Equilateral triangles and continuous curves
by
Mark D. Meyerson (Urbana, I11)

Abstract, If M is a simple closed curve in the plane, then for all, except perhaps two, points
x of M we can f{ind points y and z of Af such that xyz is an equilateral triangle. The same result is
true if M is a conneccted manifold, with or without boundary, of dimension at least two in E™.
Let T be a triod, an embedding of the letter “T™, in E™. Then one leg of T is such that for any
point x of that leg, we can find points y and z of T'such that xpz is an equilateral triangle. Given
a triangle 4 there exist three points forming a similar triangle on every simple closed curve in
every metric space if and only if 4 is isoceles with apex angle at most 60°.

0. Introduction. In the following, we prove several results closely related to the
theorem: Every simple closed curve in the plane contains the vertices of an equi-
lateral triangle. These resulis have such uncomplicated statements that they are of
natural interest. In addition, we are motivated by the related unsolved conjecture:
Every simple closed curve in the plane contains the vertices of a square. Results due
to Emch [2], Schnirelmann [6], Jerrard [4], and Guggenheimer [3] have shown this
conjecture to be valid provided various smoothness assumptions are made. These
assumptions seem quite unnatural, both intuitively and in relation to the results of
this paper.

The two continuous curves that hold our attention here are the simple closed
curve and the triod (defined in Section 1). They are basic in the sense that a continuous
curve which contains neither is an arc. Note that these are results about topological
curves, not differentiable ones, Some remarks related to the smooth case are made
in Scction 4.

1. The plane. As motivation, we give an elementary proof of the theorem which
we will later generalize.

TuroreM 1. Every simple closed curve in the plane contains the vertices of an equila-
teral triangle.

Proof. Let 1w be a point in the interior of a given simple closed curve, J. Let C be
the smallest circle with center w which meets J. Let x be a point of C " Jand let yy
and z, be on C so that x, ¥, =, are the vertices of an equilateral triangle. We will
let v and = be variable points which will move about the plane under the restraint
that x, 3, z are always the vertices of an cquilateral triangle. At first let ¥y = yg,
z =z,
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We now let y and z move as follows. Let y and z move radially outward from x
through yq, zg, ... (keeping xy = xz) until y or z meets J (if y or z already lic on J,
no movement is needed). At this point we set y; = y, z; = z. Say y, € J. Now let p
move continuously along J until it reaches y,, a point on J maximally distant
from x.

As y moves from y, to y,, z describes a continuous curve from z, to z, (actually
z traverses the arc which is a 60° rotation of the arc described by ). Since
Xy, = Xz, z, lies outside or on J. But z, lies inside or on J. Hence, at some stage
we have x, y, and z, the vertices of an equilateral triangle, all lying on J.

This result holds even if J does not lie in the plane. In fact, A. N. Milgram
([5, p. 25]) has proved (with, of course, a more complicated proof) that for any metric
on J, there exists points x, y, and z in J such that xy = yz = zx. We will generalize
Milgram’s result in Section 3.

COROLLARY 1. A point on a simple closed curve in the plane (say x elJ) is the
vertex of an equilateral triangle with all vertices on J if and only if there are points y
and z inside or on J so that x, y, and z are the vertices of an equilateral triangle.

Proof. Clear from the proof of Theorem 1. B

A triod, T, is the union of three arcs, L,, L,, and L (called legs),' which all share
a common endpoint, the juncture, so that any two of the legs meet only at the juncture.
The other three endpoints of the legs, ¢,, e, and ey respectively, are the endpoints
of the triod. Equivalently, a triod is any homeomorph of the letter “T7.

A triod also must contain the vertices of an equilateral triangle (as proved by
Milgram, [5, p. 31]). This follows immediately from the new and stronger result
below. Theorem 2 will also be a basic tool for further results.

TuEoREM 2. If T lies in the plane, then it contains the vertices of an equiluteral
triangle with ey, e,, or ¢5 as a vertex.

Before proving Theorem 2, we consider two lemmas,

LemmA 1. Suppose Theorem 2 is false. Then there exists a triod T, also with
endpoints ey, e,, and e, 50 that T' contains a segment with e, as one endpoint. Further-
more, T does not contain the vertices of an equilateral triangle with ey, e,, or ey as
a vertex.

Proof of Lemma 1. Consider the plane containing T as the complex plane,
so that TxTeCxC = C% Let E; (j = 1, 2, or 3) be the union of the pair of one
(complex) dimeusional hyperplanes in €* defined by

E; = {00, 2) z=k(r—e)+e; or o= k™ (w—c)+e
where k = ¢, Qur assumption that Theorem 2 is false implies that (T'xT) N E;
= (e, ¢), since for (a,b)e(TxTYNE;, b= k(a—e)+efe = +1); hence
(b~e;) = k(a—e;) and for a # ¢; we have q, b, and e; are the vertices of an equila-
teral triangle,

And so L; xT is a compact set disjoint from the closed set E, U E;. Choose
6>0 sufficiently small so that if d(a, L,)<§ and d(b, T)<3, then (a,b)¢ Ey U Es.
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Further, insure that § is small enough so that if e € T and ee, <5, then e e L; (eey is
the distance from e to ey).

As we travel along L, starting from the juncture, let ¢ be the first point which
is at a distance of § from e;. Let 7" be the new triod formed by replacing the subarc
of T from e; to ¢ with the line segment, S, from e, to c. 7' has endpoints ey, e,,
and e;. Note that for ee 7", ee; = 6 if and only if e = c.

We claim that 7" does not contain the vertices of an equilateral triangle with
ey, €4, OT ¢ as one of the vertices. It suffices to show that (T xT") N E; = (e}, e))
for j =1, 2, and 3. So suppose (e, f)e (T'xT") n E; for some j.

Case 1. e, /e T'\S. Then (e,f)eTxT, so (e, f) = (¢, ¢)-

Case 2. ece S, feI'\S. Then d(e,L)<é, feT, so (e,f)¢E, v E;,
ie. (e, f) € E,. Hence ee, = f¢,. But ee; <5<fe, a contradiction. So Case 2 cannot
oceur.

Case 3. ee T'\S, feS. By symmetry with Case 2, Case 3 cannot occur.

Cased.e,feS. Then d(e, L,)<ee, <6 and d(f, T)<fe;<8,50 (e, /)¢ E; U Es.
Hence (e, f) € E,. But then e and f'lie on 2 segment (S) with endpoint e, and ey, e,
and f are either equal or non-colinear. It follows that (e,f) = (e, ;). ®

Let A be a set of points in the (complex) plane. Let 4, be 4 rotated 60° about x
in the counter-clockwise direction (specifically, A, = {yeC| for some ze 4,
y=k(z—x)-+x}). If 4 is an oriented arc, we consider the arc 4, to be oriented in the
obvious manner.

Let 4 be an oriented arc, and let 84 be its endpoints. If 04N 4, =@ =
A (9A),, then the intersection number, i(4, 4,), is a well-defined integer. It can
be defined as the intersection number of sufficiently close, piecewise linear, general
position, approximations of 4 and 4, (see A. Dold [I, p. 197)).

Let 4 be an equilateral triangle. We write xyz~A4 if xy = yz = zx (even if
x =y =z). Let a, and a, be the endpoints of 4. We give the following lemma
without proof since it follows immediately from the preceeding definitions.

LeMMA 2. a) In its domain of definition, i(4, A,) is continuous in X. (In fact
{x| i(4, A,) = n} is open for each n).

b) Ifi(4, A,) is undefined, then there exists y € A such that xya;~4 (i = 1 or 2).

c) If there does not exist y, z € A such that xyz~4, then A and A, are disjoint,
and so i(4,4,) = 0.

d) If B is a subarc of A with the same orientation and A— B is disjoint from A,
and A,— B, is disjoint from 4, then i(B, B,) = i(4, A,) provided the former is defined.

) If S is a (closed) line segment and x lies on S, but is not on endpoint, then
i(S, S, is a non-zero integer. B

We now proceed with:

Proof of Theorem 2. Suppose the theorem is false. Let 7” and § be as in
Lemma 1. Let L; be the leg of T” determined by e; and let 4 be an oriented arc with
image L, U L, We wish to get a contradiction.
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By Lemma 2b, we may conclude that i(4, 4,) is defined for x e T'\{e,, ¢,},
and so (by Lemma 2a) is equal to a single integer on this set. By Lemma 2c,
i(4, 4,) = 0. But 4 and A, meet only at ¢;. So AN\S and 4,, and also Ao NS,
and 4 are each a positive distance apart. And so for x & S sufficiently close to ey,
ANS and 4, and also 4,\S, and A are disjoint. So by Lemma 2d) and e),
i(A, A,) # 0 for such an x. This is our contradiction. B3

Given a set G in the plane, call x & G a vertex point (of G) if there exists y, ze G
such that x, , z are the vertices of an equilateral triungle. (To extend this to any inetric
space, we just require xy = yz = zx # 0.) Theorem 1 then states that every simple
closed curve (in the plane) contains at least three vertex points. Theorem 2 states
that at least one of the endpoints of a triod is a vertex point. The following two
corollaries show that triods and simple closed curves (both in the plane) contain
many vertex points.

COROLLARY 2. Let T be a triod (in the plane). Then every point of some leg, L,
except perhaps the juncture, is a vertex point of T.

Proof. Let L,, L,, and L, be the legs of T'and j the juncture of T, Suppose the
corollary is false. Then there exists a; e L;~j (i = 1, 2, 3) such that for each 7, a; is
not a vertex point of 7. Let T” be the sub-triod of T with endpoints ay, Gy, and as.
Then by Theorem 2, g, is a vertex point of T” for k = 1, 2, or 3. But 7"<T, so
@, is a vertex point of T. This contradiction implies the corollary. B

COROLLARY 3. All but at most two points of any simple closed curve (in the plane)
are vertex points for the simple closed curve.

Proof. Suppose J is a simple closed curve in the planc with three non-vertex
points, ey, e,, and e;. Let T be a triod with these three points for endpoints and so
that T'is a subset of J together with the part of the plane interior to J, Such a triod
exists by the Jordan Curve Theorem (or we could use the Schoenflies Theorem or the
accessibility results of Whyburn [7], although they are not needed since we allow
part of T'to lie on J). Then by Theorem 2, e, is a vertex point of T for f = 1,2, or 3.
But by Corollary 1, e, is then a vertex point of J, B

~ The above corollary is sharp, since for J an isoceles trangle with apex angle
greater than 60°, the two base vertices are not vertex points.

Since a continuous curve containing neither a simple closed cuvve nor a triod
is an are, we may state without proof:

CORGLLARY 4. If a continuous curve in the plane is not an are, then it containg an
arc of vertex points.

We mention one further result in the plane, although it does not deal with
equilateral triangles.

THEOREM 3. Let 4 be a fixed arbitrary triangle. Then every simple closed curve
in the plane contains the vertices of a similar triangle.

Proof. We note the few changes in the proof of Theorem 1 needed to prove
Theorem 3. The variable points x, y, and z are required to form a triangle similar

Equilateral triangles and continuous curves 5

to 4 with x corresponding to the maximal angle of 4. We let x; and y, be two
maximally distant points on J. Then after moving p to 3, and z to z, (x = x,) we
move x to x; while holding y fixed. So z describes a continucus curve from z, to z,
to z3. Since y,z; corresponds to the longest side of 4, z; must lie on or outside J.
So the result follows as before.

2. Enclidean space. In this scction we will generalize some of cur resulis to
n-dimensional Euclidean space, E”, for any integer n greater than one. The defi-
nition of vertex point applies to E” without change and we still write xypz~4 if
xy = yz = zx (allowing x = y = z2).

Let 7' be a triod in E" with endpoints e, e,, and e, and corresponding legs
Ly, Ly, and L;. Then the following theorem generalizes Theorem 2,

THEOREM 4. One of the endpoints of T is a vertex point. B

The proof of Theorem 2 will prove Theorem 4 provided we properly generalize
Lemmas 1 and 2. The proof of Lemma 1 works in higher dimensions (where we
suppose Theorem 4 is false) by replacing the first paragraph of the proof by the fol-
lowing paragraph:

Let E; = {(w, z)| w,ze E" and e;wz~4} for j = 1, 2, or 3. Note that each E;
is a closed set in E*". The assumption that Theorem 4 is false is equivalent to:
(T'xT)n E; = (¢, ¢) for j =1, 2, and 3.

To generalize Lemma 2, we need to extend the definition of 4, to higher dimen-
sions. For 4 a set in E", let 4, be the set formed by rotating the points of 4 through
an angle of 60° about x, in all directions. In other words, let A, = {y € E"| there
exists ze 4 with xyz~d4}.

From now on we will let 4 represent both a continuons map of an oriented
interval, 7, into E" and the range of that map: A: T— A4. A4, is then, in a natural
way, the continucus image of Ix $*72 (and we identify 4, with this map). $"~2 is
the standard unit sphere in E*~ 1.

We make this precise with the following lemma. For o a vector in E", o; will
represent the ith coordinate of a.

LEMMA 3. A4, is the image of 1x S""* under a continuous map, A, such that for
any t in I, A, restricted to tx S*™% is a uniform contraction or expansion onto A(t),.
Further, if A(t) # x, the line from x to A(t) (extended indefinitely) links A(t). posi-
tively. In ather words, the ordered orthogonal basis of E" consisting of first the vector
from x to A(t), and then the vectors from the center of A (), (which is also the midpoint
of the segment from x to A(t)) to the images, in order, of the standard basis elements
in S""2cE", is a positively oriented basis for E".

Proof. Suppose we have chosen r and s in I and #, = r or s, such that r<s
and x ¢ A([r, s]). Suppose that {¢'(z))}i=; is 2 given positively oriented orthonormal
subset of $"~*, with a!(#,) equal to the unit vector with direction from x to 4(z,)-
For r<t<s, let a(z) be the unit vector with direction from x to 4(f) (so a(fe)
= a'(z,)). Suppose further that for r<z<s, the distance from a(t) to a(ty) is less
than /2 (by choice of r and ).
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Let {a'(fo)}i=; be the coordinate system {e;}i-, for E". Note that « = a(?)
"

lies in S"~! and that a;>0. For 2<m<n, let f" = e, —a,e,/o;. Since > "
m=2

= o—|o)2e, Ja;, we can write each e; (1<i<n) in terms of {«, f"}},~,, Which must
therefore span E". And since a*f™ = 0, {™}n= forms a basis for the tangent space
to "% at ¢. Using the Gram-Schmidt process, inductively define o, ..., &" by

m—1

letting 9" = p"— Y (f"-ade’, and then letting o = y"/y"| (2<m<n). Then
i=2

{o'}i=; (where a* = o) is an orthonormal set in E" and each o varies continuously
in « (for o:; > 0). (An alternative way of stating this is that there is a continuous cross-
section of the bundle of orthonormal (n— 1)-frames over the open upper hemisphere
of §*~1). It now follows that each «! is continuous in #, and since {&/(2)}}-, is posi-
tively oriented for f = f#,, it is a positively oriented orthonormal basis for
r<t<s.

We can now define 4,/[r, s] as follows. For r<t<s, A(f), is a geometric
(n—2)-sphere lying in an (2—1)-hyperplane orthogonal to o(¢). The vectors
{o}(®)}i-» uniquely determine an (n— 1)-dimensional coordinate system containing
A(t), (with origin the center of 4(¢),), and we define 4|7 x S"=2 by first mapping
(t, ¢;_1) to the center of 4(z), plus ai(t) (2<i<n) and extending linearly, and then
multiplying by the radius of 4(z),.

By subdividing I into intervals of the type [r,s] we can define 4, on
(INA~Y(x)) % $"~2. But since the image of 7x 5"~ * lies within |4(z)—x}| of x, we
can extend A, continuously by letting 4. (txS"~%) = x if A() = x.

Finally, note that the vectors mentioned in the statement of the lemma, when
normalized to be unit length, give us {«'(¥)}}=,. B

For A an oriented curve we can now define the usual intersection number,
(4, A, as long as A(81) N A (IxS""%) = @ = A(I) n 40Ix S""?), where 01 is
the set of endpoints of I (see Dold [1, p. 197]). One can now check that with these
definitions, Lemma 2 still holds. Note that our new definition of 4, is slightly
different, for n = 2, than the earlier definition. According to the new definition for
n =2, A, consists of two curves (corresponding to either a positive or negative
rotation of 60° about x) rather than a single curve. The orientation is such that for §
a line segment with interior point x we now have i(S, S,) = 2 instead of 1 (sec
Lemma 2e).

To see that, in general, i(S,S,) =2, let S: [0,1]— S be linear and let
A: E' — E" be linear so that S(f) = 4(z) for 0<¢<1. Then A(E'=S) is disjoint
from S, so i(S, S,) equals the linking number of 4 and S,|1 x S" 72— 5,|0x S"~ 2
By Lemma 3, the line through x and S(z) (in that order) links S,|¢#x.S""? with
linking number 1 for ¢ = 0 or 1. But then A links S, |¢x.5""? with linking number
(=1 for t =0 or 1, and so i(S, Sy) = 2.

Theorem 4 can now be proven exactly as Theorem 2 was, Also, the proof of
Corollary 2 may now be used to prove Corollary 5:
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COROLLARY 5. Let T be a triod in any Euclidean space. Then every point of some
leg, except perhaps the juncture, is a vertex point. B

We close this section with:

COROLLARY 6. Let M be any connected manifold (with or without boundary) of
dimension at least two, embedded in E" (for any n). Then all but at most two points
of M are vertex points.

Proof. Suppose there exist three non-vertex points, ey, e,, and e;. Since M is
connected and of dimension at least two, there is a triod T'in M with endpoints e,, e,,
and ey. But then, by Theorem 4, some ¢; is a vertex point of 7, and hence of M
a contradiction. E

3. Metric spaces and thin isoceles triangles. We now consider simple closed
curve J in arbitrary metric spaces. Equivalently, let J be the unit circle in E?, but
with arbitrary metrics on it. We then have:

THEOREM 5. Let A be a fixed, arbitrary triangle with sides a<<b<c. Then for
every metrized simple closed curve J, there exist distinct poinis x, y, and z on J forming
a similar triangle (i.e., xy 1 yz :zx = a : b : ¢)if and only if b = ¢ (i.e., 4 is isoceles
with apex ongle at most 60°). B

This theorem is the special case where n = 2 of the following theorem. The
metric used in the necessity part of the proof was suggested to the author by Ralph
Alexander. The sufficiency of this theorem, for all r; = 1, is the n-Lattice Theorem
of Arthur N, Milgram ([5, p. 31]).

THEOREM 6. For amy positive integer n, let r; be such that O<r;<1 for
i=1,2,..,n For every metrized simple closed curve J there exist n+1 points
GosG1> s Oy in cyclic order on J such that ;1 q; = ri(gw 90) (forall i=1,2, .., 1)
if and only if at least one r; = 1.

Proof (Necessity). Suppose r;<1 for all 7. Let r and m be such that r,<r<1

n
for all i and r™<1/n (m a positive integer). Then Y, (7)<1. Now let (7, d) be the
=1
standard unit circle in the plane with E? metric d. Let d’ be the new metric defined
by d'(x, ) = (d(x, »))*™. (The triangle inequality is satisfied by d’ since for a, b
and ¢ non-negative, a+ b3 ¢ implies that a-+ma™=PMmplim 4 4 b> ¢, which implies
that a*m+plmzctimy, Suppose go, gy, .-, 4, Were the desired points on (J, d),
i, d(gi-1.q) =rid'(g,q0) for i=1,2,..,n So d(gi-y, q) = r7d(4n: 90)
for i=1,2,.,m But d(go,q)+d(q, g2+ +d(Gy-1, @) =d(y: G0), SO

n
Y (¥)=1, a contradiction.
=1

(Sufficiency). We make the following notational conventions. The standard
(n—1)-dimensional simplex is 4"~* < E" with points given by coordinates (xy, ..., x,),
x;20, ¥ x; = 1. The set of points of A" with at least one coordinate zero is
denoted 4", The unit cube in E” is denoted /" and its boundary is denoted 0"
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The origin is O and the interval [—1, 1] is I*. The points of E” with all coordinates
positive is E**, its closure is E™, and its boundary is 0E"*. Let J be any fixed
metrized simple closed curve. Assume that at least one r; = 1.

In [5, pp. 32-33] Milgram constructs a map F: 4" ' x[*— E"™0 such
that:

@iy For 0<t<!1, F(p,1) = gohfp) where g and A, arc maps and:

) h(xy, ..., x,) is a cyclically ordered set (g, ..., g,) on C, and

b) 9 (dos s 90) = (Q091/90 9> 4192090 > -5 Ga—1 Gl D0 G)>

(i) F(4" 'x D E™\Int!", :

(iil) Fa4" ! x I*)<dE™*,

(iv) F(-, —1) is the ideatity map on 4",

() for pe A" 1\94""* and —1<1<0, F(p, t)elutl"

Now define Pe E* by P = (¢, Fa, ..., 1). P lies in E** since all r,>0, aund
lies in 81" since all r,<1 and some r; = 1. We shall show that there exists p & 4"™*
and 1, 0<t< 1, such that F(p,t) = P. Hence by (i), g(i(p)) = P and for i(p)
= (gg» > Q) Gi-19; = 1'{0uq,) and the theorem will be established.

Let L be the ray starting at P and passing through the origin, If Pe F(4" " x 1)
we are done, so we may assume P ¢ F(4"~1 x 1). By (ii), L does not meet F(4"~*x 1).
From (iif) it follows that L does not meet F(0A" ' I*). But by (iv), L meets

n

F(4"~!x (—1)} transversally in the one interior point of 4"~%, P/ ¥" r;. The inter-
i=1

secticn number of P and F(4" !> I*) must equal the intersection number of L and
the singular chain of F restricted to the boundary of 4"~ ! x I*, This is 41, and so
Pe F(4"~'x I*¥). But then by (v) and (iii), we are done.

4. Some cemments on smoothuness. Many of the resuits of this paper would be
easier to prove if we had insisted on some appropriate smoothness condition. We
give an example below of a generalization of our results under a weak smoothness
condition.

Let 4 be a fixed arbitrary triangle with a distinguished vertex with angle 6.
Call a single closed curve, J, in E” §-smooth at a peint x in J, if J has a tangeuat from
each direction at x, and the angle between the tangents is greater that 0. (A ray is
a tangent, if for arbitrarily acute solid cones with the ray as the part of the axis inside
the cone, some beginning part of the arc lies in the cone.) Call a point x a 4-verfex
point (of set G) if there are distinct points y and z in G such that xyz~4 and, in
addition, x corresponds to the distinguished vertex of 4.

THEOREM 7. Every 0-smooth point of a simple closed curve in E" is a A-vertex
point,

Proof. Let r<1 be the ratio of the sides of 4 adjacent to the distinguished
vertex. When we write xpz~A we now mean that xyz is similar to 4 with x corre-
sponding to the distingnished vertex, or x = y = z. We redefine 4, to be the set
formed by rotating the points of 4 about x through an angle of 0 and then con-

Egquilateral friangles and contimious curves O

rracting them toward x by a factor of r. Equivalently, 4, = {y| there exists ze 4
with xpz~ 4 and xy<xz}. As in Section 2, 4, will also represent a natural continuous.
map from IxS""% onto 4,. Note that if 4 4,—x # @, then x is a A-vertex
point. Also note that Lemma 2 holds with this definition.

Now let x be a #-smooth point of simple closed curve J. The smoothness con-
dition insures that there is a small subarc, 4, containing x such that i(4, 4,) = 2.
Both J and J, have empty boundary, and so i(J,J,) = 0 (see Dold [1, p. 199]).
Hence J and J, must meet at a point other than x and so x is a 4-vertex poiut,

Note that we could {urther relax the definition of smoothness as follows. Call J
A-smooth at x if for some subarc A4 containing x internally, i(4, 4,) # 0. Then x is
a A-vertex of J if and only if J is 4-smooth at x.
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