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Trreducible continua with degenerate
end-tranches and arcwise accessibility in
hyperspaces

by
J. Grispolakis and E. D. Tymchatyn * (Saskatoon, Sas.)

Abstract. In a 1960 paper G. W. Henderson proved that every hereditarily decomposable
chainable continuum has a subcontinnum with a degenerate tranche. In this paper some other
classes of hereditarily decomposable continua which also have this property are investigated. In
particular it is proved that in a rational continuum of finite rim-type every point is a degenerate
tranche of some continuum. An example of a hereditarily decomposable chainable continuum
such that no subcontinuum has a cut-point is presented. Hence the degenerate tranches guaranteed
by Henderson's construction are end-tranches. These results are used to answer several questions
of Nadler concarning arcwise accessibility in hyperspaces.

1. Introduction. In 1960, G. W. Henderson [2] proved that every hereditarily
decomposable chainable continuum contains an irreducible subcontinuum with
a degeunerate end-tranche. In 1967, W. Mahavier asked whether Henderson’s theorem
is true for any hereditarily decomposable continuum. In Theorem 3.2, we give
another class of continua with the property that they contain irreducible subcontinua
with a degenerate end-tranche. In particular, we prove that hereditarily decomposable
continua which. contain subcontinua of finite rim-type at some point have this prop-
erty. In 5.1 we give an example of a hereditarily decomposable chainable continuum
with the property that no subcontinuum has a cut-point, and hence, no subcontinuum
has a degenerate tranche other than an end-tranche.

In Section 4, we prove that the existence of irreducible continua with degenerate
end-tranches implies the arcwise accessibility of points in hyperspaces (see
Theorem 4.1), and we resolve several problems raised by Nadler in [5] and [6].

2. Preliminaries. Throughout this paper by a continuum we mean a connected,
compact, metric space and by a mapping we mean a continuous function. A con-
tinuum X is said to be chainable (or arc-like or snake-like) provided for each e>0
there exists a finite open cover {Us, ..., Up} consisting of open sets with diameter
less than ¢ and such that U; n U; # @ if and only if [i—jl<1. A mapping f: X— Y
katchewan Postdoctoral Fellowship
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from a compact metric space X onto a metric space Y is said to be monotone provided
for every connected subset K of ¥ f~Y(K) is connected.

Let X be a continuum. Then the point x e X is said to be a cut-point of X pro-
vided that

N =pPug

where P and Q are two non-empty separated subsets of X,

The point x € X is said to be a local separating point of X provided there exists
a neighbourhood U of x and points p, g € UN\{x} such that p and g lieina component
of U but p and g can be separated in UN\{x}.

Let X,, X7, ... be a sequence of continua and let fi*1; X4 1 — X, be a mapping
of X,,, onto X; for each iew. Then the inverse limit of the inverse system
{X.,fi*%, 0} denoted by Lim{X;,/"**, w} is the continuum

re [ X073 e proa = )

endowed with the subspace topology of the product [T X; (here p, denotes the pro-
i=0
-]
jection of TT X, onto X,).
i=0

Let A be a subset of a space X. Then by Cl(4) we denote the closure of A in X
and by Bd(4) we denote the boundary of 4 in X. A continuum is said to be rational
provided it has a basis of open sets with countable boundaries. A continuum X is
said to be Suslinian provided every collection of mutually disjoint non-degenerate
subcontinua of X is countable. A continuum X is said to be decomposable provided
that X = P U Q where P and Q are proper subcontinua of X. Finally, a continuum X
is said to be hereditarily decomposable provided every non-degenerate subcontinuum
of X is decomposable. It is well-known that rational continua are Suslinian, and
Suslinian continua are hereditarily decomposable.

Let 4 be a subset of a topological space X, and let 4’ denote the derived set
of 4. Let A9 = 4 and by transfinite induction define 4 for each ordinal o, by
AT = (4@ and 4D = N {4 a< 2} for each limit ordinal 1. If Cis a compact,
countable subset of a metric space, then there exists a countable ordinal o such
that C' = @, We call the smallest such ordinal « the topological type of C. If X is
a continnum that has a basis at the point p € X consisting of open sets with countable
boundaries, then we define the rim-type of X at p to be the smallest ordinal o such
that X has a neighbourhood basis at p of open sets {U},.,, such that the topological
type of BA(U,) is at most « for each i € o). Otherwise, define the rim-type of X at p
to be 2 (i.e., the first uncountable ordinal).

2.1. THEOREM ([4, p. 216]). If X is an irreducible continuum such that each inde-
composable subcontinuum of X is nowhere dense, then there exists a finest monotone
mapping ¢: X — [0, 1] of X onto the unit interval [0, 11. The point-inverses under @ are
nowhere dense subcontinua of X and are called the -tranches of X.
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Throughout this paper the subcontinua ¢~*(0) and ¢~*(1) of X will be called
- hes of X.
e ?getrfaoqlc:wmg theorem is proved by using methods that are almost identical
with those used in the proof of Theorem 2.2 in [1]. We include the proof for the sake
of completeness.

2.2. THEOREM. Let X be a hereditarily decomposable irreducible continuum and
let p be a point of a non-degenerate end-trunche Ty of X. Suppose also t_lmt every non-
degenerate subcontinuum of X containing p is of rim-type " at. the point p for some
positive integer n. Then there exists an irreducible hereditarily decomposable con-
timmum Y and a mapping f+ Y— X of Y onto X such that:

(@) f is one-to-one cxcept at countably many points, where f is two-to-one, and
~1(p) is degenerate;
! (p()ii) Y has an end-tranche S such that f(S) = Ty, Y is ¢f rim-type n at f~*(p),
and S is of rim-type n—1 at f~4(p);

(i) X\T, is homeomorphic to f~*(X\To) under f.

Proof. Let ¢: X — [0, 1] be a finest monotone mftpping of X onto_[?, 1] (see
Theorem 2.1} and suppose, without loss of generality, .that To = o (D). Ijet
% = {Uy, Uy, ...} be a nested countable neighbou’rhood .basxs at p of open sets with
boundaries having topological type <n. S-incef X ‘;s .m'ct:xc, we may assume that the

jies of the members of % are pairwise disjoint.
bounf:tm;,,, = [Ty ~ BA(U,)IN[BA(U,)]' for each me{l,2,..}. Then fl‘or2 each
me{l,2,..} D, is countable. Let D,, = {Xm1s Xmas o} for each me { .,L ,t...;.

By induction, we construct an inverse sequence of co.ntmua as follows: de 111
be the compactification of Y,\D, (where ¥, = X).whlcl} is larger than Y; a.nt Sl;f
thatif f;: ¥, — Y, is the extension over Y, c?f the inclusion of Yy\D; = fl 1;1 0 0;
then f7(xy,) = {71,.» Z1.1}- A basic open ne1ghlztzurhood of y;,; (respec 1\: Y, ,;Jl:s
is given by f7 '[U n Uyl v {y1,1} (respectwely.,fl [U'\Cl(Ui).] U {21"2)" wtert?5 U
a neighbourhood of x, ; in ¥;. Then Yy isan 1rreduc1b1('e conmnuumé rllm-_yp1 et
Fr(p) and fTM(Ty) = T, is an end-tranche of ¥;. Notice that the topo o;;r(lca mzps

of T, A BA[CI(f7*(Uy))] is less than or equal to n-1l slmxso }' mallzs
T, n BA[CI( 17 1(U,))] homeomorphically onto a subset of [.Bd(I{%)] . e ,a ];d naps
BA[CI(f7 *(Uy))] homeomorphically o.ntode(Ul)\Dl. We identify poin
sets of Y,\D, with their preimages in Y. ' . .

Su‘ppgsc 1'11mt m=>1 and Yy, .., Yy-y are irrcducﬂilie contmll?, J;}..S I;',-;m;;};
is 2 mapping of ¥, onto Y,_;, the rim-type of ¥; at f; Cow of1 “(llz]_)l) ,ar;d e

YN to..ofTY(D;) homeomorphically 011t0_1y'"‘\f’71°'_”°f‘t nl—’l L e
topological type of T;m BA[CI(fi* o . ofi (U'i))] s at mos o Su;gsets e
Ty = f; (T;-) for cach i€{l,.., mt-l}. We identify pom;cls ks o iy
Y,_l\,f}:} o...of7Y(D)) with their preimages un.der f; for each ie an,d‘;;ch ok
Let Y,, be the compactification of ¥,,_;\D,, that is large.r than ;”m-l\D oY into
if £+ ¥,,— ¥, is the extension over Y,,: of the 1nc'1u51on ohf Q—éf - (re:pect_
Y, then fr ') = {Ymi» Zma}. A basic open neighbourhoo Vi

m=
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ively, z,,;) is given by fry HU A Ul { P} (respectively, [ IUNCI(T,)] v {zp: ),
where U is a neighbourhood of x,; in Y, We identify points and subsets
of ¥,_;\D,, with their preimages in Y, under f,. Then Y,, is an irreducible conti-
nuum of rim-type # at the point Filo . ofr(p), and T, = fr "(T,,-y) is an end-
tranche of ¥,,. Notice that the topological type of T}, n BA[Cl(fu' o o ST 2 (U]
is less than or equal to n—1, since it is mapped by f; ¢ ... o f,, homeomorphically
onto a subset of [BA(U,)]. Also, fyo...of, maps BA[CI(fy" e ...of7 (U,))]
homeomorphically onto Bd(U,)\D,.

Consider the inverse system {Y,,f,, ©} and let ¥ = le{ > Ju» ©F, and

let f: Y — Y, = X be the mapping induced by the inverse 11m1l Then f is one-
to-one except at the points of the set U D,,, where f is two-to-one, and f maps

e ([0, 1)) = 1 X\Tp) homeommphmally onto @ ([0, 1)) = X\T,. We
also have that f ‘1 o9~ ([0, 1)) is dense in Y, Y is irreducible, and

S = le{T,,,,f;nl ms (D}

is an end-tranche of Y such that f(S) = T,. A basic neighbourhood of p in ¥
is of the form Tnt[Cl{f~(U))] for some U;e%. Then

Bd [Int(CL(f~*(U))] = B[CI(f~(U)]

is homeomorphic to BA[CI(fi * e ..o f7 *(U))] and the laiter set has topological
type less than or equal to n. Also, S A BA[CI(f~*(U))] is homeomorphic to
BA[Cfi o ..o fy {U))1 N S. Hence, the rim-type of Y is at most n at £~ '(p)
and the rim-type of § is at most n—1 at f~*(p).

- 3, Trreducible continua with degenerate end-tranches. In this section we in-
vestigate the existence of irreducibie subcontinua with degenerate end-tranches in
continua with certain properties. We first prove the following:

3.1. LemMaA. Let X be a hereditarily decomposable irreducible continuum with
a degenerate end-tranche {q}, and let f: X — Y be a mapping of X onto a hereditarily
decomposable continuum Y such that f is one-to-one except at a countable subset D of
X\{q}, where f is two-to-one. Then Y contains an irreducible subcontinuum Z with
{f (@)} being an end-tranche of Z.

Proof. Let ¢: X — [0, 1] be a finest monotone mapping of X onto [0, 1]
(see Theorem 2.1). Since D is countable and f'is one-to-one on X\ D, we may assume,
without loss of generality, that ¢~ *(0)= X\D. Assume, also, that ¢(g) = 1. We
shall construct, now, an irreducible subcontinuum of ¥ with {f(g)} as an end-
tranche.

Let t€(0, 1) and define an increasing sequence {t(m)},e, of numbers in [z, 1]
as follows: Let #(0) = ¢ and suppose that #(i) has been defined for each i<n. Then
define t(n+1) € [t(n), 1) to be such that

Flo ¢ nrflo e +1) 1= @

©
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and such that

tn+1)—t(n) = max{r—t@)| f[o~*¢W)] A flo™ ()] # B} .
Let #(w) = lim ¢(n). Similarly, let {(n)¢},., be a decreasing sequence in (0, ¢] that
is defined Y};wa way analogous to that in which {r(n)},., was defined. Let
(@)t = lim (n)z. Consider a continuum P(z) in U f[(p“l({t(n) (n)t})] which is

n-+od
irreducible with respect to meeting both the contmua FTo™(t(@)] and
flo~ (@1}
If for some #& (0, 1) #(w) = 1, then we claim that { f(¢)} is an end-tranche of
P(t). For this notice that

{f(@} = Limf[¢™*(t(m)],
and that each tranche of P(z) which is not an end-tranche is either contained in

f[(p'l(z(n))] ufle™(tm+ D] orin fleTHm1)] U™ ((n+1)1)]

for some n. Hence, the end-tranche of P(¢) which contains f(g) is degencrate.
We suppose, therefore, that for each £ & (0, 1) #(w) < 1. Notice that if s, £ & (0, 1)
and t<s, then either

P()=P@) or PENPH) =G or
P(s) 0 PO=f[o™ (t@)] n fTo™* (@)5)].

Let #, € (0, 1) such that #,(w)~(w), Zt(w)—(w)t for each t& (0, 1). IF P(t;) N
A flp~ O] # B, let 1, = 1. I P(t) 0 flp~(0)] = @, then let 1,€(0, (w)2;)
such that

(@)~ (@), = max{t(@)-(@)?| te(0, (@n)}.
Let, also, 3 € (#;(), 1) such that
ty(@)— () 2y = max{t(w)—(@)?] te(t,(@), 1)} .

Inductively, by a Cantor-type construction, we define a sequence 1, Iy, ...
of points in (0, 1) such that 7,<t; implies that

Py n 1)(11)Cf[(P~1((03) tj)] ”f[(P—l(ti(‘”))] ,

and such that if x, y € XN\ U ¢~ *([(@)#, t{w)]) and f (x) = f (3), then o(x) = ()
i=1

(i.e. x and y belong to the same tranche of X).
Let P be a subcontinuum of the continuum

K= 13 Do (@1, 1] © U P@
1= i =1
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irreducible between f(g) and f[e~(0)]. Then, by the construction, we deduce that
each tranche of P is coatained in the union of the images of at most two tranches
of X. Hence, {f(qg)} is an end-tranche of P.

3.2. THEOREM. For any hereditarily decomposable continuum X and every point p
of X, which belongs to a subcontinuum K of X with finite rim-type at p, there exists
an irreducible subcontimuwm of X with {p} as an end-tranche.

Proof. Let Z be an irreducible subcontinuum of K with one end-tranche T at
‘the point p and such that Z has finite rim-type at p. The proof is by induction on
the rim-type of the continuum Z at the point p.

If the rim-type of Z at p is equal to one, then Z has a basis of open sets at p with
finite boundaries. If T were a non-degenerate tranche, then there would be an open
neighbourhood U of p in Z such that for any open set ¥ with pe V< U the boun-
dary of ¥V is infinite. This implics that T = {p}.

- Suppose that the theorem is true for any hereditarily decomposable con-
tinuum X and any point p of X with the property that there exists a subcontinuum X
of X containing p and having rim-type at most n—1 at p.

Let X, be a hereditarily decomposable continuum and p, a point of X, for which
the theorem fails, and Z; an irreducible subcontinuum of X, with a non-degenerate
end-tranche T, containing the point p,, and such that Z, is of rim-type n at p,.
Then every non-degenerate subcontinuum of Z, which contains pg is of rim-type n
at p,. By Theorem 2.2, there exists an irreducible hereditarily decomposable con-
tinuum Y and a mapping f: ¥ — Z, of Y onto Z, which satisfies the following
properties:

(i) fis one-to-one except at countably many points where f is two-to-one and
S (po) is degenerate;

(i) Y has an end-tranche S such that £ (S) = T, Yis of rim-type n at £ ~*(p,),
and S is of rim-type n—1 at £~ Y(po);

(iif) Zy\T, is homeomorphic to £ ~1(Z,\T}) under f. By the inductive hypothesis,
if {go} = f"*(po), since go € S and S is of rim-type n—1 at g,, we have that {g0}
is an end-tranche of some irreducible subcontimwum J of Y. Then fIW:T—=f())
is a mapping which satisfies the hypothesis of Lemma 3.1, and hence, f (J) contains
an itreducible subcontinuum with {py} being an end-tranche. With this contradiction
the proof of the theorem is complete.

3.3. THEOREM. Let X be a Suslinian contimum and let p be a point of X. Then {p}
is an end-tranche of some irreducible subcontinuum of X if and only if p belongs to
a subcontinuum of X with finite rim-type at.the point p.

Proof. Let p belong to a subcontinuum of X with finite rim-type at p. Then,
by Theorem 3.2, {p} is an end-tranche of some irreducible subcontinuum of X.
Conversely, let {p} be an end-tranche of some irreducible subcontinuum J of Y.
Since J in Suslinan, the set of degenerate tranches of J is a dense subset of J. Now
it is clear that we can form a countable neighb®urhood basis {U}ico of pin J s0O
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that the boundary of U is degenerate (in fact, it is one of the degenerate tranches
of J) for each ie w. Thus, J is of finite rim-type at the point p, and the theorem
is proved.

3.4. CoroLLARY. Let X be a rational continuum of finite rim-type. Then every
point of X is an end-tranche of some irreducible subcontinuum of X.

4. Axcwise accessibility in hyperspaces. For any compact metric space we de-
note by 2% (respectively, C(X)) the space of all non-empty, compact subsets (respect-
ively, subcontinua) of X with the topology induced by the Hausdorff metric (for
the definitions see [5] or [6, Ch. 0]). Let C,(X) denote the subspace of 2¥ consisting
of those compact subsets of X which have at most two components.

Let X be a continuum, and let x € X. Then, {x} is said to be arcwise accessible
Jrom 25\C(X) (resp., Co(X)NC(X)) provided there exists an arc 4 in 2% (resp.,
Co(X)) with one end-point at x and such that 4 n C(X) = {x}. For a study of arc-
wise accessibility see [6, Chapter XII] and [5].

The following theorem gives a useful sufficient condition for a point to be arcwise
accessible from C,(X)\NC(X).

4.1. THEOREM. Let X be a continuum such that every indecomposable subcontinuium
of X is nowhere dense and let p be a point of x such that {p} is an end-tranche of an
irreducible subcontinuum of X. Then p is arcwise accessible from Cy(X)NC(X).

Proof. Let J be an irreducible subcontimum of X such that {p} is an end-
tranche of J. By Theorem 2.1, there exists a finest monotone mapping ¢: J— [0, 1]
of J onto [0, 1] such that ¢~*(0) = {p}.

Consider the points 4, = {g} U ¢~!([1/2", 1/2""!]) and B, = {p} L ™ }(1/29
for ne{l,2,..} in C,(J/)NC(J). Let K, be an order arc in C,(J)NC(J) from A,
to B, and let L, be an ‘order arc in C,(J) \C(J) from B, to 4,,, for each ne
{1,2,..}. Then K,, L,=C,(J)NC(J) for each ne{1,2,..}. Let

L= Cl[ U (Kn ULn)] .
n=1
Then we claim that
L= UK, vL)u{p}.
n=1

For this notice that Lim X, = Lim L, = {p} and that if C,eX, and D,e L, are

oo n=too
arbitrary points, then the sequence Cy, Dy, Cy, Dy, ... converges to {p}. Hence, L is
an arc in C,(J) such that L n C(J) = {p}.

4.2. CorOLLARY. Let X be a hereditarily decomposable continuum ond let p be
a point of X which belongs to a subcontimum of X with finite rim-type ot p. Then p is
arcwise accessible from Co(X)\NC(X).

Proof. This follows directly from Theorem 3.2 and Theorem 4.1.

4 — Fundamenta Mathematicae CX/2
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4.3. COROLLARY. Let X be a rational continuum of finite rim-type. Then every
point of X is arcwise accessible from C{XINC(X). )

Corollary 4.3 provides a partial solution to a problem of Nadler (see [5, (6.5))).
The following example shows that the converses of Theorem 4.1, Corollary 4.2 and
Corollary 4.3 are not true.

4.4. ExameLE. This is a rational continuum X such that every point is arcwise
accessible from C,(X)N\C(X), although there are many points which do not belong
to subcontinua of X which are of finite rim-type at these points.

Let Jy, J1, J2, .. be a null sequence (i. €., the limit of the diameters of Jo, Jy, /3, ..
is zero) of the Janiszewski chainable rational continuum J (see [3] and [5, (3.12)]
for a complete description of this continuum). It is proved in [5, (3.12)] that J has
countably infinitely many points, say p;, ps, ... which are not arcwise accessible

N -
from 2°\C(X). Let Xy =J,. We form a contimuum X; = {JJ; such that
=0

Jo nJ; = {p;} for each j>0. We suppose that p; is not arcwise accessible in
2”\(]1) for each j>0. We assume, also, that if 0<i<j, then J; nJ; = &. Since X
is the union of a sequence of rational continua, it follows that X is a rational con-
tinuum. Let f;: X; — X, be the function defined by

X, if

fl(x) { if

Tt is easy to check, using the fact that the sequence J;,J5, -..
of X, onto X,. ‘
Let, nOW, p; 1, Py 2, - be the points of JN\{p;} which are not arcwise accessible

from 2*'\C(X,) for each ie{l,2,..}. Let, also, {J; ;| i,je{1,2,..}} be a null
sequence of mutually disjoint homeomorphic copies of J. We construct a continuum

xeJy,
xed;.

isuull, that f; is a mapping

. «@ 0
X, =X0v U UJy

i=1 j=1
so that Xy nJy; = {p;;} and the point p,; is not arcwise accessible from
27N\C(J;,j). Since the sequence {J;;| i,j€{l,2,..}} is null, it is clear that X, is
a rational continuum. Let f,: X, — X; be a function defined by

if xeXy,
pi; if xedy.

folx) = {

It is easy to check that f, is a mapping of X, onto X|.

Inductively, we construct a sequence Xy, Xy, X,, ... of rational continua and
mappings fi4q: Xj4q — X; for each iew. Let X = Lim{Xi,fi,a)} It is easy to
check that X satisfies the hvpothesm of Lemma 3.15 i in [5] and hence, X is a rational
continuum.

We claim that every point of X is arcwise accessible from C,(X)\C(X). For
this notice. that if p;, 5, ;. is a point of J; . _ <X, which is not arcwise ac-
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cessible from Cp(X, - )NC(X,,- ), then it becomes'a cat-point of the continuum X, by
attaching to X, the continuum Jy,, . ; atthe point p;, ;. Thus, it is easy to check
that if p is a point of X, then either p is a cut-point of X or {p} is the end-tranche of
some irreducible subcontinuum of X, and hence, by [5, (3.9)] and Theorem 4.1, pis
arcwise acoessible from C,(X)\C(X).

By the construction, now, it follows that there exist countably many points in X
which do not belong to non-degenerate subcoutinua of finite rim-type at these
points.

In [5, (6.1) and (6.6)], Nadler asks whether for any hereditarily decomposable
continuum X there must be a point- which is arcwise accessible from 2X\C(X ).

“Theorems 4.5 and 4.7 give partial answers to this question.

4.5, THEOREM. Let X be a Suslinian continuum. Then the set D of points of X which
are arcwise accessible from C,(X)NC(X) is dense in X. Moreover, the set X\.D con-
tains no (non-degenerate) continuum.

Proof. Let J be an irreducible subcontinuum of X. Then J is a Suslinian con-
tinuum, and hence, J is hereditarily decomposable. By Theorem 2.1, J admits a finest
monotone mapping ¢: J— [0, 1] onto the unit interval [0, 1]. It follows from the
definition of a Suslinian continuum that only countably many of the tranches of J are
non-degencrate. Let te(0, 1) be a point such that ¢ (z) is degenerate. Then
A4 = ¢~ ([0, £]) is an irreducible subcontinuum of J with a degenerate end-tranche
@ (). Let ¢~ i(f) = {p}. By Theorem 4.1, {p} is arcwise accessible from
CH{X)NC(X). It is casy to prove now that the set D of these points which are arowise
accessible form a dense set in X, and that X\D contains no continuum.

Theorem 4.5 generalizes Theorem 3.11 in [5].
In [2] Henderson proved (without stating) the following result:

4.6. TreoreM (Henderson [2]). Let X be a hereditarily decomposable chainable
continuum. Then X contains an irreducible subcontinuum with a degenerate end-
tranche. ‘

Using Theorem 4.6 and Theorem 4.1 one obtains the following result:

4.7. THEOREM. Let X be a chainable hereditarily decqmposable contimum.
Then the set of points of X which are arcwise accessible from C{XNC(X) is dejz;e
in X.

W. S. Mahavier has asked whether Theorem 4.6 is true for every heredltanly
decomposable continuum. A positive answer to this question combined with
Theorem 4.1 would give a positive answer to Nadler’s question [5, (6.1)].

Finally, we answer in the affirmative Question (11.18) in [6] by using The-
orem (4. 4) in [5] and simple facts about the structure of hereditarily decomposable
irreducible continua.

4.8. TueoreM (Nadler, [5, (44)]). Let' E be a decomposable non-degenerate
proper subcontinuum of a continuum X. Then the following .are equivalent: ..
4%
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(1) If Y is a subcontinuum of X such that
YnE#@# (X\E),

then YSE;

(2) C(X)\{E} is not arcwise connected.

The following theorem gives an affirmative answer to Question (11.18) in [6]:

4.9. TueoreM. Let X be a hereditarily decomposable irreducible continuum which
is not an arc. Then there exists a subcontimuum K of X and a subcontinuum E of K such
that C(KI\{E} is not arcwise connected.

Proof. Let ¢: X— [0, 1] be a finest monotone mapping of X onto [0, 1]
(see Theorem 2.1). Since X is not an arc, there exists a voint ¢ € [0, 1] such that
@~ (1) is nondegenerate. Assume, without loss of generality, that ¢e (0, 1], and
that E = Bd[p~ ([0, #))] is a nowhere dense non-degenerate subcontinuum of
K = Cl[¢™*([0, )}]. Let ¥ be a subcontinuum of K such that

YAE#@# Y (KNE).

Then, ¢@(Y) = [ty, t] for some 0<¢#, <z Then by the irreducibility of K between
any point of ¢~ %(0) and any point of E, we infer that

Cllp™!((t1, )= Y,
and hence, Ec Y. By Theorem 4.8, C(K)\{E} is not arcwise connected.

5. Examples. In this section we present two constructions. Example 5.1 is a her-
editarily decomposable chainable continuum such that no subcontinuum has a cut-
point, (compare with 4.6) and hence no non-degenerate subcontinuum is Suslinian.
Example 5.2 is a Suslinian continuum such that no non-degenerate subcontinuum
is rational. These two examples resolve in the affirmative Problems (8.2) and (8.3)
in [5], respectively.

5.1. ExampLE. Let C be the Cantor ternary set in [0, 1]. By an adjacent segment
to C we mean the closure of a component of [0, I]\C. Let N denote the set of all
positive integers.

" Let Yo, = Cx[0,1] and let ~, be an equivalence relation on Y, defined by
(cq, 1)~ olcy, ') if and only if either (co, £) = (cj, t) or ¢, and ) are the end-points
of some adjacent segment to C and
Pt = {0, if ¢o = p/3*" for some p, ne N with 3+p,
I, if ¢y = p/32""! for some p, ne N with 3¢p.

Let X, = Yo/~oandlet my: Y, — X, be the natural projection of ¥, onto X,.
Then a simple chaining argument can be used to prove that X, is a hereditarily de-
composable chainable continuum.

Let ¥} = Cx X, and let ~, be an equivalence relation on ¥, defined by
{e1, mo(co, 1))~ 1(c1, molep, 1)) if and only if either (ey, molcy, £)) = (cf, molcs 1)

©
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or ¢; and ¢; are the end-points of some adjacent segment to C, ¢ = ¢’ and

o =c = {0, if ¢; = p/3*" for some p, ne N with 31p,
0o — Lo T

1, if ¢; = pf3*""* for some p, ne N with 34p.

Let X; = Yy/~, and let m;: ¥; — X, be the natural mapping of ¥, onto X;.
Then we can show that X; is a hereditarily decomposable chainable continuu.
Define a mapping ¢: Yy — ¥, by

(Pl(cls moleg, t)) = (01: Vo o mo(co, t))

for any point (¢;, mo(co, 1)) of Yy, where fo: X, — [0, 1] is a finest monotone
mapping of X, onto [0, 1] (see Theorem 2.1). Then ¢, is monotone. It is clear now
that there exists a unique mapping fo: X; — X, such that mgo @ = f3 e ny, and
that f} is monotone. Let also ,: X; — [0, 1] be the finest monotone mapping
of X onto [0, 1] such that & o ¥y = o f3, where A: [0, 1]— [0, 1] is the identity
mapping.

Let Y, = Cx X, and let ~, be an equivalence relation on Y, defined by

(e2» my(eys moleo, 1))~ ez, miler, mole, 1))
if and only if either
(e2, ”1(C1a mo(eo» 1)) = (¢4, my(ct, 7759(6‘('1, )

or ¢, and ¢; are the end-points of some adjacent segment to C, mg(co, 1) = mo(ch, t7)
and

_+_ {0, if ¢, = p/3*" for some p, ne N with 3tp,
=4y, if ¢, = p/3*"* for some p, ne N with 3¢p.

Let X, = Y,/~, and let w,: ¥, — X, be the natural mapping of ¥, onto X,.
Then we can show that X, is a hereditarily decomposable chainable continuum.
Define a mapping ¢,: Y, — ¥; by

(Pz(fz, 77-'1(‘71 » To(Co» t))) = (61, ”fo(cp o © mo(Cos t)))

for any point (c;, 7y(ey , 7o(Co, 1)) of ¥y. Then ¢, is monotove. Let f7: X, — X,
be the unique mapping of X, onto X; such that m, o @, = ff o m,. Itis clear again
that /2 is mouotone. Let also /,: X, — [0, 1] be the finest monotone mapping of X,
onto [0, 1] such that oy = Yy o f5

Inductively, we define an inverse system {X;, fi*!, o} of hereditarily decorn-
posable chainable continua X, Xj, ... and monotone mappings XL - X
for each ie w. Let X = Lim{X), /"%, »}, f,: X — X, be the mapping induced by
the inverse limit, and let 1/‘/_- X — [0, 1] be the mapping of X onto [0, 1] induced by
the inverse limit of the mappings ¥;. Let ne N. Then we have that ¥, o fo=hoy.
It can be proved, also, that f;, is monotoue, and, hence,  is a monotone finest mapping
of X onto [0, 1]. Since X is the inverse limit of chainable continua with onto bonding
mappings, X is a chainable continuum. It is clear, also, that for each g¢>0 there
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exists a positive integer n(e) such that the mapping f is an e-mapping (i.e.f,,'(;)(x)
has diameter less than ¢ for each x € X,,). Hence, since X, is hereditarily de-
composable and f, is monotone, we deduce that X is a hereditarily decomposable
continuum,

Next, we prove that no subcontinuum of X has a cut-point. For this let X be
a non-degenerate subcontinuum of X and suppose, on the contrary, that there exists
a point x € X such that K\{x} = P u Q, where P and Q are two disjoint non-cmpty
open subsets of K. Then there exists a positive integer n.such that £,(K) is a non-
degenerate subcontinuum of X,, and such that f,(x) is a cut-point of f,(K). Let

) KEN{x'} =P u(Q

where K’ = f,(K), X' = f\x), P’ = f{P)\{x'} and Q' = FLON{x'}. Then P’ and Q'
are two disjoint epen subsets of K. Consider now the continuum f, . ,(K). Then
it is easy to check that f,,,(K) is a non-degenerate subcontinuum of X, such

that f, . ,(x) is a cut-point of f,  ,(K). Notice that the point f,(x) = x" in X, is such
that" R

CA=(SED T e ()T

i.e. thepreimage of x' under the mapping /3,* 1o f**2yis a homeomorphic copy of X,

and that the continuum f;,(K); being irreducible, contains 4. It is easy to see, now,
that 4 does not contain any cut-point of the continuum f; . ,(K), which contradicts
the assumption that the point Josa(x) belongs to A and is a cut-point of £, ,(K).

It is easy to show, now, that X has no non-degenerate subcontinnum which is
Suslinian. For this let K be a non-degenerate subcontinuum of X, Then K is chainable,
and hence, irreducible. Let ¢: K— [0, 1] be a finest monotone mapping of K
onto [0, 1] (see Theorem 2.1). Then, as above, K does not have any cut-point. Thus,
o (1) is non-degenerate for each 1€ [0, 1], which implies that X is a non-Suslinian
continuum. - : ‘

We should notice that the continuum X of Example 5.1 is a hereditarily decom-
posable continuum with the property that no non-degenerate subcontinuum of X is
rational. Therefore, Example 5.1 already providéé with an affirmative answer Pro-
Blem (6.3) in [5]. The purpose of presenting Example 5.2 is to show that therc exists
an even “better” ¢ontinuum (namely, Suslinian) which contains no non-degenerate
rational subcontinuum, ’

5.2. ExampLE. In [7, Example 1], the second author constructed a Suslinian
but not rational continuum which i the confluent image of a rational continuum.
Using the same ideas we shall construct our continuum. ‘
 Let S be the Sierpifiski triangular curve (see [4, p. 276]) defined as follows:
LetT bcj the equilateral triangle in the plane with vertices (0, 0), (1, 1) and (\/ 5, 0).
Partition T int6 four congruent triangles To, Ty, Ty, Ts. Let Ty, T,, T, be the. triangles
which have a vertex in common with T. The triangles Ty, T, and T, are numbered
clockwise and T, is the left-most triangle of the three. Let g, ¥y, ¥, be the vertices

icm
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of Ty where v, is the left-most vertex of the three and the numbering is clockwise.
In a similar way partition each of the triangles T; for i = 0, 1, 2 into four congruent
triangles Ti0, Ti1» Ti2o T3> Where Tj 5 is the triangle which has no vertices in
common with T;. Let v;4, v;; and v;, be the vertices of T;;. The vertices v;,,
04,1, U2 and the triangles Ty, Ty, Ty, are numbered clockwise starting with the
left-most one. Continuing inductively in this manner, let

S = Cl[ U Bd (Tan,..,ak)]
D

where D = {(&;, .., )| ke€{1,2,..} and oy,..,0,€{0,1,2}}. The local se-
parating points of S arc the vertices v,,,..q, Where (xy, ..., %) € D.
Our example is obtained from the Sierpinski curve S as an inverse limit by suc-
cessively exploding the local separating points to homeomorphic copies of S.
2

Let Xy = S. Let X, = [S\{vg, vy, 0,}JU U S; be the compactification of
i=0

S\{vg, v;, v} with remainder consisting of three homeomorphic copies So, Sy
and S, of S in such a way that for each ie {0, 1, 2} if p is a local separating point
of S;, then p is not a local separating point of X;. Moreover, X; is such that there
exists 2 mapping f5: X; — X, which carries S\{vg, vy, v,} homeomorphically onto
itself in X, and such that for each i€ {0, 1, 2} f5(Sp) = {v;}. We identify the points
of S\{vg, vy, v,} with their preimages in Xj. Let

2 2 2 2 2 2
X, = [X1\(( U {v10> v1,15 Ui,z}) v ( U {U{): an l‘jz}))] vl USiulU US)
i=0 j=0 =0 k=0 j=0n=0
be a contimuum, where v}, v!, v} are those local separating points of S; which are
the homeomorphic images of vy, v , ¥,, Tespectively, and S;; and S} homeomorphic
copies of S. The continuum X, is constructed as a compactification of

2 2 Py . rl
XN U {9105 D115 0223) Y (.Uo{l’fh v}, v3}))
i=0 i=
with remainder consisting of eighteen homeomorphic copies So,g, - 2,25 59, ..., 82
of S in such a way that for each i, ke {0, 1,2} if p is a local separating point of
either S, or S¥, then p is not a local separating point of X,. Moreover, X, is such
that there exists a mapping f3: X, — X which carries

2 2
X1\((190 {0105 Vi,15 D12} Y (JQO{U{)’ vl, Ué})}

homeomorphically onto itself in X; and such that

f%(Si,k) = {v1.}

By continuing inductively in this manner, we construct an inverse system
i . . " .
{X;,fi*', 0} of continua and mappings fi*': Xi1— X, for each iew. Let

X =lim{X,,/i*, w}. Then in a way similar to that in [7, Example 1] we can

and fi(Sh = {j} for each i,k,j,ne {0,1,2}.
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check that X is a Suslinian continuum, which is not rational. Let X be a non-degen-
erate subcontinuum of X. Then, by the construction of X, we infer that K contains
a homeomorphic copy of X. Thus, K is not rational.

Added in proof. Prof. L. G. Oversteegen has pointed out to the authors that Exaruple 5.1
of this paper has the same properties as the example oa pp. 50-53 of E. 8. Thomas, Jr.
Monotone decompositions of irreducible continua, Dissertationes Math. 50 (1966), pp. 1-13.
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On the 2-homogeneity of Cartesian products
by

K. Kuperberg, W. Kuperberg, and W. R. R. Transue (Auburn, Ala.)

Dedicated to the memory of Ralph Bennett

Abstract. The Cartesian product of the circle S* and the Menger universal curve M is not
2-homogeneous. This solves two problems: one of R. Bennett and one of G.S. Ungar. Some
generalizations of this result are given.

1. Introduction. A space X is n-homogeneous (see [8], [4], [7]) if for every
pair 4, B of n-element subsets of X there exists 2 homeomorphism of X onto X
which maps A onto B. A space is homogeneous if it is 1-homogeneous. A space Xis
countable dense homegeneous (Bennett, [3]) if for any pair 4, B of countable dense
subsets of X there exists a homeomorphism of X onto X which maps 4 onto B.
Connected manifolds without boundary are the simplest and the most natural
examples of spaces which satisfy all of these homogeneity conditions.

R. D. Anderson proved in [1] that the Menger universal curve M is n-homo-
geneous for every n. Using another result of R. D. Anderson [2] concerning the homo-
geneity of curves, R. Benneit [3] showed that M is countably dense homogeneous.
Looking for higher dimensional countable dense homogeneous continua which are
not manifolds, R. Bennett asked: “Is the property of being countable dense homo-
geneous preserved in Cartesian products?”

Investigating the n-homogencous spaces, G. S. Ungar [7] proved that every
2-homogeneous metric continuum is locally connected, which solved a problem of
C. E. Burgess [4]. Consequently, in a private conversation, Ungar asked if there
exists a homogeneous locally connected —metric contintum which is mnot
2-homogeneous.

In this paper we prove that the product of the circle § 1 and the universal curve M
is not countable dense homogeneous, or even 2-homogeneous. In fact, every homeo-
morphism  of S1x M onto S* x M preserves the circular fibers, i.e. for every point
a€ M there exists a point b e M such that h(S* x {a}) = §*x {b}. This solves both
Ungar’s and Bennett’s problems.

2. Terminology and notation. By a space we will understand a compact metric
space. A continuum is a connected space. A map is a continuous function. A map
is inessential, if it is homotopic to’a constant map, otherwise it is essential. Given


GUEST




