: E<u(N*)}, define &, to be an arbitrary almost-
partition of N* consisting of clopen scts and refining ;. Then, having defined %,
for all £<n (n<x(N*), apply Lemma 2.6 to @, = {F¢: E<p) u {7} to obtaing,,.
Sct @ = (@ E<x(N*)}. H

As an immediate consequence of 2.6, 2.7 and of the well-known fact that each
non-void Gyset in N* has a non-void interior, we obtain the following:

2.8. COROLLARY. %(N*)= 8.
2.9. COROLLARY. %(N*) is a regular cardinal.
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Proof. Let @ = {@,: {<n(N*)} bea shattering matrix for N*. By 2.7 and 2.3
we may assume that © is shattering and refining. By 2.3, each matrix © 4 = {Geled}
is shattering whenever 4 is cofinal in %(N*). Since |0], = |4| and since x(N*}
is the minimal cardinality of a shattering matrix, cf (%(N*)) = % (N

2.10. COROLLARY. #(N*)<n(N*).

Proof. Let @ with |@| = n(N*) be a family of nowhere dense sets in N*
covering N*. For De @, let 9 be an almost-partition of N* by clopen sets with
| p disjoint from D. If U is open and non-empty, then there is some D € & which
meets U; the regular closedness of members of %, implies that U must meet at least
two members of %p. So @ = {%p: De 2} is a shattering matrix for N*,
|®| = n(N*) and x(N*)<|O|.

2.11. BASE MATRIX LEMMA.

@) 8 <xNH<e

(b) %(N¥®) is a regular cardinal.

(c) For each shattering matrix O with |®| = x(N*), there exists a base mairix ©'
with |@'| = x(N*) and 0'<X<20. Moreover, we can require |) @' =%lopen(N *),

Proof. We need to prove (¢) only. Let € be a shattering matrix for N* with
18] = %(N*). In virtue of 2.7 and 2.3 it suffices to show that there exists a matrix
6’ < <6 such that |) @ is a m-Dbasis for N*. By 2.7, we may assume @ to be shat-
tering and refining, | © c%lopen(N*) and @ = {%: E<x(N *)} such that ¥, <<%,
whenever < E<u(N¥).

Cram. For each nonempty clopen set M cN* there exists some E<u(N*)
such that M meets ¢ members of %z.

Fix a set M. There exists a sequence i <r<in<g, <o

(i) if fe"2, then there exists a Gy& @, such that G, 0 M # O;

Gi) if f,f "2 f#f, then G, # G,

(i) if fe"2, he™2, n>m and h = f }m, then G,<=G,.

Induction. &, already exists since @ is shattering. Suppose &, be defined,
let he™ 12, © is shattering and refining, thus there exists some &> &,y such that
the set G, N M meets at least two members of %;,. Then in ¥, where
¢, = sup{&,: he"'2} the desired family {G,: fe"2} can be found, since ¥y,
refines all %e,.

The ordinal & = sup{&,: n a positive integer} is smaller than #(N*) because
of (e (W *)>w by 2.8 and 2.9. If fe “2, one can choose a decreasing sequence Gp
with each G, & %, The intersection ) Gy, has non-cmpty interior, which must

new

meet at least one member of ¥z, call this member G;. An almost partition %5 refines
all &,,, it follows that if f,f €2, f#f, then Gy # Gp.. Obviously every Gy
meets M. The claim is proves.

Let é<x(N*), denote by &/, the family of all clopen subscts of N* which
meet ¢ members of @, If ;= G, let #x = . If o # @, one can (using an easy

such that
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transfinite recursion) find a one-to-one mapping Qg o — %, such that
A pld) # @ for e‘ach Ae ol For Ge %y, let A# g be an almost partition of G
such that #’ contains some H with H=4 in each case when G = g (4). Let

= {He s Ge Gy

The matrix @' = {#;: E<n(N*)} has the desired properties. Obviously
0'<X <20, andin order to prove that {J @' is a n-basis it suffices to show that for
each non-void clopen A<= N* there is some E<x(N*) with 4 e o, that is, 4 has
to meet ¢ members of ¥ — and this is precisely the statement i;‘l the cI,aim. ]

2.12. Remarks. (a) Lemma 2.6 is a mere translation of an assertion that the
Boolean algebra #(w)/g, is |O]-distributive for |@|<x(N*).

(b) Lemma 2.6 does not hold for the space N* only. It can be extended e.g. to

those topological spaces P having a n-basis consisting of homeomorphic il;lz{ges
of P. Similar comment applies to the Lemmas 2.7 and 2.9. Assuming certain ad-
ditional conditions concerning the cardinal invariants of a space P an analogue of the
whole Base Matrix Lemma can be formulated and proved.
A (¢) Tt was noticed by Kulpa and Szymaziski that the matrices © for which () ©
is a-n~basis are of utmost importance for estimating the Baire number. We shall
begin the next paragraph with a reformulation of their theorem together with a sketch
of the proof.

3. Covering N* by nowhere dense sets.

3.1. TuroreMm ([K1S]). Let P be a topological space, let B be a regular infinite
cardinal and suppose that there exists a matrix © for P satisfying

(8) U @ is a n-basis of P,

(b) to each Ge|) O one can assign a family {G(n): n<p} of pairwise disfoint
nonempty open subsets of G,

© lo|<p.

Then there exists a family DycD;c...cD,c... (1< p) of nowhere dense sets
covering P.

Proof. Let'D,, = P~J {G(): n<i<B, Ge|J ©}. Bach D, is obviously closed.
If U is a non-void open subset of P, then there is some G| @ with G U. Clearly
:m}:' G (v) with ¢>n misses D, and is contained in U, so D, is nowhere dense. If x € P,
d‘ehue s = sup{s<f: x e G() for some Gel) O}, sup@ is understood to be 0.
Since |{t<f: x € G(z) for some Ge |J @}<[6], f is regular, and |@]< B, we have
Ny<f. By the definition, x e D,,. Thus {J {D,;: n<f} =P. B

32 DEFINITION. Let ® be a matrix for a dense-in-itself topological space P.
A family %, which is centered, contained in {J @, and maximal with respect to those
two' propertics, will be called a chain in ©. The number || is called a length of the
chain %; and the chain % is said to be long if |%| = |0].

3.3. Lemma. Let @, ©' be two matrices for N*. If €' < <0, then &' does not
contain longer chains than © does. (Obvious.)
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3.4. LeMMA. x(N*) = n(N*) if and only if there exists a shattering matrix ©
without long chains, @] = »(N*).

Proof, Let @ be a shattering matrix without long chains, |0 = x(N¥), let
Dy=X—% for cach ¥e®. Each Dy is clearly nowhere dense and
U {Dy: % @} = N*: the cxistence of a point in N*—{J {Dy: ¥ e @} implies
the existence of a long chain in ©. Thus R(N¥)<x(N*), but 2(N*)<n(N*) by 2.10.

Let ©' be the matrix given in the proof of 2.10. Apply 2.7 to &’ to obtain a re-
fining matrix @ with {J @c%lopen(N*), Then [8] = n(N*)(= #(N*) by the
assumption). The matrix @ is shattering and contains no long chain by compactness
and by | ® <=%lopen(N*).

3.5. MAIN THEOREM. The numbers %(N*) and n(N*) are related as follows:

@) If w(N¥)<e, then x(N)<n(NF)<x(NH*;

(i) if #(N*) = ¢, then x(N¥*)<n(N*)<2%

(i) %(N*) = n(N*) if and only if there is a shattering matrix © for N* without
long chains, and with |©| = x(N*);

(v) moreover, if n{N*)<e, then the covering family of nowhere dense sets of
cardinality n(N*) can be chosen monotonically increasing.

Proof. (i) is a consequence of 2.10, (i) follows from 2.10 and 3.1, since for
%(N*)<e¢, the Kulpa-Szymafiski Theorem may be applied with f = » (N #F, (iif) is
then implied by 3.4.

For (iv), assume n(N*)<e. If ®(N*)<n(N*), then (iv) holds by 3.1, so suppose
%(N*) = n(N*). By 3.4, 2.11(c) and 3.3, there is a base matrix @ without long
chains, |@] = x(N*). Then | {Dg: Dg = N*—J %, ¥<c @} covers N* and the
family is monotonically increasing, because @ is refining and if 2 refines %, then
DyoDy. B

3.6. COROLLARY. If ¢ is a singular cardinal, then n(N*)<c. B

(More will be shown in 4.2.)

Recall that a point p e N* (= non-principal ultrafilter p on N) is selective, if
for each partition # = {R,: n<w} of N either there is an n<w with R,ep or
there is a set Uep with |U n R,j<1 for each n<w. A point p is called P(u)-point
(u cardinal) if any intersection of less than u neighborhoods of p is again a neigh-
borhood of p.

?;.7. THEOREM, If n(N*)>¢, then there exist at least n(N*) selective P(c)-points
in N*.

Proof. For each countable partition % of N, let Z,, be a maximal almost disjoint
family in N such that 2,52 and, if P e #43—2, then |P n R|<1 whenever Re 2.
Let ¥y = {P*: Pe Py & P* # @}. The matrix @ = {@,: Z is a countable parti-
tion of N} is clearly shattering and |©| = e.

By 3.5 and by the assumption n(N*)>e¢, x(N*) = ¢, |0] = %(N*), so 2.11(c)
applies: There exists a base matrix @’ strongly refining @ with () @' =%lopen(N*).
By 3.5, ®' contains long chains.
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Let ¥< |) © be a long chain in @'. Then (Y% # @ by compactness.

Let x € () %, then x is a selective P(c)-point: If 2 is a countable partition of N,
pick a neighborhood H of x from o# n ¥, where # e @', H <Y 4.1f Pis a member
of Py for which HcP¥, then Pex and either Pe % or |P n R|<1 for each Re Z.
Hence x is selective. By the same argument and by the fact that @' is refining, % is
a monotonically decreasing neighborhood basis for x. |%| = ¢ and ¢ = x(N¥),
thus by 2.11(b) ¢ is regular, so x is a P(c)-point.

Finally, put Dy = N*—) ¢ for each Y€ O". Clearly

N*=|){Dg: ¥c@IuU{N¥%: € is along chain in @'},

but this gives us a covering of N* by nowhere dense sets. |@’| = ¢ and n{N*)>c,
so |{(Y%: € is a long chain in ©'}|=n(N*) and the theorem follows. B

Thus following theorem was proved under MA by Kucia and Szymafiski [KcS].
We shall show that the statement holds without any superfluous set-theoretical
assumption.

3.8. TuroreM. Let S be a set of all selective P(c)-poinis in N*. Then N*-S
can be covered by at most ¢ nowhere dense subsets of N*.

Proof. If n(N*)<e, there is nothing to prove. If n(N*)>e¢, then, using the
notation from the proof of 3.7, S {() #: ¥ isalongchainin ©'}. Thus {Dy: ¥ @’}
is a family of nowhere dense sets in N* covering the set N*—S.

3.9. Remarks. (a) The method of the proof of 3.7 seems to be quite general
and we hope that the assumption n(N*)>e¢ can be used instead of MA also in other
constructions, where MA is usually used. Unfortunately, not in all — ask e.g. for
the existence of non-selective P-point under n(N*)>c.

(b) In Chapter 5, the model of ZFC will be described where n(N*) = 2° and
2¢>¢*, so there is no hope to prove that n(N*) equals either % (N*) or #(N*¥)* as
in the case x(N*)<e.

4. Fstimations for % (N*). The Gleason space of N'*. Let us start with a lemma,
which enables us to strengthen 2.5 and 3.6.

4.1. LemMA. Let #c=@lopen(N*), |Bl<ec. Then there exists an almost-parti-
tion ¥ of N* such that each Be % meets at least two members of %.

Proof. For each non-void M e @lopen(N*) there exists a mnon-void
clopen Gy =M such that for each Bed, B—Gy # O. (Suppose the contrary:
There is a non-yoid M € %lopen(N*) such that each clopenG <M contains some
member of #. Thus & contains a n-basis for M, yet |#|<¢ — a contradiction.)
Let & be a maximal disjoint subfamily of {Gp: M e @lopen(N*)}. Clearly ¢ has
the desired properties. B

4.2. THEOREM. %(N¥)<cf(c). (Compare with 2.5.)

Proof. Let 7 = cf(¢), let #,=%lopen(N*) be chosen for cach &<t such that
{Bel<e and U {8 (<t} = (6“10pen(N*)./I.I$\g Lemma 4.1, denote by %, the

2 — Fundamenta Mathematicae CX/1
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almost-partition which “shatters” #,. The matrix 6 = {%,: <1} is evidently
shattering, so t=>x(N*). B

4.3. CoroLLARY (Compare with 2.6.) If ¢ is singular, then n(N*)<cf(c)*. B

4.4. DernvrioN. Consider “o with the order f<g iff f(n)<g(n) for all but
finitely many n e w. Define 1 = inf{|H|: H="w & H has no upper bound}.

4.5. THEOREM. %(N*)<A.

Proof. If 4€[N]°, 4 = {x,: n<w} with x,<x,.; for each n<w, we shall
call the mapping g, € “w defined by g,(n) = x, the enumeration of 4. Obviously,
if @+# A4* ¢ B*cN*, then g,>g5; if 4€[N]° and if fe“®w, then there exists
a Be[N]” with B*cA* and gp>f.

In order to show that x(N*)<A it suffices to prove that y<l whenever
N<xn(V*). So let n<x(N*), take any S = {f;: é<n}=w and let

0 = {%;: E<u(N%)}
be an arbitrary shattering matrix for N*. Let us define a2 matrix @, by the following.
For <, let 5 be an almost-partition of N* refining 9, consisting of clopen sets
and such that for each He #; we have g,> -fr whenever 4 €[N]®, 4* = H. For
E=n, E<u(N¥), let #, = %,.

Find a base matrix @'<X<X0, using 2.11(0); O’ = {F,: E<u(N*)}. Let
Fe #,, let AcN be such that @ # 4* ¢ F. Since F, refines all o, £<n, there
isa set A;= N with 47 2.4*, A} € #, for each <. Then ga>9a.>fr, thatis, S has
an upper bound, hence y<A. B

4.6. COROLLARY. If %(N*) = ¢, then each subset of “w of cardinality less than ¢
has an upper bound. B

4.7. Remark. The equality x(N*) = ) cannot be proved in ZFC.

4.8. DEFINITION. Let P be a topological space, Ro(P) the Boolean algebra
of all regular open subsets of P. The Gleason space of P, G(P), is &t(Ro(P)), the
Stone representation space of Ro(P).

4.9. Remark. Notice that [G] defines the notion of the Gleason space for
compact Hausdorff spaces only. We are mainly interested in G(N *). Recall that the
completion of the Boolean algebra & (w)/fin is precisely Ro(N*). It may be uscful
to characterize G(N*) using Ro(P) for some P non-compact (see 4.12).

Concerning the Baire number there is actually no difference between N*
and G(N*), to wit:

4.10. PROPOSITION. Let P be a compact Hausdorff space without isolated points,
G(P) its Gleason space. Then n(P) = n(G(P)).

The proof follows from the fact that there is an irreducible continuous map
from G(P) onto P, H

It is known that

a) G(N*xN*) is homeomorphic to G(G(N*) x G(N ),

b) N* is not homeomorphic to N* x N*.
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" We shall show that G(N*) may be homeomorphic to G(N*x N*¥) in the next
proposition, whose assumption is satisfied e.g. if %(N*¥) = &, or if MA holds. The
proposition is a mere corollary of the forthcoming Theorem 4.12.

4.11. PROPOSITION. Suppose that there exists o base matrix © for N * all
chains in which are long. Then

(2) G(V*) is homeomorphic to G((N*)°) for each a<x(N*),

(b) in particular, G(N¥) is homeomorphic to G(N* x N*),

(c) hence n(N*) = n(N*xN*). &

4.12. THEOREM. Denote % = % (N*). There exists a base matrix © for N* all chaifzs
in which are long if and only if the spaces G(N*) and G((c”)(,c)) are homeomorphic.

((€)xy denotes the product of copies of a discrete space of cardinality ¢ en-
dowed with the x-product topology, see [CN], p. 69.)

Proof. Suppose @ = {#,: E<x(N*¥} is a base matrix for N* with 1Iong chains
only. We may assume without any loss of generality .that G e%,: G,C Gll=¢
holds for any G e %, and E<n<x(N¥). Thus it is possible to Ia_bel all G’s from %,
by functions from £+1 to ¢ (E<%(N*)) such that the following hold:

(@) if f,ge*le, £ # g, then G, N G, = B,

(b) if ¢é<n, Gre ¥, G %, and G;oG,, then f=gté+1

The space (¢*)(,) has a basis % consisting of allsets U(f, &), f€ Srle E<xn, whfere
U, & = {ge¥e: gt é+1 =f}. Thus it is easy to check that the maipnzf
¥: U ®— & defined by the rule V(G =U, &) v:henever Gy e, extends >
a Boolean algebra isomorphism #: Ro(N*) — Ro((¢ Yoo)- SO, bY Sfone represen:
tation theorem, G(N*) is homeomorphic to G((¢*)e)- ) )

Tf G(N*) and G{(c")) are homeomorphic, then th:i must be an ?sor?orp]n:]n
¥: Ro((¢)y) — Ro(N*). Since each set U, &) (fe*tle, E<x) is Tegu ag Ofior;
we may define @, = {Y(U(S, O): fetie} 0 = {Ge: 5<,”}' The verifica »
that @ is a base matrix for N* all chains in which are long is straightforward.

Another consequence of 4.12 is stated in the following

4.13. COROLLARY. Suppose that there exists a base matrix @ for N* each chain
in which is long, let © be an infinite cardinal. If t<x(N*), then 2 = ¢. B

4.14. ProBLEMS. (a) We do not know whether »(N*) = n(N*) may happen.

(b) Put , = 2%((N*)"). Clearly x,>%,.,, hence there is a p such that x, = %
for all r3p. Proposition 4.11 shows that the sequence may be constant. We ic: n-ot
know any further properties of this sequence. (The Baire number of (N*)" re-
presents an open problem as well.) ‘

{c) We have shown (3.8) that N*—S can be covered by at most ¢ setAs which are
nowhere dense in N*. On the other hand, consider N*—S§ endowed with the sub-
space topology. Then the value of n(N*—S) is an open problem. '

(@) Ts it possible that G(N*) and G(N* x N*) are not homeomorphic?
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5. Several consistency results and comments. In this chapter we shall introduce
several examples of models of ZFC in order to show some possible values of s
and n for N*. We do not construct any new forcing conditions; for the generic ex~
tensions we use only those Boolean algebras or partially ordered sets which are
familiarly known. The proofs are rather brief; for the method of forcing the reader
is referred to [Je] or [VH]. The distributivity of Boolean algebras in connection with
the properties of generic extensions is studied e.g. in [Bu] or [VH].

In what follows, 9 will denote some countable transitive model of ZFC. If G is
a generic ultrafilter on (P, <) e M over M, then M[G] denotes the generic extension
of M obtained by adding G to M.

5.1. Case %(N*).
L x = 8.

Let us consider a generic extension M [G] adding to M at least %, mutually
Cohen reals ([Co]). That is, the set of forcing conditions is the set

{f: f€"{0,1}, uce, lul <y}

ordered by the inverse inclusion and constructed in 9.

In M[G], 2 = s, hence by 4.5 »x = §;, too.

These types of models show the consistency of “»(N*) = &, & ¢ is arbitrarily
large”. The same holds in the familiary known models used by Kunen [Ku] to obtain
the consistency of “there is no selective ultrafilter on @”.

for some =8,

I % = c.

One of the well-known consequences of MA says that the non-void intersection
of less than ¢ clopen subsets of N* has a non-void interior (cf. [MS]). Consequently
® =c.

IO 8 <x<e.

Let M be a model of ZFC in which ¢ = &, and §j! = x,, hold. Let Be M
be a complete Boolean algebra obtained by the canonical construction used by
Solovay and Tennenbaum [ST] in their proof of the consistency of MAy,.

Then in M[G], where G is a generic ultrafilter on B, the cardinals and the
cofinalities are preserved and IMM[G]k 2M° = N, & MAy,.

By 4.2 we have k< cf(c). Now MA , implies %3>s,, hence M[G] k ®(N*) = 8.

5.2. Case n(N*).

IV. x<e&n = »*.

If the Boolean algebra #(w)/fin has a x-closed dense subset, then 7> . This
situation arises in the models I and III from 5.1. In particular, the statement
“n(N*) = 5, & ¢ is arbitrarily large” is consistent. Notice that there are no selec-
tive P(c)~points in N* in Cohen and Solovay models for ¢ = N, mentioned in I.
([Ru], [Ku].) Thus n(N*)<c¢ by 3.7 in these models.
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V.x=c&et<2°&n=c".

Suppose GCH takes place in 3. Denote by B, € 3 the Solovay-~Tennenbaum’s
Boolean algebra used for the consistency of MA +2%° < &,. The algebra B, satis-
fies c.c.c. Let B, M be an algebra determined by the partial ordering (P, <),
where

P={f: f&*{0,1}, <8y, ucw,} and f<g
The set P is countably closed dense subset of B,. Let G be a generic ultrafilter on
the free product B = By x B, over . Then G = G, X G, and M[G] = MG, 1IG,]-
Moreover, the Easton lemma is applicable. Hence

iff fog.

(i) all cardinals and cofinalities are preserved,

(i) if fe MI[GL, /2 w— M, then fe M[G,], thus the set 2 (w) is the same i
M[G] as in M[G,],

(i) MIGTF 2" = 8, & 2N = 2" =,

(iv) IM[G]F MA & 2° = 8; & B, satisfles 8,-chain coadition.

By (if), the algebra 2 (w)/fin is the same in X [G] as in M[G,]. Since MA+e= 8,
holds in 9R[G,], there is a base matrix @ in M[G,] with long chains only. Hence
MIG,]En = ;. We shall show that also M[G]F n = ¥,

At first, notice that M[G]F n<s,. Otherwise M[G] = MIG,1[G,] would
contain a generic ultrafilter on 2 (w)/fin over M[Cy] which is impossible by the
choice of B,. .

The following Easton-type lemma gives the estimation n8; in M[G], if we
take M[G,] as a ground model, T = &;, C, and C; as the completion in MM[G,]
of ?(w)/fin and B,, respectively.

LEMMA. Let © be an infinite cardinal. Let Cy, C, be two complete Boolean algebras
such that Cy has a ©*-closed dense subset and C, satisfies ©*-chain condition. If G is
a generic ultrgfilter on C,, then n(Cy)>1" in V[G]. (V is the ground universe of sets.)

Proof. It is enough to show that for each matrix Sin VIG] consisf.ing of pal;-
titions of unity of C, and such that |S | <1t there is a matrix ¥ e ¥V with |[W|<<

and W< <3S.

Let us therefore assume that S = {H,: a<t¥} is a system of partitions of 1¢,
in V[G]. There exists a mapping f: 7t % Cy — C, such that
i) feV,
(ii) for each a<tt, ue H, if and only if f(x, w) e G.
Hence, the formula
g, 1) = flo, )=\ {fla, ) v # u&vru 0}

defines a set g that satisfies (i) and (ii), too. Moreover,

(i) wAv # 0 implies g{u, 1) Ag (e, v) = 0.

Define o = {4,: a<t’} by the following 4, = {neC,—{0}: g, 1) # 8}.
Then & e ¥ and \/4, = 1 for each a<z*.
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Fix o. Using the properties of C; and C, we can find a partition R, of unity
of C, such that every » € R, is compatible with at most v members of 4,. This fact
and the t-distributivity of C; guarantees the existence of a partition W, of unity
which refines not only R,, but also all partitions {1, —u} whenever u € 4,.

Clearly W,<<H,, hence {W,: a<t*} is the desired matrix. B

The inequality s, <c<2™ holds in the model just described. Proposition 4.13
tells us that in this model no base matrix for N* contains long chains only. Never-
theless G(N*) and G(N*x N*) are homeomorphic in M[G] (compare with 4.11).

VI %=c&e"<2°&n = 2°
Suppose Mk GCH. The set of forcing conditions

P = {f: fe"w,, [ul<s, ucw,}

ordered by the inverse inclusion has at most 8, mutually incompatible elements. The
completion of 2 (w)/fin is isomorphic to the complete Boolean algebra generated
by the dense subset {f: fe" vy, U<, uSw; (e.g. by 4.12).

In M[G] (G is generic on P) all cardinals are absolute, no new subset of w is
added, and 2™ = &,, 2% = x,. )

Moreover, for an arbitrary system in IMM[G] of partitions of unity in £ (w)/fin
whose cardinality is less than ¢, there exists in M [G] an ultrafilter on & (w)/fin which
is generic with respect to this system of partitions. Thus M[G]k n = 2°.

From the last model we immediately obtain that n(N*) can happen to be
a singular cardinal, but cf(n(N*))>2".

The question whether cf(n(N*)) may equal to &, is open.

5.3. Now let us briefly summarize the properties of a generic extension MM[G],
where the Boolean algebra the generic ultrafilter is taken on is 2(w)/fin.
?UJ‘IL[G] k¢ = %™, moreover, all bounded subsets of ®™ are in M, and ¢™ collapses
to ¥

In M[G], the Rothberger’s assertion Q holds, i.e. each subset of “w of cardinality
smaller than ¢ has an upper bound (see [Ro]). Thus, by Ketonen’s result [K], there
are many P-ultrafilters on N in M[G]. Moreover, the filter

F = {ue P"(N): [t]e G}

is a selective P(c)-ultrafilter in M[G].

As a consequence of @, the following is valid in M [G] too:

Every infinite maximal almost-disjoint system of subsets of N has the cardi-
nality e. Thus for each uniform ultrafilter on NN there exists a Comfort system ([CHY),
i.e. an almost-partition of N* such that each member of the ultrafilter contains
a member of the almost-partition. The existence of a Comfort system for a given
p € N*is equivalent to the statement that p is a ¢-point in N* For the last as-
sertion and other consequences of the assumption that every infinite maximal
almost-disjoint family on N contains ¢ members, see [R] or [Ma;, Ma,].
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5.4. Throughout the whole paper, the notion of a base matrix was exploited
mainly for studying of n(N*). The following two examples indicate that the base
matrices may serve as a tool in a wider area.

The assertion (¢) of Base Matrix Lemma was used for a topological construc-
tion of examples in the theory of E-compact spaces in [PS]. The space constructed
there is another example disproving Efimov’s conjecture that a compact Hausdorff
space has to contain either a convergent sequence or a copy of N*.

W. W. Comfort has raised the question whether N* and the space U(s,) of
all uniform ultrafilters on %, may be homeomorphic. Though we do not know the
answer, we can show that the Gleason spaces of the spaces in question may be
homeomorphic.

Added in proof. Recently an interesting paper by S. H. Hechler (Generalizations of
almost disjointness, c-sets, and the Baire number of N — N, Gen. Top. and its Appl. 8 (1978),
pp. 93-110) has appeared. Using another method, he studies the number n(N*), too.
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Equivariant embeddings of finite abelian group actions
in euclidean space

by
Richard J. Allen (Northfield, Minn.)

Abstract. Let X be a finite dimensional compact metric space and let G be a finite abeliarx
group which acts on X. This paper shows that X equivariantly embads in a euclidean space with
an orthogonal G-action. Moreover, a minimum dimension for the euclidean space is obtained.

1. Introduction. Mostow [8] first showed that every action of a compact Lie
group with a finite number of non-conjugate isotropy subgroups on a finite dimen-
sicnal, separable, metric space can be cquivariantly embedded in a linear action of
the group on some cuclidean space. However, Mostow’s theorem said nothing about
the required dimensions of the euclidean space. Copeland and de Groot [3] went
on to find dimensions for the euclidean space in the case of an action of a cyclic
group of prime order. Kister and Mann [7] extended this result to actions of compact
abelian Lie groups with a finite number of distinct isotropy subgroups:

In [1] the present author obtained improvements on the results of Copeland
and de Groot using methods different from those employed previously. A conse-
quence is that, if X is a compact n-dimensional metric space with a free Z,-action,
then X equivatiantly embeds in R®*! with an orthogonal Z,-action.

The present work provides improvements on the results of Kister and Mann
in the case of a finite dimensional compact metric space with a finite abelian group
acting on it. The methods used here are extensions of the ideas found in [1]. An
important corollary of this work is contained in the theorem stated below.

TuroreMm (1.1). Let G = Ry ®..OROH, ®.. ®H; be a finite abelian group,
where the R's are cyelic groups of ovder # 2 and the s are all of order 2. Suppose X Is
a compact n-dimensional metric space with a free G-action. Then X equivariantly
embeds in an orthogonal G-action on RY, where N = max{2n+1, 2+

2. Equivariant spaces and equivariant maps. Throughout the remainder of this
paper let G denote a finite abelian group and let X be a compact metric space. If G
acts on X, then X is called a G-space, frequently denoted as (X, (). An equivariant
map fi (X, G)— (Y, G) between two G-spaces is an equivariant e-map if
diam f~1y<e for every y e fX. If (X, G} is a compact metric G-space and (¥, G)
is a separable metric G-space, then (¥, G)%+9 is the subspace of the metricspace bl
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