34 C. Kuratowski et S. Mazurkiewicz.

1l est enfin & remarquer que l'on pett transformer K en un continu jordanien
(image continue de I'intervalle). oo .

Dépignons & ce but par J l'ensemble formé d'une euite infinie de segments
verticaux issus des points rationnels de l'intervalle 01, la longueur de ces segments
tendant vers 0').

Ajoutons aun contour du carré C; l'ensemble J ainsi que les trois ensembles
qui lui sont syméiriques par rapport soit au centre du carré, soit 4 I'une ou l'autre
diagonale de ce carré. Puis, ajoutons au contour de chaque carré C’.l,,,,,” une fi-
gure analogue (convenablement diminude). Le continu ainsi obtenu est jordanien
et répond au probléme,

1) Cf. Janiszewski, Thése, Paris 1911, p. 18,
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The Double-Elliptic Case of the Lie-Riemann-
Helmbholtz-Hilbert Problem of the F oundations
of Geometry ?).

By

. R. G. Lubben (Austin, Texas, U. 8. A.).

Introduetion.
In his paper Ueber die Grundlagen der Geometrie, Hilbert %)

formulates a set of axioms concerning a group of motions which

is sufficient to necessitate that this group should be simply iso-
morphie with either the Euclidean or the Bolyai-Lobatschefskian
group of rigid motions in a plane. He assumes, however, that the
set of points which undergoes the transformation is a number
wmanifold. In his paper On the Lie-Riemann-Helmholtz- Hilbert Problem
of the Foundations of Geometry, R. L. Moores) gives a treatment
in which this assumption is not made in advance, but in which
there is a simtltaneous analysis of the group of transformations
and of the space which undergoes this transformation. Iu this paper
we shall give a similar analysis for the Double-Elliptic case. After
& group of preliminary theorems we shall prove that every motion
distinet from the identity leaves fixed exactly two points, which
we shall call poles. We shall then introduce the notions of great
eircles, intervals, congruence of intervals, of triangles and of angles.

!) Dissertation offered to the Department ot Pure Mathematics, University of
Texas, U, 8. A, in partial fulfillment of the requirements for the degree of Doctor
of Philosophy, June 1928. Presented before the American Mathematical Society
at“Ithaca, New York, September 10, 1925.

3) Ueber die Grundiagen der Geomeirie, David Hilbert, Mathematische
Annalen, Vol. 66 (1902), pp. 881—422, This paper will be referred to hereafter
as H, G.“

3) Cf. American Journal of Mathemetics, Vol. 41 (1919), pp. 299—3819. We
shall referr to this paper hereafter as ,L. R. H. H.*
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We encounter the problem noted by Hilbert?) at the end of his
paper; that is, the problem of proving the congruence o'f the base
angles of an isosceles triangle, Hilbert?) has solved this problem
for the Euclidean case. The treatment for the Elliptic case seems
even more difficult. In the solution of this problem we shall show
that we ‘can follow the treatment of Young?) in deriving the
Non-Euclidean Trigonometry, and in particular the formulas for
the solution of triangles; these formulas will enable us to prove
the desired result.

It has been suggested to the author that there should be & sim-
pler method for the solution of this problem of the angle-congruence
in isosceles triangles; for instance, that perhaps it could be solved
without the use of differential equations. The author would be in-
terested in such a solution; and here takes the opportunity of rai-
sing the question of its possibility. :

We have mentioned before that the problem we are solving
seems more difficult for the geometry treated in this paper than
for the Euclidean case. Hilbert*) in his treatment of the Euclidean
case makes use of a theory of proportion, which depends upon the
the parallel postulate. In his paper, H. G., he could have used

this theory of proportion, could have determined the trigonometric.

funetions of angles as we. have done, and could have proceeded
to the solution of triangles. In summary, we may say that trigono-
métry may be regarded as an analogy of the theory of proportion;
this theory is more complicated for a Non-Euclidean Geometry
than it is for the case of the Euclidean.

It will be assumed the reader is familiar with R. L. Moore's
paper, ,On the Foundations of Plane Analysis Sitws“5) and with
the paper L. R. H. H. mentioned above.

1) See H. G.

3} Usber den Satz von der Gleichheit der Basis Winkel im Gleichschlenkligen
Dreteck, David Hilbert, Proceedings of the London Mathematical Society,
Vol. 35, (1902—1903), pp. 50—68.

%) On the Analytical Basis of Non-Buclidean Geometry, W. H. Young,
American Journal of Mathematics, Vol. 33, (1911), pp. 249—286. We shall refer
to this paper hereafter as , Young“.

‘) See article in Proceedings of London Mathematical Society referred to above,

%) On the Foundations of Plane Analysis Situs, R. L. Moore, Transactions
of the American Mathematical Society, Vol. 17, No. 2, (April, 1916), pp. 131 to 164.
This paper will be referred to hereafter as F. A.
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In conclusion; I wish to thank Professor R. L. Moore for
interesting me in the subject of the Foundations of Mathematics,

and for arousing in me a desire to contribute to the extension
of this field.

Axioms.

All the axioms except Axioms 5 and 6 of L. R. H. H. will
be assumed; the reader is therefore: referred to paragraphs 1 and 2
of this paper of R. L. Moore’s for preliminary explanations and
definitions. In general we shall not give definitions for terms that
are in L. R. H. H,, or for well known terms in Analysis Situs,
In this paper we shall use ,S% in the same way that S is used
in L. R. H. H, that is, to denote the set or class of all points.
Also, we shall not regard S as a region. v

Axiom 1. There evists at least one region.

Axiom 2. If R and K are regions and R’ is a subset of K'
then B is a subset of K. :

Axiom 3. If the region R, contains the point O in common with
the region R,, there exists a region R containing O such that R'
is common to B, and R,. o :

Axiom 4. If R, and R, are regions and R, is a subset of R,
then B,—R; is a non-vacuous, connected point-set. ,

Axiom 6. If R, and R, are regions such that R, ~+ R; does not
contain all of S, then there exists a region R that contains both R, and R,

Axiom 6, Every simple closed curve is the boundary of at least
two regions.

Axiom 7. If O is a point and L and N are closed, bounded?)
point-sets with no point in common, there erists a region K containing O
such that if P is a point in K then every region that contains both
a point of L and a point of N can be transformed, by a motion that
carries some point of L into O, into a point set that contains both O and P.

Axiom 8. If R is a region and M is a motion then M(R) is
a region.

Axfom 9. If 4, B, C, &', B, (', are points distinct or otherwise,
such that every three regions that contain A, B, and C, respectively,
can be transformed by some motion into regions containing 4', B,

) As in L. R. H. H, page 300, line 24, we say that a point set is bounded
provided that there is a region that contsina it.
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and C', respectively, there exists a motion that transforms A tnto A,
B into B, and O into C'.

Axiom 10. If M is a motion there exists a motion M~ such
that if M(d4) = B then M~(B)= 4

Axiom 11. If M and N are motions there exist a motion MN
such that, for every point P, M(N(P))= MN (P

Axiom 121) If R, and R, are regions bounded respectively by
the simple closed curves J, and Jy, Ry and R, have no point in com-
mon, 4,, B,, and C,, are three distinct points on Jy, and A4, B,,
and C;, are three distinct points on Jy, and there exist three simple
continuous arcs 4, Xd,, B, YB,, and C, ZC, such that mo two of
these arcs have a point in common and no one of them has any point
other than an end-point in common either with B, or with Ry and M
s a motion such that B and M(R;) have no point in common and
there exist three arcs 4, XM (4,), B, YM(B,), and C, ZM (C;) from
A, to M(4,), from B, to M(B,), and from C, to M(C,), respectively,

then there exist three such arcs such that no two of them have a point

in common and no one of them has any point cther than end-point
in common either with R, or. with M (R;).

We shall pumber the theorems of this paper in the same way
that the corresponding theorems of L. R. H. H. are numbered.
When we say that one of these theorems is true or false we shall

mean that it is true or false (as the case may be), for the space-

we are considering in this paper. Theorems 1 to 21 and Theorem 23
are true.

We give now several theorems which differ in statement or m
proof from the theorems.of L. R. H. H.

Theorem 21. If R is a region then S—R’ is a connected set
of points

Proof. Suppose that there are no points in S—R'. Then, by the
convention we have made with réspect to S?), R has at least one
boundary point. By theorem 11 we are then led to a contradiction,
The proof of the theorem may now be continued by methods ana-
logous to those used in the proof of Theorem 21 of L. R. H. H.

Theorem 21 A. Every simple closed curve, J, is the boundary of
exactly two mutually exclusive regions, whose sum is S—.J.

Y Cf. J. R. Kline A Defimition of Sense on Closed Curves in Non-Metrical
Plane Analysis Situs*, Annals of Mathematics, Vol, XIX, (1918), pp. 185-~200.
1) See paragraph preceding Axiom 1,
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Proof. By Axiom 6 and Theorem 2, S—J contains at least two
regions R, and R, whose boundaries are J. Let D be the exterior
of B,. By Theorem 3, R, contains a point P in S—J; let H be
that one of the two point sets R, and D which contains P. By
theorems 10 and 21, H is connected. If one of the connected point
sets B, and H is not a subset of the other, one must contain
-a boundary point of the other. But this is impossible, since neither
contains a point of J. Hence R, = H. Further, by Axiom 6, R,=2D.

Definition. The regions R, and R, mentioned in the proof of
Theorem 21 A are the complementary domains of the' curve J thers
mentioned and are called Jordan regions or Jordan domains.

Theorem 24. If O is a point in a region B, there exists a simple
closed curve in R one of whose complementary domains is a subset
of R and contains O.

By methods analogous to those used in the proof of Theorem 21,
F. A, we can prove the following theorem.

Theorem 21B. If K and R are regions and the boundary
of B is a subset of K' then cither R or S—R’' is a subset of K.

We give the following modification of the statement and of
proof of Theorems 24 and' 25 of the paper F. A.

Theorem 21 C. If the points- A and B separate the points C
and D on the simple closed curve J, R is a complementary domain
of J, AXB is an arc such that the segment AXB (written @)

is a segment of R, and R, and R, are those complementary domains
of the simple closed curves AXBCA and AXBD A respectively which
are subsels of B then (1) ADB is entirely without B,, (2) R, and R,
have no points in common, (3) R= A\Xf <+ R, + R,.

Proof: Parts (1) and (2) offer no difficulty. In the proof of
part (3) follow the proof of Theorem 25 F. A. Let R, the interior
of J, be that complementary domain of J which is a subset of R.

Theorem 22 of L. R. H. H. is not true in S. Instead, we have
the following theorem, which denies the theorem mentioned in the
preceding sentence:

Theorem 22. Every point set is compact.

Proof. The theorem is true for a point set consisting of a finite
number of pomts Suppose that there exists a point set, K, which
contains infinitely many points, but which has no limit point. Let P
be a point of K. From the definition of a limit point and from
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Theorem 247) it follows that there exists a Jordan region B such
that R’ contains no point of K—P. By Theorem 21 A, D, the ex-
terior of R, is a region. But K—P is a subset of D, and hence by
Theorem 14 has a limit point, which is then also a limit point of K.

Hence, K does .not exist, and the truth of the theorem is
established. ‘

Definitions 2): If J is a simple closed curve and K is a point
set, the expressions ,J encloses K“ and ,K is within J mean
that K is a subset of the interior of J. The term ,interior of
a simple closed curve“ has a definite meaning for the spaces con-
sidered in L. R. H. H. and H. G. but is ambigous in the sense
that it may be either one of two complementary domains of the
given simple closed curve in the case of the space we are consid-
ering in this paper. Theorems 26 and 26 remain true for our space
no matter which complementary domain of J we take; in the case
of Theorem 26 the hypothesis should include the condition that.
the interior of J contains P, and J contains points in both com-
plementary domains of J, a condition that follows from the hypo-
thesis of the theorem as stated in L. R. H. H. for the space there
considered, but which need not follow for the space considered
in this paper. In an analogous manner the term ,interior of a simple

closed curve J“ as used in the statement of theorems in L. R. H. H. .

may mean, when used in this paper, an arbitrary one or it may
mean a definite one of the two complementary domains of J; in
cases of the latter type we shall specify which is to be regarded
ag the interior only when the interpretation is not obvious.

Theorem 26. 1 I and I are Jordan domatns with boundaries J
and J respectively, P is a point of J and of T, and J has points
in both complementary domains of J, then there ewist two Jordan
domains q and g with boundaries Q and Q respectively such that
(1) every point of Q belongs to either J or to J and so does every
point of Q, (2) the curves Q and Q contain in common a segment
of J that contains P, (3) q and q are both subsets of I, #) q is
a subset of I and q is a subset of S—I.

Proof: Make the following modifications of the proof as given
in L. R. H. H. Let H and K be defined as. those complementary

') The proof of Theorem 34 does not depend upon Theorgm 22,
3 Cf. Theorems 214 and 21 B.
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domains of the closed curves AEBPA and AFBPA which are
subsets of I (cf. Theorem 21C). Let H and K be defined as those
complementary domains of % and k¥ which are subséts of the do-
mains H and K respectively. Let R be that complementary domain
of @ which contains the segment 4 PB of J. By the definition
of H and K the segment APB is a subset of the boundary of H
and K. It follows easily by Theorem 21 C that B = H} K + 4PB.

Definitions: By T, we mean a rotation about the point 4;
that is, a motion that transforms A4 into itself, By C,, we mean
the set of all points [ X] such that B can be transformed into X
by a rotation about 4. This point set is said to be a circle having
a center at 4. In the space S we are considering, as we shall prove
later, every cirele has exactly two centers. If C,; is a simple closed
curve, by I, we shall mean that complementary domain of C,,
which contains 4, and by E,; that complementary domain of C,,
which does not contain 4. The domain 1,, is the interior with
respect to 4 of C,; and similarly E,, is the exterior with respect
to 4 of O,

If C,; is a Jordan curve, C,, will be said to be a proper 1)
circle with respect to 4 provided that for -every point X in I,,

- distinet from 4, C,; is a simple closed curve and I,, is a subset

of I,,. The expression ,a circle C,; has a proper interior I,,* will
mean that this circle is a proper circle with respect to 4 and that
for every point Y within [,;—4, C,, in a proper circle with
respect to 4. A Jordan-circle is a circle which is a simple closed
curve, ' : _

Theorems 30, 31, and 32 are true if we make the following
changes: The terms ,proper circle“ and ,proper interior as used
in the statement of Theorems 31 and 32 are ,proper circle“ and
»proper interior“ with respect to the point. O; further, add to the
hypothesis of Theorem 31 the following statement, »There exists
a point P such that C, is a subset of § — R’¢. _

On pages 397 to 399 H. G. let the interiors of the Jordan
curves there mentioned be those complementary domains of these
curves which are subsets of the interior of the circle f; and let

1) At the present siage of the paper it is conceivable that (;z has more
than one center in I,5. Cf. Theorem 62A, part 2, A Jordan curve is a simple
closed curve.
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the interior of ¥ be that complementary domain of f which contains
the point M.

We shall now show that Theorem 33 holds for the space we are
considering. (See proof given in L. R. H. H.). Let @ be a point of E,;.
But C, is closed. There exists by Theorem 37 (a theorem the proof
of which does not depend on this theorem) a Jordan region B con-
taining Ip,», but containing no point of Cpe: Instead of the region R
mentioned in the proof given in L. R. H. H. use the region R just
defined. The statement made in lines 22 and 23, page 315, L. R.
H. H., does not involve a contradiction in this space. Let X* be
a point of %, distinet from P. Let K have the properties mentioned
in R. L Moore's proof, and let it have the further property that
no motion can transform it into a region that contains X* and P.
Now follow the argument of L. R. H. H.

Theorem 34 as stated for L. R. H. H. and Theorems 35 and 36
are not true for our space.

Theorem 34. If Cyi is a Jordan circle then it is a proper
circle having a proper interior with respect to O.

Proof of Theorem 34: Let the point P mentioned in the
proof of Theorem 34, L. R. H. H. be interpreted as the point P
mentioned in this theorem; (suppose that the theorem does not hold
true for Cyr, and limit the discussion ‘given in L. R. H. H., pages
3156—316 to the set of points composed of the cirele just mentioned

and its interior with respect to 0). The set of points which is com-

" posed of all the circles with centers at O which contain points
on the interval OX and belong to S; is a set of points whose
boundary contains X. We can easily prove that this pointset con-
tains at least one other boundary point and then can prove by the
methods used in the proof of Case 1 of Theorem 42 that C,, is
a Jordan circle. This part of Theorem 42 does not depend upon
Theorem 34. Further, C,; is on the exterior with respect to O
of every circle C whlch intersects the segment OX. It follows by
methods used in the proof of Theorem 31 that C,; is a proper
circle with a proper interior. We are thus led to a contradiction.

Theorem 37. If M, is a maximal connected subset of a closed
point set M, S—M, is connected, and K is a closed point set having
no points in common with M, then there exists a Jordan domain
containing M, but no points of K, whose boundary contams no point

of K+ M.
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Proof. See Theorem 29 and a theorem by R. L. Moore?).

Theorem 41. Hypothesis: A connected domain D containing the
point O has the following properties: (1) The boundary L of D is
connected; (2) if X is a point of L, Cpr=L; (3) under a rotation
about 0, D goes into itself. Conclusion: Either L is a single point
or L is a Jordan circle and D = I,z where X is a point of L.

Proof. There exists for each point 2 on L an arc Oz such
that Oz —x is a subset of D. The truth of this statement may
be estublished as follows: There exists by Theorem 15, F. A, an
arc joining some point @ of L to 0. In the order 0@ let « be the
first point of this are. The proposition follows by (2) and (3) hypo-
thesis. By Theorem 5 and Theorem 24 there exists a Jordan do-
main E* containing O such that E* cannot be thrown by a rotation
about O into a point-set containing points of L. Let E be the
complementary domain of E*; then E contains L. Let J* be the
boundary of E. Suppose that L contains at least two points and
let # and y be any two points of L. From the property mentioned
at the beginning of the proof we can show that there exists an
arce zt such that ¢ is a point of J* but such that ot—a—1 is a subset
of E and of N. By methods that will not be-difficult for ome
familiar with Analysis Situs it follows that there exists an are yu
such that yu has no points in common with zt, u is a point of J¥,

_and the segment uy is a snbset of E and of D. If 2z is a point

common to K and to the pointset composed of D’ minus the inter-
vals yu and x4 we can prove in the same way the existence of
an arc zv where v is a point of J* and the segment zv is a subset
of E and of D and contains no points of the intervals z¢ and yu.

Suppose that L --xz—yis connected. J*—u —tconsists of twomutually
exclusive segments; call these M ad N. Let M* consist of all those
points z of L—=z—y such that a corresponding » is a point of M;
similarly define N* as those points 2, of L—x—y, for which a cor-
responding v is a point of N. With the help of Theorems 32, 33,
and 40 of F. A, there exists an arc pgr where p is a point of M, r
is a point of N, and such that pgr is & subset of B'—zt—yu. It
may easily be proved that pgr contains points of M* and of N*

1) Concerning the Separation of Point Sets by Curves, R, L., Moore, Pro-
ceedings of the National Academy of Sciences, Vol. 11, No. 8, pp. 469—476,
August, 1925.


Yakuza


ih - R. G. Lubben:

Let z be a point of L —z—y, and let 2,, 2, #;,... be a subset
of N* that has 2z as a sequential limit point. Let R be a region
containing » such that B’ does not contain any points of the are zt,
the arc yu or of E*. Let B* be a region which contains z and
such that E* is a subset of R. Let R** be a region containing 2
such that B** cannot be thrown by a motion into a point-set which
containts points of both the sets B* and S—R (Theorem b); there
exists a subinterval zw of zv which is also a subset of E**.

Suppose that M* and N* have no points in common. There
exists infinitely many points 2, i a positive integer, of the set
2, #,... in B* for each 2z, there exists a rotation 7, about O
Tio(#) = 2,. Let w, be the transform under 7. of w. The set of w,s
will have a limit point W, which by (3), hypothesis, and Axiom 9
will be a point of D, and by definition of w, and Axiom 9 a poiut
of R". Let C be a region containing W such that ¢ is a subset
of S—E¥ —zt—yu—L. By Axiom 9 there exists 7',such that Ty (ew)=
an arc 2z which has properties analogous to those of zw. C con-
tains a point w,; there exists in ¢ an arce w, W; trom the definition
of 2, from the assumption at the beginning this paragraph, and
from the statement at the end of the first paragraph, there exists
an arc w;p where p is a point of N, and w;p is a subset of D, F,
and S —a¢t —yu It follows easily that z is a point of N* Thus M*
contains no limit point of N* Similarly N* contains no limit point
of M*. Thus the supposition that L—x—y is connected and that M*
apd N* have no points in common leads to a contradiction, since
M* 4 Nt =L—2—y.

It follows that if L—xz—y is connected there exists a point 2 and
an are vzw containing 2 and 2 only in common with L, such that
the segment v2w is a subset of & and of S—a2t—yu and such that v
is ‘a point of M and w is a point of N The Jordan curves vzwtv
and vzwuy where wiv and wuv are sub-intervals of the boundary
of E, are by Theorem 21C the boundaries of mutually exclusive
Jordan domains H and I respectively, both subsets of E; where H
contains ¢ and I contains y, and no point of I besides z is & point
of the boundaries of the domains H or I It follows that L—zis
not connected. Hence by (2) hypothesis, if ¢ is any point what-
soever of L then L —¢ is not connected. Tt follows that L—z—y
is not.connected. Hence L satisfies the definition of a Jordan curve.
It follows easily that D = J,,.
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Theorem 42. If p is a point distinct from O then there ewists
a sequence of points wy,w,,wy,... (1) where w, lies on a proper
Jordan circle, C,,, with center at O and a proper interior Lou; (B) mo
two w's are on the same circe; (3) p is the sequential limit point
of the sequence of w's, (4) C,, is cither a proper Jordan circle with
a proper interior Iy, or a single point.

Proof. The theorem is true by Theorem 34 in case p is a point
of the interior with respect to O of some Jordan circle or is a point
of some Jordan circle. Suppose hereafter, then in this proof that P
is in the exterior with respect to O of every Jordan circle with
center at O.

Case 1. Suppose that p satisfies conditions (1), (2), (3), of the
conelusion of the theorem. Suppose that C, contsins a point ¢
distinet from p. Let D be the set of all points 2 such that z is on
the interior with respect to O or on the boundary of some circle,
C,, mentioned in the hypothesis, and let L be the boundary of D.
L contains both p ad g. Let ¢ be any point of L. Then it is easily
shown that ¢ is the limit point of a sequence of points #,1,,,...
where the ¢s with distinet subscripts are distinet points, and each #
is the transform under some rotation about O of some w. It follows
by Axiom 9 that there exists a rotation about O that transforms p
into t. It follows by a theorem of Janiszewski’s that L is con-
nected !). By Theorem 41. L is then a Jordan cirele.

Case 2. Suppose that p does not satisfy (1), (2), (8), of the
theorem. Let M be the set of all points  which do satisfy (1),
(2), (8), and let N be S—M. Since S is connected, one of the sets N
and M contains a limit point ¢ of the other. It is easy to see that M
is closed. Hence, ¢ belongs to M. By Case 1, C,, is either a single
point or is a Jordan circle. The latter possibility leads to a contra-
diction with the help of Theorems 34 and 33. If C,, is ¢ there
exists by Theorem 5 a region R containing ¢ such that R’ cannot
be transformed by a rotation about ( (which is therefore also
a rotation abot g) into a point-set containing p. There exists a Jordan
circle with center at O which lies entirely in R, whose exterior
with respect to O is a subset of R, and hence the interior with

') Sur les continus irréductibles entre dewx points, 8. Janiszewski, Journal
de I'Ecole Polytechnique, 2-e Série, Seiziéme Cahier (1912), page 98.
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respect to O of this circle contains p. By Theorem 34 this leads
to a contradiction.

Theorem 48. There exists not more than one point p distinct.

from O such that C,, is p.

Proof: Suppose there are two distinet points p and ¢ besi-
des O which remain invariant for every rotation about 0. To obtain
a contradiction we may proceed precisely as indicated in the Jast
three sentences of the proof of Case 2 under Theorem 42,

Theorem 44. There exists a point O distinet from O such
that Coz is O; for every point z of S— (0 0) Cox is a Jordan
- circle. '

Proof: Suppose that for each point z of S— O, Cyy is a Jordan
circle. Since S is separable there exists a countable set of points
X;, X,, X,,... such thatif ¥ is & point of S then Y either belongs
tho this set or is a limit point of it. By an argument similar to
that used in the proof of Theorem 35 of L. R. H.-H. it may be
shown that there exists a sequence of circles by by, ky,... with
center at 0, such that every point is in the interior with respect
to O of some &,. Let M, denote k, plus its exterior with respect
to 0. By Theorem 34, and Theorem 14 F. A there exists a point
set G common to all the M’s. Thus we are led to a contradiction
Hence by Theorsms 42 and 43 the theorem follows.

Definition. The point O defined in Theorem 44 is the pole or
opposite of O. _

Theorem 45. (1) If 0 is the pole of O then O is the pole of O
(2 If x is a point of S— O— O and M is a rotation about O that
leaves x fived, then M is the identity motion. (3) If x ond y are

distinct points, but neither in the pole of the other, and M and N

are motions such that M(x) = N(z) and M(y) = N(y), then for all
points Z, M(Z)= N(Z)Y). ’

Proof Suppose that y is a point of S— O— ( that does not
remain invariant under M. By Theorems 34 and 44 S— 0—0
contains a point z such that /,, contains both 2 and y. By Theorem 32
we -are led to a contradiction. Part (1) follows with the help of
Theorems 43 and 44; part (3) is a consequence of part (2) and
Axioms 10 and 11.

!) Compare this theorem with the firat theorem in § 22, page 409, H. G, and
with Theorem 32, part (2), L. R. H. H.
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Theorem 46. If O, P, Q, and X are points and M is a motion
such that M(0)=Q and M(P)=X, then M(Cyp)= Cor= Ciopen.

This theorem can easily be proved with the use, in particnlar,
of Axioms 10 and 11.

Theorem 47. If O and O are poles and M is a niotion, then M (0)
and M(0) are poles; in particular if M(0) =0, then M(0)= O,

Theorem 48. If M is any motion whatever, there exists a point P

~ such that M(P)= P.

~ Proof. Let K be the surface of a sphere in & three dimen-
sionil Eucliliean number space, let J be a great circle of K, and
let D and E be the two Jordan domains into which J divides K.
Let J be a Jordan curve in § with complementary domains D
and E. With the help of Theorem 29, we can establish the existence
of a correspondence that is continuous (in the sense there defined)
between D and D, between J and J, between £ and E, and finally
between K and S. It follows by a theorem of Brouwer's 1) that
there exists a point P which is left invariant by M '
Theorem 49. If M is a motion such that M(0) is P and M(X)
is ¥, then for any motion N such that N(0O) is P, N(Csz) i8 Cpy.
For proof seé Axioms 10 and 11 and Theorem 46.

" Theorem 50. If O and O are poles there exisis exactly one
Jordan circle C with centers at O and O such that if M is any.
motion such that M(0)= 0, then (1) M(C)=C; (@) if = is a point
such that M(Cor) contains a point of C,p then C,y is C, and if y
8 a point of Loy then M(y) is a point of E,y. : ,

Proof: Suppose that there exists a motion M such that M(0)=0
and such that if O is any cirele with center at O, then M (0) is
not C. Then S— O — O consists of two mutually exclusive point-
sets L and N which are defined as follows: L consists of those
points z of S for which M(C,,) is a subset of I,;. N consists of
those points X of § for which M(C,;) is a subset of E,,. (See
Theorem 34, Axiom 8 and Theorems 47 and 46). Let C, be a Jordan
circle with center at 0. By Theorem 5 there exists a region R
containing O such that B cannot be transformed by a motion into
a region which contains points of more than one of the three fol-
lowing point-sets: C,, O, and 0. If Y is a point of B, it is easily
seen by Theorem 47 and 34 and Axiom 8, that Y is a point of N

) Math. Ann., Vol. 71, pp. 114, 324; Amsterd. Ber. XVII, p. 760, XIX, p. 48,
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and that M(Y) is a poiot of L. Since both L and M exist, and
since S— 0 — O is connected 1) it follows that there exists a point Z
which belongs to one of the sets L and N and is a limit point of
the other. Suppose that Z is a point of L and hence that W= M(Z)
is a point of Ip,. Then by Theorem 34 there exists a point y which
belongs to both I,, and to E,,. By Theorem b there exists a region H
containing Z such that if M is any motion whatever then M(H)
contains points of at most one of the point-sets C,y, C,s, Co. By
definition of Z, H will contain points of N. Let @ be such a point.
By Theorems 47 and 46 M(C,q) = C5, = C,, where g is M(¢). By
definition of H, g is a point of I,. By definition of y, Theorem 34
and definition of H, I,, contains I,,. This contradicts the definition
of N, since ¢ is a point of I, and hence of I,, Further, if we
suppose that Z is a point of N, we get a contradiction by a similar
argument. Hence, there must exist a circle C such that M(C)=C.
Let X be a point of C. By Theorems 47 and 46 and Axiom 8 it
follows. that if M(O)=0 then M(I,;)= E,; and M(E,s) = I,,.
By Theorem 49, if M, is a motion distinet from M such that
M,(0)= 0 then M,(C) = C. Hence Theorem 50 is true.
Definitions. The circle C uniquely determined by the points O
and O according to Theorem 50 is said to be the great circle with
centers at O and O. The notations GC, and G Cy are symbols that
indicate this circle. The points O and O are poles of this circle.
GI, means I,;, where X is a point of C; similarly, GE, means E,,.
In general if P is a point, P will indicate the pole or opposite of P.
Theorem 51. If C is GC, and M(0) is P. then M) is GC,.
For proof see Theorems 46, 47, and 50, and Axioms 10 and 11.
Theorem 52. If Copo= G C, then (1) Cpo= Cio= GCs; (2) P,
the pole of P, lies on C,.
Proof: Let M and N be motions such that

M0)=0  NO)=0 Then NM(0)="0
MO0)= 0 N(O)y=0 NM(0)= 0
MP)=¢Q N@Q=P NM(P)=P.

Hence NM(P)= P.

Therefore, by Theorem 50, P is a point of Cop. Hence there
exists a rotation about O which transforms P into P, By Theorem 50

!) This statement can be proved by the help of Theorem 34, F. A.
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this rotation carries G G, into itself. Further, since 0 and 0 remain
fixed under this rotation it is easily seen by Theorem 50 that O and 0
are points of G'C,.

Theorem 53. If x and y are two distinct points there exists
‘a point z such that G C, contains both & and y.

Proof: Let Cp=GC, Then GC. contains 5 and « (Theo-
rem 52). If y =z the theorem is proved. If y is not the pole of z,
by Theorem 44, z is a point of I, and % is a point of E,,. Hence GC,
contains a point z of C,. There exists a rotation M about z that
transforms 2 into y. By Theorem 51, M/G ) i8 a great circle
containing x and y.

Theorem 54. If C,, is a Jordan circle there exists on this circle
exactly one point x distinct from x such that if M is any rotation
-about O such that M(z) = z. then M@) =z; if C,, is GC, then
and z are poles.

- Proof: See H. ., page 405, and Theorems 47, 52.

Definition. The notation being that employed in the preceding
theorem, the complementary intervals zyz and zez of C,, are
semi-circles of C,,. If C,, is a great circle these circles are great
-semi-cireles.

Theorem 55. If abx in an interval of a Jordan circle Ces,
there exists exacily one point y on abz such that if M is any rota-
tion about O that transforms a into y then My) == and if ay
-and yx are the intervals ay and yx of abx then May) = yax.

Proof: See H. G., page 405.

Definition. The notation being that employed in the preceding
theorem, the point y is said to be the midpoint of the interval
abx of C,,.

Theorem 56. If C,p= G C,, P is the pole of P and Q is a point
of Cop distinct from P and from P, and Q is the pole of Q, then the
pair of points P and P separate the pair of points Q and § on Cop.

Proof: See pages 403, 405, H. &. and Theorems 52 and 54.

Theorem 57. If O is a point of GCo— C and 0Y O and 0Z0
are the two intervals of C with their end-points O and O and only
these end-points in common, and z is any. point of S— O — O and t
48 common to C,, and to OY@, then C,, contains a point T of 0Z0
such that if M is a rotation about O such that one of the following
statements ig true, then the others are also true: M(t)=1T, M(T)=t,
M(0Y0)= 020, M(P)=P. :
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Proof: The circle GC, contains a point X of 0Y 0. By
Theorems 52 and 56, X lies on 0Z0 and on GC,. By Theorem 52,
G C, contains P and P. There exists a rotation M obout O such
that M(X)= X. By page 405, H. G., M(X) = X, M(P)= P, and
M(P)= P. Hence M(C)=C and M(0Y 0)= 0Z0.

If C,, is a Jordan circle, then C,, contairs a point ¢ on O Y 0.
M(t) =T is then a point of 0Z0. By Theorem 45 M? is the iden-
tity motion. Hence M(T') = ¢. It follows by Theorem 45 that if M,
is a motion such that M, (0) = O and M, satisfies one of the four
statements at the end of the theorem. then M, is identical with /.

Theorem 58. If A B is a simple continuous arc and T is a motion
that carries AB into o subset of itself, then at least one point of A B
remains fixed under the transformation T.

Proof. This theorem follows easily, with the help of Theorem 5,
from the fact that AB is a simple continuous aro. .

Theorem 59. If ABC is an interval of .a great circle C with
a center at O and X is a point of ABC and there exists a motion T
such that T(0)= 0, T(4)= X, T(X)=(, T(AX)=XC where AX
and X C are the intervals 4 X and XC of the interval AB C, then
(1) there exists a motion M which leaves X fired and carries A into C;
(2) if N is a motion such that N(X)= X and either Nd)=C
or N(C)=A4, then both N(4)=C and NO)=4; (38) if A and C
are not poles and M is any motion such that M (4) = C and M(C)= 4,
then M(X)=X and there exists exactly one point Y distinet from X
such that M(Y)=¥; furthermore, Y is the pole of X and 4s the
midpoint of the interval ADC which is complementary to the inter-
val ABC on C. .

Proof. Let X be the pole of X and let XEX and XFX be
complementary semicireles of C, By Theorem 56, 4X (see also
hypothesis) is a subset of one of the two given semicircles, say
of XEX. Similarly XC must be a subset of ome of the given
semicircles; since X C and 4 X have only X in common, X C must
be a subset of XF X, By Theorem 57 there exists a rotation J/
about X such that M(0)= 0, and that M(4 X) = an interval HX
of the semicirele XFX. We wish to prove that M(d) — H is the
point C.

Case I. Suppose that HX is a proper subset of XC. Then
TMT*M(0)y= 0, and TMT-*M(AX) is a proper subset
of AX. By Theorem 58 this motion leaves fixed at least one point
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of AX. But it does not leave 4 for X fixed. Thus by Theorem 45
we are led to a contradiction.

Case I If XC is a subset of HX, M-'(X C) is a subset of X 4;
this case may be handled like Cas¢ I Thus we have M(4)= G,
and M(C)= A4, since M* ist the identity. (2), (3), (4) follow easily
from Theorem 45 and the preceding argument.

Theorem 60. Two distinct great circles have in common two and
only two points and these points are poles; if O is a center and »
is a point of a great circle C, and P is a point of 1,, then P, the
pole of F, is a point of E,,.

Proof:-Suppose that C and K are distinct great circles. Let 4
and B be two distinet points that belong to both ¢ and K. Sup-
pose that 4 and B are not poles. By the preceding theorem the
midpoints of each of the two eomplementary intervals 4B of the
circles C and K belong to both C and K. If we take the midpoints
of the intervals on C and on K having as endpoints these midpoints
and the midpoints of the intervals in C and K having as ends
these midpoints and those defined before, and continue this process
indefinitely we can prove by methods similar to those used in H. G,
pages 415—417 that there exists a set of points ¥ each point of
which is the midpoint of an interval of K and an interval of C,

_the ends of these intervals being common to C and K; ¥ is a com-

mon subset of C and K and is everywhere dense in the closed
sets C and K. It follows that C is identical with K. :

II. Let O be a center and let 2 be a point of C and suppose
that P belongs to I,,. By Theorem 53 there exists a great circle H
which contains O, P, and O. By the preceding paragraph, since H
is connected, H contains exactly two points @ and @, which are
poles, in common with C. Hence the segment Q 0¢ of H, which
by Theorem 56 contains F, is a subset of E,,. The theorem follows
easily with the help of preceding theorems.

Theorem 61. In the notation of Theorem 57, t and T are the
only points common to GCp and to C,,.

Proof: If GC, and C,, contain in common more than two
points, then one of the complementary semicireles 0tO and 0T 0,
say OTO, contains at least two points of C,,. In the order 0T 0
let 2 be the first point common to the semicirele 0T 0 and Cg,
and let % be another point common to them. Let 3 be a rotation
about O that transforms z into w. By Theorem 51 this rotation

4%
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transforms H == G C, into a great circle H, which contains both O
and . By Theorem 60 H, is identical with H. The rotation M
transforms the segment Oz of the semicircle 07'0 into a segment
Ow of H. But the segment Ow of the semicircle 0T O contains
the point z. The interval on H which is complementary to the
segment Ow just mentioned contains the point ¢ of the semi-
circle 0t0. Hence the segment Ow, which is the transform of the
segment Oz of OT0, contains at least one point of C,,. But this
clearly involves a contradiction.

Theorem 62. If GC,= vo="C, and if X and X are the two
points common to Cop and O (See Theorems 52 and 60) then (1) O is
the midpoint of the great semicircle X0X of C; (2) GOy contains
0, 0, P, P; (3) If R is a rotation about P that carries O into O,
then jor any point ¥ of C, R(Y) =Y, the pole of ¥

Proof: Part (2) follows from Theorem 52. (8) follows from
Theorems 54 and 47, and H. G. page 405.

By Theorem 55 the semicircle XOX of (' has a unique mid-
point F. By Theorem 59 there exists a motion M such that /] ()=F
and that M(X)=X. By Theorem 50 GCy= Cy,. But by Theo-
rem 52 G C; contains both ¥ and 0. By Theorem 60 GC; and X0 X
bave in common only one point. Hence ' — 0. This proves part (1),

Theorem 62 A. If C,x contains two opposite points, then Cpp= G C,.
(&) If Coz=Cpy, then P is either O or 01),

Proof: Suppose that C,; = C contains a pair of opposite points Y

and Y. Then there is a rotation M about O that transforms J
into ¥ and hence it transforms GO, into itself, By Theorem 50 0
is then a point of GC,, and then by Theorem 52 Y is a point
of GC,. Since Y is common to Coxr and to GC,, Copr= GO,.

(2) This is a result of Theorem 45 if X is O or O. Hence if

we suppose that the proposition is not true we may agsume that C,,
is a Jordan circle, and that O and P are not poles. By Theorems 60
and 53 there exists exactly one great circle H which contains 0
and P. By Theorem 61 C contains exactly one point T of the
semicircle 0T 0 of H and exactly one point ¢ of the semicircle 0¢0
of H, which is complementary to 0T (. There exists a rotation
about O that carries ¢ into 7. By Theorems 61 and 57 this rotation

1) Part 2, of Theorem B2A was first proved by Mr. C, M. Cleveland of

the University of Texas, by methods differing from the ones used in thia pa.per.‘*
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ccarries T' into . Since P also is a center of C, and since C con-

tains only the points £ and 7 in common with H, we can show
in the same way that there exists a rotation about P that trans-
forms T into ¢ and transforms ¢ into 7\ If T and ¢ are not poles,
it follows by Theorem 59 (Part 8) that P must be either O or the
pole of O. If T and ¢ are poles, it follows by Part (1) of the
theorem that C is @C, and also GC,. It follows by Theorem 52
that O, P, O, and P are points of GC,. But these points are
also points of H. By Theorem 60 we have then that G C,
is H and hence contains 7' Thus we are led to a contra-
diction.

Definitions. If 4 and B are two distinct points which are not
poles, it follows by Theorems 53 and 60 that there exists exactly
one great circle K containing them. This great circle will be called
the line A B. Of the two complementary intervals 4B on K there
is only one that is a subset of some great semicircle. (See Theo-
rem 56) This interval will. be called #he interval 4 B. The segment
4B of the interval 4B will be called the segment AB. If M is
a motion that leaves fixed a point X, and that transforms 4 into B -
and B into 4, then M is called a semi-rotation about X. If there
exists a motion that transforms 4 into a point E and transforms B
mto a point D then the interval AB is said to be congruent to
the interval ED. It is easily shown by preceding theorems that
such a motion transforms the interval 4B into ED.

Theorem 63:

(D If AB=CD then AB=DC; in particular AB=—BA.

(2) If AB=0CD and CD=EF then AB=EF.

(3) If M(z)=y then M(C,)=0C...

(4) If AB and CD are congruent intervals and M is any motion
such that M(AB) contains in common with CD two distinct points
one of which is a common endpoint-of M(AB) and CD, then M(AB)
is CD or DC. ,

(5) No interval contains a pair of opposite points.

Proof: (1) is a consequence of the definition of congruence,
the group-property of Motions and Theorems 55 and 59. (5) is
a consequence: of Theorem 56. (3) is a consequence of (1) and
Theorem 49. (4) is the result of the definition of congruence, the
group property of motions, part (1), and Theorems 60, 61, and 49;
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(2) is a result of the group property of motions and the definition
of congruence. ‘
Definitions: If 4B and CD are intervals and there exists
a motion M such that M(4B) is a proper subset of CD then 4B
is said to be less than CD and CD is said to be greater than 4B.
It may be shown by the preceding theorems that if 4B is less
than CD it is not congruent to CD or greater than CD. We may
show as in H. G., pages 403 to 407, that by means of motions
and midpoints we may set up a one to one reciprocal continuous
correspondence between the points of a great circle C and the set
of real numbres [z], where 0<Sz <C 27, in such a way that if
P, p1, P, p; are the coordinates of four points P, P, M(P) and M(P))

respectively, where M is any rotation about the poles of C, then

p—py=p'—p; (Mod 2n).

Of the rotations about the poles of AB there is one which trans-
- forms one of the two points 4 and B into the other, and which
in the notation of H. G., page 405, has a parametric value w whose
numerical value (mod 2#) is between zero and = The numerical
value of w is the length of the interval AB and will be denoted
by the symbol (4 B).

Theorem 64. If X is the midpoint of AB and M(AB)= CD
then M(X) is the midpoint of CD.

Proof: Clearly M(4) is one of the endpoints of CD and M(B)
is the other. The theorem follows easily with the use in particular
of Axioms 10 and 11.

Theorem 65. (1) AB and CD are intervals then l(AB)%I(CD)

according as AB %OD ; () If C it an interior point of the inter-

val AB then 1(AC)+1(CB)=1(AB).

This theorem may be proved with the help in particular of
Theorems 62, 64, and 47 and of the results of pages 403—4056 of H. G.

Definitions. A point-set H which contains at least two points
that are not poles is said to be collinear if it is a subset of a great
circle C. The two complementary domains of C will be called the
sides of H. If a set of points, X is a subset of one of the sides
of H then that side will be called the X side of H. The poles
of ¢ will be called the poles of H If 4B is an interval of C
and A B4 denotes the semicirele A B4 of C then the point set 4 BA—A
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will be called the ray 4B, and 4 will be called the endpoint of
this ray. Clearly the ray B4 is not the same as the ray AB.

Definitions. If C,,=0C is a Jordan ecircle then the intervals Ox
and Oz are radii of C. If C is not a great circle it is said to be
a small circle By the proper radii or a small circle C,. we shall
mean those radii of C,, which are congruent to the lesser of Ox and Ox.
That center of a small circle which is an endpoint of the proper
radii is said to be the proper center of C; that complementary
domain of C which contains the proper center is said to be the
proper?) interior of C, and the other one is the proper exterior of C,
By the radial length of a circle we mean the length of one of its
proper radii. Of two circles having unequal proper radii that oxe
whose radial length is the greater is said to be the greater of ‘the
two circles. If two circles have congruent proper radii they are
said to be congruent, and there exist motions that transform one -
into the other: An interval of length 47 is said to be a quadrant.
A great circle has a radial length of 4 and is greater than any
small cirele. Two circles are said to be tangent if they .have one
and only one point in common. Two ecircles C and K are said to
touch provided that they have points in common, but K does not
contain points in common with both the interior and the extérior
of C. If C and K are tangent small circles and their proper in-
teriors have no point in common they are said to be tangent ex-
ternally; otherwise they are tangent internally. Two small circles
may be said .to touch externally or to touch internally unter cor-
responding conditions

Theorem 66. If Coy=C is a great circle and n is a positive
number between O and Y7 then there exists in Iy a circle K, and
in Eox a circle k such that (1) K and k have rodii of length n and
are tangept externally and there exists a semi-rotation about i, the
point of tangency, that transforms K into k, k into K, and the proper
centers of k and K respectively into the proper centers of k and of K ;
(2) the proper interiors of K and of k contain no point of C, and

.-are on opposite sides of C; (3) K and k touch C.

Proof: Let H be a great circle’ passing through O and 0. For

- each point z of H let #, be a point such that the length of «t, is n.

1) Cf. the definitions following note on Theorsm, 29. Hereafier, when we use .
the word ,proper* we shall use it n the sense just defined.
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Let L, consist of all those points & of H such.that I;, is a subset.

of Iy, and let L, consist of the remainder of H. Both classes
exist. Let z be a point of division of the two classes L, and L,.
Suppose z belongs to L,. Let zw be congruent to xf,. Then I,
contains a point v of E,;. Let z,x;, 2;,... be a subset of L,
which has 2 as a sequential limit point. Let P be a pole of H.
Let M,, M,, M,,... be aset of rotations about P such that for each
integer m, M, (2)==,. Then M, (v)=1, i8 a point of I;; and so is ¥,
a limit point of the set v,,v,,v,,... If we apply the inverse motions
of the Ms and Axiom 9 we prove there exists a motion N such
that .N(P)=P; N(z)=2, and N(¥)==v. But P and # are not poles
and V and v are distinet points: Thus we have a contradiction
by Theorem 45.

Hence 2 belongs to L,. Let K=C,. By methods analagous

to those used in the preceding paragraph we can prove that K’

touches C. Let y be a point GC,. With the help of Theorem 60
we can prove that there exists a semicircle F' of C which lies

in E,; and hence F' contains none of the points that are common
to C and K.

By methods similar to those used above we can prove that

there exists a circe ¥’ which is congruent to K, which plus its .

proper interior, is a subset of Ef;, which touches C, and such that
the set of points common to %' and C are a subset of F. We can

establish the theorem by methods analogous to those of pages 411 ~

to 414, H. G. .

- Let ¢ be the point of tangency of K and k In proving that K
plus its interior is a subset of I,; we used merely the faet that
the length of OX is greater than n. By Theorem 62 the length
of 0X is 4= Hence if m is a positive number less than n we
can prove by a method similar to that used in the preceding
theorem that there exist cireles Z and 2z containing # such that Z
plus its proper interior is a subset of K plus its proper interior,
and z and k have the same relation. With the help of results given
on page 413, H. G., we get the following theorem.

Theorem 67. In the notation of Theorem 66 and the preceding
paragraph we have; (1) Z and z are tangent to each other at ¢ and’
to k, K and C and are (2) the only circles of radius m that are
tangent to K, k, and € at t; (3) K and k are tangent to C at ¢
and are the only circles of radius n that have this property; (3) K is
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the only circle of radius n that is tangent to k at t; (5} C is the
only great circle tangent to K, k, Z and z at the point t.

(1) is a consequence of § 28, H. G&. We can in the same way
prove that there exists a circle K’ of radius # which is tangent
to C at £. If K’ is distinet from %k and K we should have K’ and
one of the circles K and k, say K, tangent to the second, k; this
is impossible by the theorem at the end of paragraph 27, H. G.
(2) is a consequence of (3) and (4). (5) Follows easily.

Theorem 68. If ¢t is any point of S and C is any great circle
containing t, then there exists a system W of circles such that (1) Cis
the only great cirele of this system; (2) if n is any positive number
less than km there exist two and only two circles K and k of W of
radius n that are tangent to C at t; (3) if n, m, K, k, Z, 2, ¢,
and C be interpreted as in Theorems 66 and 67, the conclusions of
these theorems hold. (4) Any tuo distinct circles of W are tangent
at t, and any circle which touches or is tungent to a circle of W
at t belongs to W. :

Also, if k is any small circle containing §, then there exisis a great
circle C which is tangent to k at &,

Proof There exists a motion which transforms the point ¢ of
Theorems 66 and 67 into the ¢ of this theorem and transforms
the C of Theorem 66 and 67 into C of this theorem. The theorem

follows, since, as may readily be seen from previous theorems,

a motion transforms tangent circles into tangent circles.

" Theorem 69. (1) If two congruent circles are tangent they are
tangent externally ; (2) if two non-congruent small circles are tangent
internally the smaller circle plus its proper interior is a subset of
the larger circle plus ifs proper interior; (3) if t is a point of -
a small circle K and Q is any smaller circle, then there exist two
circles Z and z congruent to Q such that =z is tangent internally
to K at t and Z is tangent externally to K at t _

Proof: (1) is a result of part (2) Theorem 66 and Theorem 68.
(2) is a result of Theorems 68 and parts (1) and (2) of Theorem 67
(Note the paragraph preceding Theorem 67 in which the existence
of Z and z is proved): (3) is a result of the definition of ,tangent
externally“ and the properties of Jordan domains.

Definitions. If ¢ is a point common to two circles C and K
and- every region B which contains ¢ contains a point z of C which

‘belongs to the proper interior of K and a point y of C which
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belongs to the proper exterior of K then C is said to intersect K,
and ¢ is a point of intersection of the circles C and K. (Note: If K
is a great circle then ,the proper interior of K may be inter-

preted as one side of K and ,the proper exterior of K“ may be

interpreted as the other side of K).
Theorem 70. If x is the midpoint of the interval O P, then C,,
is tangent to C,, at P: For proof see H ., page 414.

"Theorem 71. If Cp,=C and C,,=K are not identical and

have least two points in common then K intersects C at the point .
Proof Suppose that K does-not intersect C at z. There exists
a region R containing X such that the set of points common to R
and K is a subset either (a) of I, or else of (b) of K. Consider
case (b) and assume, as we can do without loss of generality that I,
is the proper interior of C. There exists a circle C,=#% of radial
length 2n, where 2n is a posilive number which is less than 47
and Jess than the length of Pr such that % plus its proper interior
is.a subset of B. There exists by Theorem 69 a point p such that
the length of pz is m, that C,—2 is a subset of the proper in-
terior of C and by Theorem 70 is a subset of k plus its proper
interior. It follows that C,, is tangent to K at x. Bat then by
Theorems 68 and 69, K and C are tangent at z. Thus we are led
to' a contradiction. We can haudle Case (a) in the same manner.
Theorem 72. Two circles which are not identical have in common .
at most two points.
Proof: Suppose that C and K are two distinet circles with
a point & in common and having P and @ respectively as centers
The theorem has already been proved for the case where K and €
are both great circles. (See Theorem  60). Hence we may assume
that K is not a great circle or a single point. Then K does not
contain both P and P; we will assume that it does not contain P
Let 1=1I, and let E=E,. If we assume that K and € have at
least three points' in common it follows from Theorem 71 that
there is a point ¢ which is common to K and to E. There exists
on the circle K an arc zty such that the points # and ¥ are points
of C but such that the segment zty of this arc is a subset of E. -
Suppose that there is a point ¢ distinet from & and from Y
which is eommon to C and K. The point ¢ does not belbng to the
arc zty and hence there exists a region R containing ¢ which
eontains no point of z¢y. By Theorem 71, R contains a point T
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which iz common to K and E. The circle K contains an are,
XTY such that X and Y are points of C, and such that the
segment X T'Y is a subset of E. Clearly the segments 2ty and XTY
have no points in common.

Let L, consist of all those points w of E such that Ej, con-
tains no point of the segment xty, and let L,==FE—L,. It can
easily be shown that both classes are non-vacuous. Since B is con-

_ nected, there exists a point » which belongs to one of the sets L,

or L; and is a limit point of the other Suppose that b is a point
of L,. Then by Theorem 5 there exists a region R containing b
such that R cannot be thrown by a rotation about P into a region
containing a point of the are wzty. Bit since b is a limit point
of L,, R contains. a point a of L,. By Theorem 34 and the
definition of L,, Ej, is a subset of E., and E, is a subset of K.
Since a belongs to L,, E; contains a point of the segment ziy.
But x is not a point of K. Therefore (,, contains a point of the
segment ziy. But this contradicts the definition of . Hence b must
be a point of L, and it can be shown that C, contains points of
the arc wfy Sappose that the circle C, had at least two points
in common with the circle K. Then by Theorem 71 there is
a point f of xfy which is a point of K. It is easily shown that
every point of C, is a limit point of I, an that there exisls
a point y of L,. such that f is a point of E,. But this contradicts
the definition of L,. Hence Cp is tangent to K at some point of zty.

Hence the segment X T'Y is a subset of [,. By an argument
similar to the preceding we can show that there exists a poidt d
such that (,, is tangent to K at a point of the segment XTY.
By methods initicated earlier in this proof we can show that o
is a subset of I,, while (U is a subset of Ep. But the arc zty
contains points in common with each of the circles C and Cp. But
this in contrary to the supposition that C,, is tangent to K at
a point of X7'Y'%). Hence the supposition that the circles C' and K
have more than two. points in common leads to a contradiction.

Definition. If ¢ is a great circle with centers P and P and K
is a great circle containing P and P, then K is said to be per
pendicalar to C. Let O be a center of K. By Theorem 52, 0 is
on (. Hence the following theorem

1y Cpy must intersect the arc ¢y which contains no points of the segment X T'Y,
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Theorem 73. If C is perpendicular to K then K is perpendi-
cular to C'(C and K both great circles).

Definition. If x is a point common to the perpendicular great
circles C and K and H is a subset of C containing x and & is
a subset of K such that k contains o, and each of the sets H and k
contain at least two points which are not poles, then H and k are
said to be perpendicular at .

Theorem 73 A. If Q is an interior point of a great semi-circle
PQPF and © and y are the midpoints of the intervals PQ and PQ
respectively, then C., and C,z are tangent at Q.

Proof By Theorem 70, C,, and C are tangent to Cpo== C3®
at Q Hence by Theorem 68 the theorem follows. ‘

Theorem 74. If C is a great circle with center at O and POP
i8 a great semicircle whose endpoints P and P, are points of C, and z
is any point of this semicircle distinet from P, 0, and P, then C,
18 tangent to C at P. Conversely, if K is a small circle which is
tangent to C at P, and the proper interior of K is on the O side
of C, then the proper center of K is on the semi-circle POP.

Proof, Set up a correspondence between the real pumbers
from O to 1 and the points of POP as follows: To P assign the
~ number O, to P the number 1, to the midpoint O of the semicircle
-assign the number 4. Continue as in §§ 30 to 35, H. &. In the
- same way assign to the segment PO P the numbers between 0 and —1.
It follows from Theorems 70 and 68 that any circle with center
at the point (4)%, (n & positive integer greater than 1), and through
the point P is tangent to C' at P. We shall now prove that for all
such values of n and for all positive integral values of k between O
and 2" (except the value 2°7') a circle with center at the point k ()
and passing through P is tangent to C at P. For n=1 there are
-po cotresponding valaes of A.

Let K(u,v)==C,,. Suppose that k is greater than 2! Let
k(3)* —1=—h(})" Then & is a positive integer between O and 2!
and K(—A(4)" Py=K{(k(}", P). If h=2"-*, then by Theorems 70
and 68, K(— A(})", P) is tangent to C at- P. If k is not 22 it is
one of the values of -k corresponding to n—1. By Theorem 70
K(—h(§),P) is then tangent to K(—h(})"P) at P. By the
methods used at the end of § 27 H. G. we can show that K k&P

%s tangent to K(— A (4)*~, P) at P and hence by Theorem 68, part 4,
is tangent to K(k(f)’,.P at P. :

icm

Foundations of Geomelry. 61

If k& is less than 2", it follows by Theorem 70 that K(k(})", P)
is tangent to K (k(4)™",P) at P. In any case we have proved that
either K (k(4)",P) is tangent to C at P or it is tangent to a circle
K (h'(i)"‘l, P) where A is between O and 2*~' and is not 2*2 This
last sentence is sufficient to verify the statement we made in the
last sentences of the first paragraph, for n==2, and then to prove
by mathematical induction that the statement holds for all larger
integral values of . . '

If z is any point whatever of P 0P, distinet from P, O, and P,
it can be proved by methods like those used in H. G., §§ 30 to 35
that « is a limit point of the set of points F, corresponding to the
numbers of the type k()" Let a,,a,,4,,... be a subsequence of
points of F having z as a sequential limit point. Let # be so
large that twice the length of a,x, for n greater than #, is less
than Pz and Pz. It is easily shown that then z is a point of L.,
and hence that any ray zQ having z as an endpoint will contain
at least one point £, of C, ;.

Let Q be a point of C,, distinet from P. By Theorem 61 @ is
the only point common to the ray 2@ and to C,. Let By, B,,...
be a sequence of regions closing down on z, and for each value
of n let b, be a point of the sequence a,, .1y Guys;--. sUCh that b,
belongs to B,. Let M, be a rotation about &, that transforms P
into a point v, of the ray Q. Let M,(s)=X,. By Theorem 13
the set of points X;, X, X;,... has z for a limit point. The set of
points ,,,... has a limit point ¥ on the ray zQ. By Axiom 9
there exists a rotation about z that transforms P into V. Hence V'
is Q. But all of C, » except the point P is on the 0 side of C.
(See definition of 5,). Hence @ is on the O side of C or is a point
of C; this holds for every point @ of C,. By Theorem 71 Co
and C must either be identical or must be tangent at P. By Theo-
rem 62 A the two circles cannot be identical, since O is not .

Let K be a small cirele of radius » which is tangent to C at P
and except for P is on the .0 side of C; there exists by the pre-

~ ceding argument on the same side of C, a point # belonging to POP

such that C,, is tangent to C at P,.and that the radius of the
circle C., is n. By preceding theorems there exists exactly one
such circle and it easily shown that this circle is K.

Definitions: If A, B, and C are distinct, non-collinear points,
no two of which are poles, then the sum of the rays B4 and BC
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is called the amgle ABC, and B is the wverfex of this angle.
If M is a motion and M(B)=DB', M(RayBA)=RayB’' A4’, and
M(RayBC)=RayB' C, then the angle ABC is said to be con-
gruent to the augle 4’B'C’. Let the circle W mentioned in § 41,
H. G, be a great circle; we shall adopt for this paper the defini-
tions and conventions given in this paragraph of H. G. If K is G C,,
and D and E are the points common to K and to the rays BA
and BC respectively then the length of the interval DE is the
numerical value of the parametric value of the angle 4ABC, as
this parametric value has been defined in H. G., paragraph 4f,
This interval DE is called the associated interval and the great

circle K is the associated great circle of the angle 4BC. An angle-

of measure §# is called -a right angle. A point on the C side of
the ray B4 and on the 4 side of the ray BC, is said to be within
the angle 4BC and the set of all such points # is the inferior of
the angle 4BC. Tt follows that the interior of the angle ABC is
the same as the interior of either of the angles CBA and ABC,

Theorems 76 and 76 follow without difficulty from preceding
theorems and definitions. '

Theorem 75. (1) The intertor 1 of the angle ABC is a Jordan
domatn whose boundary is the angle ABC plus B, the pole of B ;
(2) if X is a point of I then the ray BX minus the point B is
g subset of I; (3) the segment DE of the associated interval DE of
the angle ABC is a subset of I but no point of the associated great
circle minus this segment belongs to I; (4) if the ray BA is perpen-
dicular to the ray BC at B then the angle ABC is a right angle,
and conversely.

Definitions, The interior of the angle 4B( plus the boundary
of this interior in called the lune ABC. Clearly the lune ABC is
the same as the lune 4BC, S— (the lune ABCQ) is the exterior of
the angle ABC, and any point of this set is said to be without the
angle 4 BC.

If 4,B,C, are distinet, non collinear points, no two of which
are poles, then the intervals A B, BC, and CA are the sides of the
triangle 4BC, and the sum of these intervals is ke triangle ABC.
If z is a point within each of the angles 4ABC,BAC, BCA then x
is within the triangle ABC and the set of such points 2 is the
interior of the triangle A BC. Clearly z is within the triangle 4 BC
if and only if it is on the 4 side of BG, on the B side of 4C
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and on the C side of AB. Also if it is within two of the angles
of the triangle, it is within the third.

Theorem 76. The interior of the triangle ABC is a Jordan
domain whose boundary is the triangle ABC. (2) If = is a point
within the angle ABC then the ray Bx contdins exactly one pont y
in common with the segment AC of the side AC. (3) The segment By
of the ray Bz dis within the triangle ABC. (4) The segment AC of
the side AC is within the angle ABC; if H is the line AC then.
no point of H minus the interval AC belongs to the lune ABC.
(5) If the arc h of a great circle HF is a subset of the lune AB C,
and not both B and B are endpoints of h, then h is an interval; '
that is, it is a subset of a great semicircle.

Theorem 77. If C,,=C and Cop— K have in common exactly
two points D and d then D and d are not on the same side of AB.

Proof. B and A4 are not poles, or the same point, since the
circles C and K are not identical. Suppose that D and d are on
the same side of AB. By Theorem 71 there exists a point y of K
lying on the non-D side of AB. The interval yd of dyD of K
contains a point 2 of the line 4B while the interval yD of dyD
contains a point g of AB. By Theorem 72 if Dzd is the comple-
mentary interval on K of Dyd, then Dzd contains no point of 4 B.
By Theorems 71 and 72, if H is that complementary domain of C
which contains the segment Dzd of K, H contains no point of the
segment dyD of K. The segment Dxd contains neither 4 nor 4:
By the methods used in the proof of Theorem 72, we can prove
that there exists in H a circle £ with centers at 4 and A4 such
that & is tangent to K at a point 2z of the segment dzD. By
Theorems 74 and 68 the intervals Az and Bz are both perpendi-
cular to the common tangent of the cireles K and k at 2. Then 4, 2,
and B are collinear. But there is only one great cirele passing throngh 4
and B. Thus 2 is on 4B and we are led to a contradiction.

Definitions. Two triangles ABD and 4, B, D,, are said to, be
congruent if there exists a motion M such that M(4,)= 4, M(B,)=B,
and M(D,)=D. In the notation of Theorem 77 the trianglés ABD
and ABd are said to be symmetric triangles. If a triangle 7, is
congruent to a symmelric triangle of 7, then 7} and 7, are said
to be symmetrically congruent. It follows as in H. G. that 7} is
not congruent to T}. ‘
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Theorem 78. If the interval zy is less than a quadrant, and K
is a great circle which is perpendicular to zy at x then (1) if 2 is
a point such that yz 4s greater than yx and less than y, then C,
contains two distinct points t and T in common with K such that the
senti-circles xtx and x Tz of K are complementary semicircles of K.
(2) If W and Z are distinct points of ztx in the order x WZx
then yZ is greater than y W. (3) The converse of (2) is true.

Proof. By Theorem 74 C, is tangent to K at z. It is easily
shown that I}, does not contain 2 or a point of K distinet from 2
and that C, contains points of both the y side and the non-y side
of K. Hence, by preceding theorems C, contains exactly two points
of K. (1) follows from Theorem 77. In (2) if W==, (2) follows
from the second sentence in this proof. If W'is distinet from
then the interval yz, and the segment Wz of the semicircle z Wz
of K are subsets of I,5; and the segment W, which contains Z
is a subset of E . (2) and (3) follow easily.

Theorem 79. If ABC is an acute angle, that is an angle whose

measure is numerically less than m/2, and DE is its associated in-
terval then (1) if a is a point distinct from A4 on the ray BA in
the order DAaB and C and ¢ are points of the ray BC such that
the angles ACB and acB are right angles, then in the right triangles
4BC and aBc, CA is greater than ca and BC is greater than Be;
(3) if = is a point of the ray BA, there exists on the ray BC
exactly one point y such that xy is perpendicular to BC, and further,
zy < .

Proof. The great circle. X containing the associated interval .DE
contains 0, the pole of BC which is on the A side of BC. Since
angle ABC is less than a right angle, the interval DE is less than
& quadrant and hence does mnot contain 0. But all points of K
which are within the angle A BC are on the interval DE. Hence 0
is without the lune 4 BC, There exists exactly one quadrant 0 AC.
This quadrant is a subset of the great circle containing the inter-
val AC. The interval 4C is a proper subset of the quadrant OC.
Similarly it can be proved that the interval ac is a proper subset
of the quadrant Oc. From definition of the perpendicularity and
Theorem 74, OD is perpendicular to BA at D. Since we have
DAaB it follows by Theorem 78, part (2) that 04 is less than Oa.
By Theorem 65 it follows that AC is greater than ac. Suppose
that on the ray BC we have order BCc or that C=c. It is easily

icm

Foundations of Geometry. 65

shown that in this case the intervals AC and ac have points in
common. But then the quadrants OC and O¢ would have at least
two points in common and would be identical (Theorem 60). Then
we would have 4 =—a which is contrary to the hypothesis. Hence Be
is less than BC. The proof of part (2) offers no difficulty.

Theorem 80. In a right triangle a side opposite an acule angle
és less than a quadrant.

This follows from Theorem 79.

Theorem 81. In the triangle ABC if angle C is a right angle
and AC s less than a quadrant, the angle B is an acute angle?).

Theorem 82. In the triangle ABC if C is a right angle and AB
is less than a quadrant and either one of the angles Bor A is acute,
or one of the sides BC or AC is less than a quedrant, then both A
and B are acute angles and both AC and BC are less than AB.

Proof From Theorem 81 and the hypothesis it follows that
either 4 or B is less than a right angle. Suppose B is. From
Theorem 79 it follows that both BC and AC uare less than a qua-
drant. By Theorem 81 angles 4 and B are both acute. By Theo-
rem 18, part (2), AC and BC are both less than 4B.

Definition. The angle ABC is said to be symmetrically con-
gruent to any angle which is congruent to the angle CBA.

It is our object in the remainder of this paper to prove that the
base angles of an {soceles triangle are symmetrically congruent. We
shall prove this proposition by showing that we can derive the
formulas for the solution of triangles by methods analogous to
those used by W. H. Young in his paper On the Analytical Basis
of Non-Euclidean Geometry?). However, he assumes the symmetric
congruence of the base angles of an isosceles triangle. This makes
it necessary for us to modify his treatment considerably.

Henceforth when we use the term ,the interval AB“ we shall
mean sometimes the set of points which constitutes the interval 4 B,

“and sometimes the number which is the length of this interval

Which interpretation is intendend will in general he evident from
the context of the discussion.

1) For proof see M. Dehn, ,Ueber den Inhalt spirischer Dreiecks, page 169,
Mathematische Annalen, Vol. 60, 1905.

1) American Journal of Mathematies, Vol. 33, 1911 (pp. 249—286). This paper
will be referred to hereafter as ,Young*.

Fundamenta Mathematicae t. XI, b
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Theorem 83. If 4 is an acute angle of the triangle ABC
and x s a point of the segment AC, then the segment Bx is within
the triangle and Bz is less than the greater of BA and BC:

Proof By Theorems 78, 72, 74, and 79 the segment 4C and
the interior of the triangle A BC are subsets of Iy, -+ .I,.

Definitions: By the sum of a set of angles we mean the sum
of the absolute values of the parametric values of these angles;
in other words, the sum of the lengths of the associated intervals
of these angles. The greater of two angles is the one having the
greater measure, The angle excess or the excess of a triangle is the
angle sum of this triangle diminished by . ,

Theorem 84. Every triangle has a positive angle excess.

Proof. We can follow a proof given in a book by Carslaw 1);
consider the proof given on pags 183. It can easily be shown, with
the help of Theorem 79, from our definitions of the terms ,mid-

point of an interval® and ,the congruence of triangles* that the

triangle BDE is congruent to the triangle ADF.

Let AOB be a fixed angle. We shall suppose for convenience
that 04 and OB are quadrants; hence 4B is the associated interval
of the angle. On the great circle AB in the order 4 BA let 4,
be a point such that B4, is congruent to B4. BA, is the associated
interval of the angle BO4,; we shall call BOA4, and any angle
congruent to BOA, a symmetric angle of the angle BOA. If the
variable angle XYZ is a function of a variable w, by the state-
meant (1) Pfr.lit (angle X YZ)=angle BOA, we mean that the limit
of the absolute value of the measure of the angle XYZ as w ap-
proaches a is the absolute value of the measure of angle BOA.
Let zOB be an angle which is congruent to the angle X Y'Z and
let the point # be such that B is the associated interval of the
angle 0B. (Note that the angle OB is not congruent to the
angle BOz). From statement (1) it follows that at least one of the
points 4 and 4, and possibly both may be the limiting positions
of the point . .

(2) By the statement limit (angle X ¥ Z)=uangle AOB in the

strict sense we mean that the limit of the length of the interval Az,

o ' H. 8. Carslaw, The Elements of Non-Euclidean Plane Geometry and
Trigonometry, Longmans, Green, and Co,, (1916). Concerning the angle sum of
polygons cf, M. Dehn, loc. eit.

.
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as w approaches a, in zero. Definition (2) introduces a notion which
evidently is a subcase of the case of definition (1).

Definition: If 4, B, C, D are distinct péints, no pair of which
are poles, and no tliree of which are collinear, by the quadrilateral
ABCD we shall mean the sum of the intervals 4B, BC, CD
and DA. By a tri-rectangle we shall mean a quadrilateral, three
of whose angles are right angles, and whose fourth vertex is not
without any one of these angles.

Theovem 85. If ABNM is a tri-rectangle with right angles

at N, B, and M, and C is a point on the ray MA such that MC

is congruent to BN and BN and NM are both less than quadrants,
then A M is less than BN and similarly BA is less than NM. The
angles NBC, BOM, and BAM are each greater than a right angle.

Proof Let P be the pole of NM which is on the same side
of NM as the points B and C. Let Q be the pole of BN which
is on the M side of BN. It is easily seen that the quadrants B @
and PM contain in common the point 4. Also, the quadrant PM
contains the point C. Angle NPM is acute since NM is less than

'a quadrant. Hence by Theorem 82 angle PAB is acute and angle

BAM is greater than a right angle. By Theorem 79 NM is greater
than BA and similarly M A4 is less than BN. Since MC is con-
gruent to BN the point C belongs to the segment F 4. This segment,
by a previous theorem, lies within the angle PBA, which is a right
angle. Hence, angle PBC is an acute angle and angle CBN is
greater than a right angle. Similarly, angle BCM is greater than
a right angle?). :

- Theorem 86. In triangle ABC if AB==BC, then (1) angle CAB
in greater than, equal to, or less than a right angle according to 4B
being greater than, equal to, or less tham a quadrant. (2) In any
case the limit of each of the angles A and C as angle B approaches
2ero and BA approaches a limst, is a right angle. (3) There exists
an the segment AC, if AB is not a quadrant, exuctly one point M
such that the interval MB minus the point M is within the angle
ABC, angle BMA is a right angle, and the lenght of AB is between

1) It is to be noted that since this is an elliptic geometry and since Young
is developing a hyperbolic geometry, many inequalites occuring in Young's paper,
as for instance, in the case of the theorem just proved, will be reversed in our
treatment, In the futare we shall mention this fact only where confusion is likely

to occur.
[
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that of MB and that of a quadrant. (4) The intervals MC and MA
are less than a quadrant.

Proof. Suppose that BA is less than a quadrant. By methods
used in the proofs of previous theorems, we can show that the
segment 4 C is within I,,, and that there exists on this segment
a point M such that C,, is tangent to AC at M. M B is perpendi-
cular to AC at M, and sinece M is in I, BM is less than AB.
By Theorem 82 the conclusions for (1), (3), and (4) of this ease
hold. If now angle B approaches zero, (2) follows by Theorem 84.
If BA is greater than a quadrant the triangle 4 BC, satisfies the
conditions of Case 1. Also angle ABC is congruent to angle CBA.
The conclusion follows easily

For the case where 4B is a quadrant there is no trouble.

Theorem 87. In the triangle ABC if angle B is acute and
angle C is greater than a right angle, then AC is less than AB.

Proof. There exists by Theorem 79 on the ray BC a point N
such that AN is perpendicular to BC at N and AN is less than
a quadrant. Similarly, if £ is a point of the ray BC in the order
BCE, there exists on the ray CE a point N, such that AN, is less
than a quadrant and 4N, is perpendicular to BC at N;. There is
one and only one great circle through 4 which is perpendicular
to CB, since 4 is not the pole of BC. Hence, if N, is distinet
from N it must be N, the pole of N. But NAN is a semicircle,
and hence by Theorem 65 not both AN"and AN, could be less
than a quadrant. Hence N is N;. Hence by Theorem 78, part (2) 4 C
is less than A B. For, N is on the ray BC and is also on the
ray CE. Evidently then we have the order BCN on the ray BC.

Theorem 87 A. In a triangle ABC if angle B is acute, angle C
in greater than a right angle, AB is not greater than a quadrani,
and E is a point on the ray BC in the order BCE, then (1) angle
ACE is greater than angle ABC; (2) angle BAC is acute.

Proof. If the theorem is not true, there exists on the inter-
val AC a point ,a* such that angle a BC has the same measure
as angle ACE.'Let O be that pole of BC which is on the 4 side
of BC. By methods used in the proof of Theorem 87 we can prove
the existence of a quadrant Oak such that 4 is a point of the
ray' BC in the order BCh. Let H he defined in the same way
as the point N in the proof of Theorem 87. The ray AC falls within
the angle B A H which by Theorem 82 is acute. Hence b y Theorems 87

icm

Foundations of Geometry. 69

and 83 BC < Ba << BA. There exists a rotation M, about O that
transforms C into B. By page 405 H. G., M transforms the ray CH
into the ray BC. Hence it transforms the ray CA into the ray Ba.
Let M(a)=1"0. By Theorem 87 aC is less than aB. Hence b is
a point of the interval Ba and is distinct from a, since M is not
the identity motion. It is easily shown by preceding theorems that
the set of points common to the line Ba and to [, is the seg-
ment ba, and that this segment is also a subset of the interval Ba.
By methods used in the proof of Theorems 66 and 72, and by
Theorem 67, there exists a point y on the segment ba such that C,,
is tangent to Ba at y By Theorem 74 Oy is perpendicular to Ba.
In the order Oyz on the line Oy there exists a point z such that
Oyz is a quadrant which is perpendicular to BC at z, and that 2
is a point of the ray BC. Since y is a point on the interval Ba,
By is less than a quadrant. By Theorem 82 angle Byz in then
acute. Thus, if the theorem is false, angle Byz is both an acute
angle and a right angle. ’

Theorem 88. If DBC is an acule angle and H is a point on
the ray BC and K is a great circle through H and perpendicular
to BC then (1) K contains exactly one point A in common with the
ray BD; (2) AH is less than a quadrant; (3) if HB is less than
a quadrant, then so is AB, and if HB is greater than a quadrant,
so is AB.

Proof It is evident by (3) Theorem 75, that @, that pole
of BC which is on the D side of BC, is not a point of the lune
DBC and hence that ¢ is on the non-H side of DB. By definition
of K, @ is a point of K. Hence it is easily shown that the qua-
drant HQ contains a puint 4 of the ray BD. Let Z be GC, If
one ot the intervals AB and BH is greater than a quadrant and
the other is less than a quadrant, then the endpoints 4 and H of
the interval 4 H must be on opposite sides of Z, and Z and the
interval AH contain in common a point X. The point X is evi-
dently neither @ nor ¢: But by Theorem 52 Z contains ¢ and Q.
Hence K and Z contain in common three points and by Theorem 60
we are led to a contradiction. Hence we have proved (3).

Theorem 89. In a triangle ABC the sum of the sides AB
and AC is greater than the side BC.

Proof. Suppose that the theorem is not true and that there
exists a triangle 4 BC sueh that BC is greater than, or equal to
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the sum of 4B and AC. Then there exist on the interval BC
points X and z such that Cz is congruent to CA and BX is con-
gruent to BA. If BC equals the sum of the other two sides then
X =2. By Theorems 74 and 68 C,, and C,, are then tangent at 2,
and since these two circles have only one point in common it
follows that A = . Hence, B, C, and A are collinear, contrary to
hypothesis

Hence, with the help of Theorem 65, we can prove that Cxz
and BX have no points in common. Then on BC we have the
order BXzC. By the argument used above it follows that Cy, and C,,
are not tangent and since C and B are not poles the two circles
are not identical (Theorem 62 A). Hence by Theorem 72, they have
in eommon exactly two points. Let X; be the point distinet from X
that is common to C,, and the line BC. By Theorems 71 and 72
the segmeut XA X, of Cp, is a subset of the 4 side of BC:

Let «, be the point distinet from z common to the circle with
center at C and containing 4. The sum of the intervals Cz and XB
is less than 4 B which is less than a semicirele. The intervals Cux,
and BX, are subsets of that interval BC of the line BC which
is greater than a great semicircle, and hence the intervals Cuz,
and BX, have no points in common. The points X and X, are
thus both in E,,. (By Theorems 71 and 72 the only point com-
mon to I, and the great circle passing through B and C are the
points of the interval a;Cx of this great circle). It follows by
Theorem 71 that the segment X AX, of C,, contains two points of
Coso By Theorem 77 we are led to a contradiction.

Let 0 A1) be equal or less than a quadrant and let OB be less
than O 4. Then by preceding theorems 4 M, O M, BN,ON, OP, CP,
are each not greater than a quadrant. With the help of Theorem 79
we can show that if H is the pole of OM on the A side of OM
then there exists in the interval CH of the quadrant HCP a point £
such that AE is perpendicular to HCP at E and E4 is less than
2 quadrant. As in the proof of Theorem 84 we can show that by
a semi rotation about C the triangle ECA goes into a triangle FCB,
where F is a point of the ray C P The inequahtxeq (reversed) of § 3
of Young follow without trouble. In § 4 Young applies the 8y-
metry theorem and hence his argument is not valid for our pur-

1) Bee figure in § 3, Young,
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poses. We shall proceed as follows: In Figure 2 let B be the same
as 0. Then 0 C==4 0 4, and by inequality (1) § 3, Yonnggo>éf1
Now we can proceed exactly as in paragraph 5, Young, noting,
however, that the inequalities of Young must be reversed. We have
by the above and previous theorems that CP is less than 4 M,
which is less than EP, provided OC is less than 04, and 04 is
not greater than a quadrant. We have also by Theorem 82 that
angle O CP and hence angle ECA is less than a right angle. Then
in the right triangle £ AC, since AC is less than a quadrant, it

. GP AM _EC4CP,
follows that E'C is less than CA; hence (1) 04 OA<————-0A H
(2) 0 4=0C— CA4. Hence, it we let 4 approzwh C, we reach the
conclusion at the end of § 7. In case C approaches 4, multiply the

inequality (1) above by % 0 and the same conclusion may be drawn.

We define and ‘prove the existence of the sine of an angle AOM
as in § 91). We cannot prove at this stage that sin 4 0 M=sin MO A.
The same problem will arise in connection with the other trigono-
metric functions of an angle; it will be proved, after we have
developed the addition formulas, that F'(angle A O M) = F(angle M 0 4)
where F is any one of the six trigonometric fanetions. ‘

Concerning § 10, Young. Let A OM be an acute angle and let 0.4
be equal or less than a quadrant. Use the ‘notation of § 10. Let ¥
be that pole of OM which is on the A side of OM. By previous
theorems the intervals BN, CP, AM are each less than a quadrant

and hence are subsets of the quadrants F'N, FP, and FM respecti-

vely. By Theorem 82 the angles OCP and O AM are acute. Hence
by Theorem 79 there exists on the interval CP a point E such

that the interval BE is less than OP and that BE and CP are
- perpendicular at E; similarly there exists on the interval AM

a point H such that CH is perpendicular to AM at H, and CH,
is less than a quadrant. Sinee P is the midpoint of NM there is
a rotation about F that carries P into N and M into P. This rota-
tion carries C into a point ¢ of the quadrant AN and H into
a point A of the quadrant FP. By Theorem 79, BN is less than CP
which is congruent to Nc. Hence on the quadrant FN we have

4 The sine ratio is never greater than unity., See Theorem 82.
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the order NBcF. Hence by Theorem 79 BE is greater than ch
which is congruent to CH. _

In triangle BCE angle E is a right angle. Hence angles EBQ
and BCE have a sum greater than a right angle. Angle PCH the
fourth angle of the tri-rectangle PCHM, is greater than a right
angle, and hence the sum of angles BCE and A CH is less than
a right angle. It follows that the angle 4 CH is less than the angle
EBC. Since E is a point of the ray CP, the interior of the tri-
angle BEC is within the M side of OB A, Similarly the interior
of the triangle CHA and all of this triangle except the side 4 C
are on the M side of OBA. Let Q be a pole of O0BA. There
exists a rotation about  that transforms (' into B. Let the trans-
forms under this rotation of 4 and H be 4, and H, respectively.
By the formulas on page 405, H. G, 4, will be a point of the
ray BC. Since the angle 4, BH, is congruent to the angle ACH
which is less than the angle CBE, the ray BH,—B falls within
the angle CBE. Also, since BH, is congruent to CH which is
less than BE, it follows by Theorem 78 (part 2} and Theorem 76
(part 3) that the interval BH, — B is within the triangle BEC,
Since the pole T' of BE on the C side of BE is on the non-E
side of BC (by an argument we have used several times) there
is a point K common to the ray BC and the interval H, 7T The
ray KH, will contain a point L of the ray BE. By Theorem 78,
parts (4) and (5) the segment K is a subset of the interior of the
angle CBE and contains H,. If K is a point of the ray CA, the
interval KL must then contain a point of the side CE of the
triangle CBE. But since the angles KLE and CEL are right
angles and CE is less than a quadrant, such an intersection is
evidently impossible. Also, evidently, K is distinet from B Hence K
is a point of the segment BC. Sinece BK is less than BC which:
is less than a quadrant it follows that LK and hence LH, is less
than a quadrant; also BH, is less than a quadrant. Hence from
the right triangle BH, L, the angle BH,L is acute, Hence the
angle BA, K is greater than a right angle. Since the angles BH, K
and BH, 4, have a ray H; B and a vertex H, in common either
the interior of one is a subset of the interior of the other or their
interiors have no points in common, By Theorem 76, part (4), the
segment KB is within the angle BH, K, and the segment B4, is
within the angle BH, 4,; the first of these angles is greater than
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a right angle, and the second is a right angle, and the segments B A,
and BK are subsets of the ray BC. Hence K is without the angle
BH, 4, and 4, is a point of the segment BC and we have proved
that BC is greater than B4, which is congruent to CA.

If we reverse inequalities, §§ 7, 11, 12 and 14 Jollow with few
or no modifications. § 13 will be considered later in connection with
§§ 16—18.

Concerning § 15 of Young. The inequalities for the sine, cosine,
and tangent given in § 156 of Young hold good here. Young’s proofs
for the case of the cosine and tangent hold here. We shall now
consider the case of the sine

Use the notation of Young in Figure 5. Assume that 0 A is less
than a quadrant. By Theorem 78 (2) OM < 04’ < 04. Angle 40 A’
is less than a right angle and hence by Theorem 79 and 82 there
exists on the interval O4 a point B such that 4’0B is a right
triangle having a right angle at B and having the properties of
the triangle mentioned in Theorem 82. We have then from the
right triangle 4B A’ that AB is less than AA4’. We also have
OB<C0A4A'<<OA. Hence 04— OA’—¢eA A’ wheree is a positive
quantity less than unity. Also 4’M << 0 4’. Hence.

L AM AL AM _AM
(1) VA= 04 Fe 424~ 0a-

From this inequality, if we let 04 approach zero, it follows
easily that sin (4 OM) is not less than sin (4’0M).

Paragraphs 16, 17 and 18. Since the sine function and the
tangent function are monotone increasing funetions of the decrea-
sing O A (notation of § 10) it follows that the sines of acute angles
are positive numbers, which, as pointed out by Young, are not
greater than unity; and also that the tangents of acute angles are
not zero. Refer now to Figure 7, §§ 17 and 18. Assuming that all
the intervals meuntioned are less than a quadrant, it follows that

OK _AM K4 OM

04> 04 ™ 1<%z

From the second of these inequalities it follows that if we let 0 4
approach zero, cos (4 OM) is greater than or equal to sin (4 0K),
which is a positive number. Since the cosine function is less than
unity when OA is less than a quadrant and since it decreases
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monotonely with 04, it follows that the cosine of an acute angle
is between zero and ome. It follows that the six trigonometric func-
tions of an acute angle exist, and are all positive numbers. In Fi-
gure 7, let 04 have a definite value r less than a quadrant. Let
OM have a length less than e.r, where e is a positive value which
has been asigned in advance and which we will suppose is less
than unity. Let @ be the pole of OM which is on the 4 side
of OM. The point @ is without the circle Cy,. The circle C,, has
only the point 4 in common with the quadrant QM. Let N be the
pole of OQ which is on the M side of 0¢. Then by Theorem 52
and later theorems, angle @ ON is a right angle, and M is a point
of the quadrant ON. The ray 04— 0 is on the @ side of OM.
Also 4 is on the M side of 0Q. Hence the ray 04 falls within
the right angle QOM=QON and coutains a point B of the
segment QN of the associated interval QN of that angle. By Theo-
rem 76, part (2) the. segments 4¢Q and B @ each contain one point
of any ray which falls within the angle QOB. Let y be a point
belonging to the segment 4 Q and z a point common to the rays B Q
and Oy. Qu is the difference between the measures of the angle z ON
and the right angle Q ON. (By Theorems 71 and 72, applied at the
point z, the intervals Oz and zN have ouly x in common). Let Z
be a point on the interval Oy such that OZ is equal to or less
than 0A4. Let ZN' be the perpendicular to the ray OM at N'. By
results we have established for the cosine ratio it follows that

ON OM _OM
o 0Z <0y <04=¢

Those inequalities hold for all #’s on the interval QB and all Z's
on Oy such that 0Z is less than OA=r. Hence in the notation
of § 21 Young, it follows that lin;it f(%,2)=0 in the strict sense
where f stands for the cosine ratio. In the same construction let O M
remain fixed, but let B approach Q. OBN and OzQ are right
angles, since by preceding theorems O is a pole of the great circle Q@ N.

The limit of —g as A Q approaches zero is the cosine of angle M Q N.

But the cosine function for fixed angles is a monotone decreasing
funetion of a decreasing argument and is never less than cosine
of the angle, which is positive number; hence, as B approaches
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zero A(Q approaches zero; and from the right triangle 4 BQ it
follows that AB also approaches zero, Since OB and QM are
“:‘)Jg g—’f—_—j% Whith the help of inequality (1) of the
section concerning § 15 of Young it follows that if we define =,
Y, Z, N' as before we can find a position of B such that if e is
a positive number

quadrants

g NZ_yM__AM
©) 1> oz> v~ 04

In the notation of § 21 we have proved that limit f(z,2) =1,
zel

>1—

.
where f stands for the sine ratio, and where the angle BON ap-
proaches the right angle Q ON in the strict sense. (See note follow-
ing Theorem 84). In inequality (1) let OZ approach zero. Since
the cosine function for a fixed angle decreases monotonely with
the distance it follows that the cosine of angle z OM is less than e.
Similarly in inequality (2), sinece the sine function increases with
the decreasing distance it follows that sin zON is between 1
and 1 —e. Hence we can make the statement made at the foot of
page 261, Young, provided we say that the cosine has the limit
zero and the sine has the limit unity. Finally, it is pot necessary
that the angle 4 OM have the angle Q OM as a limit in the strict
sense. For, if the point B has both @ and @ as limiting positions
it is evident that for a subsequence of the B's which have @ for
a limiting position we can set up inequalities (1), and (2), while
for that subsequence which has ) as limiting position, we get
gimilar inequalites. Adopt again the notation of Figure 7, Young.
SmceK0>—40—%4 it follows from what we have just proved that
as angle 40K approaches a right angle and angle 4 O M approaches
zero and the distance 04 approaches zero, the sine function of
angle AOM and the distance OM approaches zero. Also the cosine
of angle AOK is mnot less than the sine of A0 M. Hence, from
what we have proved before about the cosine it follows that as

angle 4 OM approaches zero its sine approaches zero.
AK OM
From -0——Z<m
used above the statements in paragraphé 17 and 21 concerning the

we can prove by methods analagous to those


Yakuza


76 R. G. Lubben:

convergence of the cosine to the value unity and the uniform con-
vergence of the cosine ratio to this same value as the angle A0 M
approaches zero and O4 approaches zero. We can now affirm the
statements of § 19 and accept the definitions there giver.

We shall next establish some of the results given in §§ 20, 21, 23
and 24. See the construction in the section concerning § 15.

AM AM
Fro m 5 A> 04 it follows that
AM_ 4M _AM—A'M_AL _AA 4B
) °<W 04 <04 ~— 04 4B 04"

We wish to prove that if either the angle AOM or the angle
A'OM is held fixed and has a measure ,a“% as the angle 404’
approaches zero and the lengths 04 and 04’ approach zero, the
right hand expression in the inequality above approaches zero. Since
the angle 40M spproaches a fixed value g, and the angle OMA
is a right angle, it follows from the statement in § 1 on the lower
half of page 251, Young, that the angle O'AM approaches the
value 7 — a. - By the same reasoning it follows in the right tri-
angle ABA’'Y) that the angle 4 4’B approaches the value a.

Consider now a fixed angle HIJ having a positive measure
$n—a—e where ¢ is a positive number, and let its symmetric
angle be called KIJ. (See note at the end of Theorem 84). Let the
variable angle XIJ be congruent to the angle A’ 4B and further
“assume that the triangle XIJ is congruent to the triangle A’AB
in such a way that for each value of the variable O A there is
a motion that transforms 4 into I, 4’ into X, and B into J. Let 04
be 50 small that angle 4’4 B is greater than $m—a—e (By hy-
pothesis H and K are on opposite sides of IJ. The ray IJ is fixed
and 8o is the point I but the point J is mot fixed). Since XI1J is
‘greater than either of the fixed angles HIJ and K1J, if X is on
-the K- side of IJ the ray JK must fall within the angle XI.J.

“If X falls upon the H side of 1J the ray IH will fall within the
-angle X1J. We shall for the sake of simplicity consider the case
where IK i is within the angle XIJ. In this case by Theorem 76
the ray 1K and the segment XJ contain a point L in common.
Let r be a definite value of /L for which all the statements

- 1) See notes on paragraph 15 for notation.
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above are true, and let k be the corresponding value of % Let »

and ¥ be defined similarly in terms of IH and %+ JH From the

17
properties of the sine ratio it follows that when IL is less than r

. JL .
the ratio _T% will be greater than k. But by inequality (1), in the
JX _JL
' IX I
ment for the case when X is on the H side of IJ. Hence, since
as OA and OA' approach zero, A4’ and IX approach zero, it

section concerning § 15 We can make a similar state-

follows that I—X—— Egj,) is always less than the smaller of the
values 1 and - and hence is bounded. O M <C 0 4’ <C 0 4; therefore,

k [
as OA approaches O, so do OM and O4’. The variable angle
AOM is less than some definite angle b which is less than a right

angle. From what we proved in the section concerning §§ 16 and 17

concerning the cosine function it follows that %—Ig is always greater

than cos (b) which we have proved is a positive quantity. Hence,
since OM approaches zero with 04, 04 will approach zero
with OA’. Hence, we have proved that if ome of the quantities
0A, 04’ approaches zero the other does. But ;AB:
with decreasing OA’ and decreasing angle 4’ OB. Hence, if we
keep either of the angles AOM and 4’OM fixed and let the other
one vary, the sine function of the variable one and a decreasing
modulus approaches the sine of the fixed one as limit as angle 40 4’
and the distance 04 and OA’ approach zero. Further, let 04 be
so small that the difference between sine ratio and the sine of the
fixed angle is less than a positive number 4e, where ¢ has been
assigned in advance, and lét 404’ and OA be so small that for
all smaller values of 04 and 404’ the difference in inequality (1)
will be less than {e. Now keep both angles fized and let 04 and 0.4’
approach zero. It follows that the sines of the two angles differ
by less than e. Hence we have established the fact of the uniform
convergence of the sine function and the continuity of the sine. (Cf.
§ 21, Young).

approaches zero
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Note. The assumption in this argument has been that the method
of approach of these angles is in the striet sense

Concerning the uniform convergence of the cosine ratio and the
continuity of the cosine: It has been shown that 04 — 04’ =cd 4’
where 0 <<e<C1. We have.

OM_OM_ OM(0A—04) _OM A4
<oz~ 04— 04.04 — 04 04

is always less than unity. Hence from facts we have proved in the
immediately preceding paragraphs and by methods analagous to
those there used, we can prove. the continuity of the cosine and
the uniform convergence of the cosine ratio to the cosine. We have
now proved properties that enable us to prove the results given
in §§ 21, 20, 23, and 24. We are not yet ready for the develop-
ments in §§ 22, 25, and 26.

Concerning § 39 and following. Young's treatment of the existence
of the length of a circle offers certain difficulties; his geometry
is & hyperholic geometry and so in § 27 he can use the fact that
in that'geometry the angle sum of a triangle is less than two right
angles; in some of the following paragraphs he uses the symmetry
relation. We can, of course, apply neither of these propositions.
We shall change the order of the treatment he gives and prove
first the addition formulas. Consider, then, (1) in Figure 12, para-
graph 39, where 4 and N and the interiors of the angles 4 OB
and BOM are on opposite sides of the ray OB and M belongs
to the ray ON. Suppose 4 OM is acute. Its measure is the sum
of the measures of AOB and BON. Let 04 be less than a qua-
drant. Let @ be that pole of ON which is on the 4 side of ON.
Then 4 is on the quadrant QM. (Let P be that pole of O ¢ which
is on the 4 side of 0 ¢Q and let T be that pole of @AM which
is on the B side of Q AM). By Theorem 52, T ana P are points
of GC, which by hypothesis contains O and M. In the triangle
‘QXB the side QX is congruent to QB and both are greater than
a quadrant. By Theorem 86 the angles BXM and XBN are both
greater than a right angle. Both of these angles have right angles
as limits as the sides of the quadrilateral X BNM approach zero.

We shall prove that if K is a point on the ray AM such

that BK A4 is a right angle then the limit of fj—% as these intervals
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approach zero is the cosine of angle BOM. Let a and b be the
measures of angles 4 0B and BOM respectively. For sufficiently
small values of 04 it follows by propositions proved by Young
that the measure of angle 0 4 M is as close as we please to 4w — (a -4 b)
while that of angle OAB is as close as we please to §z— a. Hence
for sufficiently small values of 04, the measure of angle BAK is
a8 close as we please to 5. The first of these angles is smaller than
the second. It can be proved that M and B are on the same side
of OA, the ray AM falls within the angle OAB and O and B are
on opposite sides of 4M. By Theorem 82 AB is less than OA.
It follows easily that angle BAK is less than a right angle and hence
from the triangle BAK that AK is less than a quadrant. Let B
be a rotation about M that carries T into Q. Let 4,, B,, K, be the
transforms under B of 4, B and K respectively. By Theorem 52,
G Cy contains both T and ¢. By Theorem 62, R carries @ into T,
the pole of T, and carries the quadrant M Q into the quadrant MT
and carries the ray 4M into the ray 4, M. Also, since on the
ray OMN we have the order OMT, it follows that the ray MA,
and the quadrant MT contain O. Since B and T are on the same
side of AM it follows that B, and Q are on the same side of 0T,
which is on GC,. Let S be a rotation about @ which carries 4,
into O. Let the transforms under S of the points B, and K; be Z°
and W respectively. It follows, (See H. ., pages 403 to 405), that 8
transforms the ray 4, M into the ray OM. Hence the motion SR
transforms A4 into O, transforms B into a peint Z which is.on the ¢

side of OM and transforms K into a point W of the ray OM.

Hence in the terms of the notation introduced at the end of Theo-
rem 84, as 04 approaches zero, the angle BAK approaches the
angle BON in the strict sense, and, therefore, as we have proved
in a preceding section, the limit of the ratio % will be the cosine
of the angle BOM. We can now prove with these additions to -
Young’s arguments, the formula at the foot of page 272:

1) sin AOM =cos BONsin 4 OB+ sin BONcos A 0B,

Consider now the formula for the cosine of the sum of two angles.
We have on the interval ON, the order O MN. From the tri-rec-
tangle BKMN we have BK is less than NM. Let Y be a point
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of the interval NM such that MY is congrunent to BK. Then
OM=ON—YN—MY, from which

OM ONOB KBAB NY BN 0B

OA=O0BOA 4ABO4A BN 0B 04

With the help of results obtained above and methods used
in § 39, Young, it follows

“(2) cos AOM==cos BONcos A OB—sin BONsin 4 OB.

The proof of these formulas for case (2), where 4 ON is a right

angle is along the same lines as the proof for the cese where it is
acute. If now angles BON and 4 OB have the same measur?‘ they
are congruent. If we indicate these congruent an‘gles }Jy 224, the
angle A0M will have a measure 2z; if we keep in mind the con-
struction we made in proving the formulas (1) and (2) we have

6)] sin (2x) =2sinz cosx
4 cos (22) == cos?x — sin® .
If we square and add we get
3) cos?(2z) - sin? (2z) == (cos® z -} sin® x)*,

In the three formulas just proved substitute 32 in place of .
Wherever

(6) costz-}-sintz=1 we can prove from formulas (5) and (4) that

cos (}z) = ! +;05 i
® 1— cosx
sin (}x)= —

where the radicals stand for the positive square root.

We shall now prove the following theorem:

Theorem 90. If AOB is an angle whose measure is .z, then
(1) cosz=C08z and sinx==SIN=, where COSw and SINw are
the cosine and sine of Euclidean geometry, and where the argument w
is expressed in radian measure (Euclidean); (2) f(A0B)=f(B0OA),
where AOB is an acute angle, and ,f* is any one of the six trigono-
metric funclions. :
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Proof. When angle 40N is a right angle, the ratio %‘}i—l is
0

constant and equals unity, and the ratio Ug is constant and equals

zero This agrees with our previous definitions of the sine and cosine
of a right angle. If we let z=4n it follows from formulas (6)
and (7) that part (1) of Theorem 90 is true for equal to {n
or 4n. But the formula (6) is true for equal to fn and hence
by (7) the theorem is true for z=(4)*~. By mathematical induction,
with the help of formulas (6) and (7), it follows that when z=(})"x,
(n a positive integer), part (1) of the theorem is true. Finally we
can prove by ‘mathematical induction, with the help of formulas (1)
and (2), that if & is any positive integer not greater than 27, then
for ="k (}4)"n, the theorem is trne. But the numbers x=k(}n
are everywhere') dense in the number interval from O to 3.
Hence, from the continuity of the sine and cosine both in this
(elliptic) space, and in the Euclidean space it fullows that part (1)
of the theorem holds for all values between zero and 4.

We have been assuming so far that we had the construction
of Figure 12. However, the angle 4 OB has the same measure as
the angle BOA. From what we have just proved, it follows that
the trigonometric functions of these two angles are the same. We
have thus proved the theorem. The theorem we have just proved
allows us to accept without question for this geometry the results of
§§ 22, 25, 26, 39, to 45, Young. Also since the sine and cosine are
the same. functions respectively as the sine and cosine of angles of
the same measure in Fuclidean geometry the formulas at the top of
page 275 follow without further argument.

Theorem 91. See notation at end of Theorem 84 If XYZ is
a variable triangle such that the angle Z approaches a right angle,
and such that the measure of angle Y approaches the measure of the
acute angle BOA, as g, the greatest side of the triangle XY 2,

approaches zero, ihm% approaches the sine of BOA which is the

same as the stne of AOB, and-the ratio ?Y—}—Z( approaches the cosine

of BOA which is the same as the cosine of angle AOB. The

!) See note at bottom of page 254 of Young.
Fuandamenta Mathematicae t. XI. 6
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aéproach need not be sirict in the sense of the note following

Theorem 84. .
Proof We shall assume that g is sufficiently smell so that

angle Y is acute. We shall assume first that Z is constant and is
a right angle. In the notation of the note at the end of Theorem 84,
for a certain subsequence of values of g the ray Oz is on the 4
gide of OB and the angle 2 OB approaches the angle 4 0B in the
strict sense; we have proved before that the sine ratios and th.e
cosine ratios approach the sine and cosine of AOB (over this
sequence). For a sequence where x is on the 4, side of OB we
get in the same way the sine of 4, 0B and the cosine of 4, 0B
But 40B and 4,0B have the same measure. Hence by Theorem 90
the first case follows.

In ease angle Z is not a right angle, let 7 be a point on the
ray YZ such that Z WX is a right angle. We may assume that ¥.X
is less than a quadrant, that angle X is acute, and that g, the
greatest side of either of the triangles XZY and Y WX is less
than a quadrant. As g approaches zero, XZY and XZ W approach
right angles and hence, since angle Y WX is a right angle, it
follows from the triangle ZX W that angle ZX W approaches zero
Xz X7 XW
XY XW XY
sion on the right of the equality has unity as limit, while the second
approaches sin 4 OB. Since Z and W are both points of the
ray YZ it follows that either Z is a point of the interval Y #
or that W is a point of the interval YZ. Hence ZY is either the
sum or the difference of YW and ZW. We shall consider the

ZY WY WZi XW
second case, ﬁ=7—f —W X—I—-f
case one and previous theorems that this ratio has a limit cos AOB.

Theerem 92. If ABC is an acuie angle then there exists on the
ray BC a point D such that the measures of the angles DAB and
ADB have the same numerical value.

We leave the proof of this theorem to the reader.

We are now ready to treat the questions of the length of circles
and related topics. Let 4 0.4’ be an acute angle, and let 04 and 0 4’
be congruent and less than quadrant. By Theorems 88 and 76
there exists on the ray O A4 a point B and on the ray 0.4’ a point B
such that BA'O and B'AQ are right angles, such that all the sides

By the first case it follows that the first expres-

It can easily be proved by
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of the triangles BA'O and B’A0 are less than a quadrant, and
that the segments BA’ and AB’ are within the angle A04". By
Theorem 82 both OB and 0B’ are greater than OA. Tt follows
easily that the segments AB’ and 4’F have in common exactly
one point D. Let E be any point of C,, which is within the
angle AOA’. By Theorem 76 the ray OE contains exactly one
point ¥ on the segment A4, one point G on the segment AZ,
and one point J on A’B. By Theorems 78 and 83, OF is greater
than OF but is less than the smaller of 0G and OJ. Let K be
a great circle which is perpendicular to O K at E. By the method
we used in proving that 4’B and AR’ intersect in a point D we
can prove, (since BOE and EOA’ are acute angles), that K con-
tains a point 1 of the segment A and a point L of the segment J A’
of the interval JA’. We wish to prove next that L is a point of
the segment A’D. Suppose that it is not. The point L cannot be 4’,
ginee K is tangent to C,, at E. Hence, since the intervals JA’
and DA’ are both subsets of the interval A’B, L is either D or
a point of A'J in the order A’DL. By Theorem 78 OJ is less
than OB which is less than a quadrant. Since JOA' is acute, it
follows by Theorem 82 that JA’ and hence J is less than a qua-
drant and that OJA’ is acute. By the same theorem it follows
that KL is less than a quadrant. Since Z and L are within the
angle A 04, the interval EL contains no point of OA4 or for 04"
Since OF is less than OF which 1s less than 0@ it follows that E -
is a point of the 'segment F'@. By Theorem 76 E is then within
the angle GAF which is the same as the angle DAA’. In the
same way we can prove that £ is within the angle DA’A But
from this it follows that E is on the A side of 4’D and on the
A’ side of AD, and hence is within the angle ADA’ and hence
within the triangle DAA’. If L is a point distinet from D in the
order A’DL it follows that L is on the opposite side of AD from E
Hence the interval EL contains a point Z of the great circle passing
through A and D. Since EL is entirely within the angle 404’
and since by Theorem 76, the interval AB’ is the only part of
the great circle passing through 4 and D which is a subset of
the lune A 04/, Z is a point of the interval 45’ Hence whether
is L of whether D is a point in the order A’DL the interval KL
contains a point Z of the interval AB’ and also contains the point L,
of the interval A’B. Let L and E be the poles of L and E respecti-
6*
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vely. The point E is without the triangle ADA’. (Theorem 60)
Hence the semicircle £ L E contains a point ¥ of the triangle.
But the point F' of the segment AA’ is within Co, (OF is less
than OA by Theorem 83); by Theorem 178, since OF is perpen(h
cular to K at E, if @ is any point of K distinet from E, 0Q is
greater than OF. Hence the side AA’ contains no point in common
with K. Hence ¥ must be a point of one of the sides AD and A’'D.
But then one of the intervals AB' and A’R must contain two points
of K. This leads to a' contradiction. Hence L is a point of the
segment A'D and similarly I is a point of the segment A D.

By Theorem 86 angle AA’O is acute. Since angle AOA’ is
also acute it is easily proved that there exists on the rays 04’
and A’O (and hence on the interval 0A’) a point W such that 4 W0
is a right angle and that 4 W is less than a quadrant and is also
less than A4’. Also; ir the right triangle DAB, AB and BD are
both less than a quadrant, and hence by Theorem 82 AL is less
than DB. With the help of Theorem 89 we can now prove the
following inequality

(1) AW<AA'<AE+EA'<AJ+IEL-+LA'<AD-+DA'<A'B.

From inequality (1) we get in the notation of Young, Figure 10,
(assuming AK and A’'K to be tangent to C,,) o

@) A’A<AB+A’B<AK+'A’K<AT<%.

Hence we can draw the conclusion of § 30, since by the inequality (1)
ahove it follows that the inseribed polygons have an upper bound,
and that the circumseribed polygons have a lower bound which is
not less than the upper bound of the inscribed polygons. Also if
we add new vertices to- any iuscribed polygon we inerease the
sum, while if we add vertices to a circumscribed polygon we de-
crease the sum,
From inequality (1) sbove it follows that

n(d'A) (A4)
n(A'D+4AD)” (A'B)
Angles AA’O and A'AO are acute, Hence, from the triangle

AO04" it follows that when angle A0A’ approaches zero the
angles AA'0, AA'B’, A0, A'AB, must approach right angles.

1>
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Also, the associated interval of angle 40A’ approaches zero with
this angle; by Theorem 79 it follows that BA’ is less than this
associated interval Also angle BA’'B’ is a right angle. Hence angle
AA

AB
has cosine zero, that is unity, for a limit as angle A 0A’ approaches
zero. Now we can follow §§ 33, 34, 35 and the definition of length
of circles in § 36.

From inequality (1) we can prove that

3) AW <are AA'<< A'B.

AA'B approaches zero and we have by Theorem 91 that

But when 0A’ approaches zero OB spproaches zero,”given that
angle 404’ is fixed. Hence if we divide, the above inequality (3)
by 04, and denote by L the limit ;‘%ﬁi
zero it follows that if this limit exists and we let z be the measure
of angle A0A’, then

as OA approaches

“(4) sinz <L <tanwz.

Even if this limit does not exists, if L is any number between
1

the upper and lower limits of _ia_r_c_o_%A_ as OA approaches zero,

inequality (4) will still be true. Let C and C' be points on the
rays OA and OA’ respectively such that OC and OC' are qua-
drants. Then the interval CC’ is the associated interval of the
angle 404’. Let C” be the midpoint of this interval. Then by
previous theorems C” and the ray 0C” will be within angle 404""
and this ray contains exactly one point 4” of C,,. There is a ro-
tation about O that transforms C into ¢” and transforms C” into C'.
Hence angle 404" is congruent to A OA’. It is easily shown
that each of these angles has a measure {x. Also (see paragraph 37,
Young), the lengths of the arcs AA4” and A”A’ of C,, are the
same and are each equal to a half of the length of the are 44'%)
of this eircle. Hence by an argument like that used in the proof
of inequality (4) we can prové that 2sin }= << L <2tan {z. By
a repetition of this argument it follows that 4sin o <L <<4tan}z.
With the use of mathematical: induetion we can prove that

1) We are referring to those arca which are within the angle 404’.
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2" sin ()" # < L << 2.tan(4), # holds for all integral values of n.
The left and right members of this inequality (see Theorem 90)
approach the value z as n is increased indefinitely. Hence

. (arc 44"

im=04)
angle AOA'. We have justified the definition of radian measure given
in § 37, Young, and have identified this with the measure we have
used previously for angles.

§§ 48—51. Young here uses the symmeiry theorem and we shall
have to modify his methods.

Consider an acute angle B OB’ whose measure is m/n, n a po-
sitive integer. Let OB and OB’ be congruent. Let ¥ be a point
on the interval BB’ such that angle BOY is congruent to angle
YOB. (It follows from one of the immediately preceding argu-
ments that there is such a point Y, that the ray OY is within the
angle BOB’, and that the measure of the angles 50Y and Y OB’
is one-half that of BOB’). Assume that OB is less than a quadrant
and let X and H be points on OY such that BKO and BHO
are right angles. As we have proved in previous arguments, the
triangles BYH, B'YK, BOH, and B'OK satisfy the hypothesis
of Theorem 82. Let S(B,n)==n.(B’K-}-BH), where B'K and BH
are sides of the triangles B'KY and BHY. Then we have from
the foregoing and Theorem 89

exists and equals ®, where x 1is the measure of

n S(B,n)<n(BB)<S8(B,n)+n. KY+n YH
But
: KY . _KY ,

Now let angle BOB’ approach zero. Then by Theorem 86 the
angles OBB' and OB'B approach right angles. It follows then
from the triangle O Y B that O YB approaches a right angle and
that the angles KB'Y and YBH approach zero. As angle B(OB’
approaches zero, so does its associated interval. Hence, by Theo-
rems 86 and 79 as anglé BOB approaches zero BB’ approaches

zero, and hence

B has the same hmlt But ».(BB’) is the peri-

meter of an inseribed polygon, and hence _
lim (n.BB')= L,, the length of C,,.

angle BOR' = @
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But it follows from what we have proved, including inequality (2),
that n. K'Y approaches zero and similary that #. ¥ H has the same
limit. It follows from inequality (1) that

(3) lim §(B,n) = L,

With the help of this result and from the continuity of the sine
ratio of an angle, we can prove, by arguments largely similar to
those used by Young in § 48, the continuity of f(r). Using the
notation of § 49, we can show by the argument he there uses, the
following inequality:

(4) S(Cym) — 8(B,n) > S5(4,n) — 8(C, ).

If we now proceed to the limit, we can make the statements which
are given on page 276, Young, provided we reverse the inequality
signs throughout. From inequality (1) in our treatment of the lengths
of circles it follows that the length of that part of C,, which is
within the angle BON is less than the interval BN (assuming
that OB is less than a quadrant and that angle BON is acute,
see Figure 13). From this it is easily proved

lim f(#) = 0. Letf(0)= 0.
From this it follows by § 37 and by deéfinition of f(r), that
£(0) = lim f(’) ﬂo} =1

r=0

But the argument we have given in the preceding sections to es-
tablish inequality (4) is valid if B is the point 0. Sinee in this
treatment the inequalities are reversed it follows from the argument
given in Young that the incremental ratio of f(r) is never greater
than unity or less than zero for r less than or equal to 4= It
follows from his argument that the derivative of f(r) exists. for all
values of r and is never greater than unity or less than zero, for r
from O to }mw inclusive.

§§ 52—55. In the figure on page 277, Young let ABC be
a right triangle that satisfies the hypothesis of Theorem 82. Let P

1) We have given the proof for the case where OB is less than quadrant
Obviously (8) holds where OB is a quadrant, and the argnment followmg is ¥alid
for r = }a.
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be that pole of BC which is on the 4 side of BC. Then by argu-
ments we have used before it follows that all the triangle A BC
plus its interior with the exception of the side BC is on the 4
side and P side of BC, and every quadrant from P to a point
of BC contains a point of the side BA. By hypothesis, the point C,
is the midpoini of the side BC. Hence there is a rotation about P
that transforms B into C, and transforms C, into C, and that trans-
forms the interval BC, into the interval C;C. By Theorem 64 this
rotation transforms C,, the midpoint of the interval BC, into D,,
the midpoint of the interval C,C. Hence it transforms the qua-
drant PA,C, into the quadrant PQ,D,, the point A, into the
point Q.5 hence the triangles 4,C; B and @;D,C, are congruent
triangles and have the same angle sum. Since D, is the midpeint
of C,DyC we can prove in the same way that there is a rotation
about P which transforms O, into D,, which transforms D, into C,
and which transforms ¢; iato a point E; on the quadrant PAC.
Let d; be the angle excess of each of the three congruent tri-
angles 4,BC;, Q,C, Dy, and E, D,C. Then we can write inequali-
ties (1) and (2), page 2771), Young, as Young does, provided we
replace ,tan P,BC“ by 1;’ o
it is easily proved that we can construct 2*~1 triangles between C,
aud C which are congruent to the triangle 4,BC,. Hence we can
write as Young does

By the method we have just used

1.d, <d,

BC___ 4,
C @I EG

From the second of these inequalities it follows from the ar

gument given by Young that —1;'—g approaches zero. Let H, K, be

the associated interval of the angle P,BC. From the monotone

EC
BC
H.K, divided by 4n. Hence the interval H,K,, and the angle of
which it is the measure approaches zero as n approaches mﬁmty

1) The expression on the right in (2) Young should be ,=¢, mot ,<¥
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We may now follow Young in §§ 52, 53, 54, 55. In connection
with § b5, See Dehn, loc cit, page 169, Theorem 2.

In § 57, Figure 17 let M be a point such that OM is perpen-
dicular to the interval AB at M. (It follows by Theorem 86, part (3)
that if 0A is less than s quadrant there exists exactly one such
a point and that O M is less than AM). Let C= C,, and let K= C,,.
Let E be the point in which the ray OM intersects C. Let N and P
be the points where the rays OA and OB respectively intersect K.
In the immediately following, the term arc will be restricted to
those arcs of C and K which are in the lune ABC. It follows
from inequality (1) of our discussion of the length of a circle,
(following the proof of Theorem 91), that arc NM is less than
interval AM which is less than arc AE and arc MP is less than
interval MB which is less than arc EB. Adding these inequalifies
we get the inequalily in § 57; however, we will replace the TM
in Young by EM. To follow his argument we must then prove
that EM is of a higher order than. the arc AB. But the arc AB
is greater than the chord AB which is greater than the interval A M.
As AM and MB approach zero each of the angles A OM and MO B,
and hence the angle AOB approaches zero. Tt follows by Theo-
rem 86 that each of the angles OAM and OAE has a right angle
as a limit and, hence the limit of the angle EAM is zero. It follows
thati‘—M has a limit tan (0)=0. The argument in § 58 offers no
difﬁculty. The main part of the remainder of this paper will con-
sist in the proof of the differential equation at the foot of page
283, Young.

Concerning the triangle with equal base angles.

Let AA’ be an interval less than a quadrant and let M and N
be points on the same side of A4’ such that angle MA A’ has the
same measure as NA’A and let both angles be acute. Let @ be

'~ that pole of AA’ which is on the same side of A4’ as M and N.

With the help of Theorem 76, parts (3) and (4) it follows that
the rays AM and A’'N intersect in a point P such that all of the
triangle PAA’ except the side AA’ is in the interior of the bi-
rectangular triangle QA4". Let PA=ux, PA'=y, and A4 =a.
Let the measure of the auglea PAA’ and PA’A be X, and let the
measure of APA’ be Y. The measure of angle A QA’ is a, since A4’
is the associated interval of this angle, The angle sum of triangle 4 @ A’
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is greater than that of AP A’ since the second triangle is contained
within the first. Hence

) a+a>Y+2X>n
#t+ae—2X>V>n—2X

Let X, denote a number such that
@) 0 X, <X

There exists a point P, such that each of the angles P, A4’ and
P, A’A is of measure X, and the triangle P,AA4’, except for the
interval A4’, is within the triangle PAA’. From inequality (1)
we have

(3) a4+a—2X,>n+a—2X> Y.

Theorem 93. Consider a variable w and for each value w of w
a pair of fizxed points A and A', and a set [APA'); of triangles such
that (1) the interiors of all the triangles of the set [APA']; are on
the same side of AA’; (8) for each triangle APA’ of the set [APA'); the
angles PAA’ and PA’A have the same measure X; (3) AA’ is less
than a quadrant; (4) the upper bound, for thé set of triangles [APA");,
" of X is §m and the lower bound is a number X3; (5)lim X, ==

wmk

and lim AA'==0. Then, if € is a positive number, there exists a po-

wmk

sitive number J, such that for any triangle APA' tn the set [APA),,
PA— P4
__;{A’—‘ < & for all w's such that |w—Fk| <4,

Proof: The variable triangle APA’ is a function of the va-
riable X; the range of X is determined by the variable w; X, and A4’
are single-valued functions of w. Consider, during that part of this
argument which precedes inequality (5), a fixed value of w for
which }n > 7 4 a—2X,, and the corresponding set [APA", of
triangles. Let the measure of angle APA’ be Y, and let the lengths
of the intervals AP, A'P, and AA’ respectively be z, y, and a.
Let @ be that pole of A4’ which is on the P, side of A4, where P,
is the vertex P of that triangle APA’ of the set [A PA’], whose
base angles PAA’ and PA’A have the measure X,. For each
triangle APA’ let H denote a point on the ray PA’ and K a point
on the ray PA such that PAH and PA'K be right angles. It
follows from the statement of the theorem and the paragraph pre-

7
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ceding the statement of the theorem that when X is grester than X,
the ray A'P falls without the angle P, A'4 and hence the ray 4'H
falls within the angle AA’H,. Also, the ray AP falls without the
angle P,AA’ and within the angle QAA’. Since the angles PAH
and P,AH, are right angles, it follows that the ray AH falls within
the angle A'AH, It can easily be shown that the point H is within
the triangle A‘AH, and hence that we have on the ray A'H
and on the segment AH, a point ¢, such that the interval A'H
is less than the interval 4’Q,. From the triangle 44’ Q,, with angle
AA'Q, greater than a right angle, it can be shown by Theorem 87 4
that angle 4'Q,4 is an acute angle and angle A’'Q,H, is greater
than a right angle. By inequality (3) preceding the statement of
the theorem and the choice of w we have made, Y, is less than
a right angle. By Theorem 83 AP and AP are each less than
a quadrant. By Theorem 88 triangle P, AH, satisfies the hypothesis
of Theorem 82. By Theorem 87 4'Q, < A’ H, and hence

4) A'H< A'H,, and similarly 4K < AK,.

It is easily seen from the proceding inequalities and the argu-
ment that follows that the case where A’P is less than 4P can
be handled in the same way as the case where AP is less than
A’P; so we shall consider only the first of these two cases. We
have then

B) 0<zs—y=AP—AP<PH—AP=AH<AH,

Divide every element in (5) by A4’ and let w approach k.
Since X, approaches }7, angle A’AH, approaches zero, and angle
AA'H, approaches a right angle. Since AA’ also approaches zero,
we can show by methods we have used before, (involving in par-
ticular Theorem 91), that A’H, and AH, approach zero. Then by

Theorem 91 A'H,

’

approaches the tangent of zero, that is zero. We

have thus established the conclusion of the theorem.
We shall now derive a differential equation involving the sides

" and angles of the triangles discussed above when the interval A4’

is kept fixed,

For a fixed value w of the variable w discussed in Theorem 93
the triangles APA’ of the set [APA’]; are functions of X alone;
where X, as indicated before, is a variable whose range [X]; is
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determined by . Consider then, during the argument preceding
Theorem 94, the range [X]; and the set [APA']; for the fixed
just mentioned. Let APA’ and AP, A’ be two triangles of the set

[APA'); such that angle PAA’ is greater than P, AA’; that is, Xis

greater than X,; also let 74 a—2X, <§m. On the ray AP let
E be a point such that AE= AP, =gz, and on the ray A'P let
A'F=AP =y,. In the order A'P,T let T be a point common
to the ray A'P, and the interval AP. By Theorem 87 4 ATA’ is
an acute angle and Y, > angle ATA’ > Y. By Theorem 87 AP, <
<AT < AP. Similarly A'P, < A’P.

On the ray FP, there exists in the order FP, @ a point @ that
belongs also to the ray PA. It follows by the statement made at
the foot of page 251, Young, above the footnote, that as X —X,
approaches zero the angle ¥ — ¥, approaches zero. By Theorem 86
the following angles will under the same circumstances approach
right angles: AEP,, P,EP, EP,A, A'P,F, A'FP,, P,FP. From
the triangle PFG it follows that the angle PGF approaches the
value § 7 — Y, and from the triangle GP, E it follows that the
angle GP,Z approaches the value Y.

By § 57. Young, we have thas except for infinitesimals of order
higher than the second, P,F = X—2X).f(»,) and P, E =
=X —X).f(=,)

Hence

. PF fly)
&) Am B E= Fz)'

Also as X approaches X;, EP, and FP, approach zero. With
the help of Theorem 91 we can show from the triangle EGP,
that GP, and EG also approach zero. It follows that GF =— Gr, 4+
+ P, F approaches zero. By an argument like that just given, and
involving the triangle GFP we can show that the intervals GP
and PF also "approach zero. It follows by Theorem 91 that %]F—)
approaches tan (Y;), and %f;_l approaches sec (Y;).

) 1
° But

GF_GP,+PF_PF
FP~  FP

GP, EP,
= Fr |+ )

iom
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From this we get that except for infinitesimals of order higher
than the first

, GF
P,F X-—X, FP
FP=y—y, W ="—"35 7P,
't P BF

Now let one of the angles X and X, remain fixed, and let
X — X, approach zero. Dropping subsecripts, we get

, dy _fg) + e Y. (2)
@) ix= tan ¥

Similarly

dzr _ f(x)4 sec Y. f(y)
dX tan ¥

Subtracting the foregoing equations and simplifying, we get

) =% — (&)~ @)t} Y.

Theorem 94. Hypothesis of Theorem 93. If Y, and AA' are of
[AP.,—A’P,,] —0
@y ="
Proof Differential equation (2) shows that, for w fixed, z and
y are continuous functions of X for X, <CX<C4n, whenever
746 —2X,<<}m We have then by differential equation (3), that
if we keep w fixed and allow X to vary

the same order, the lim

wmk

X,

yw—xw=‘/d(z_y)=flf(y)_f(x)]'tau%Y'dX'

For values of X such that z =y, the integrand is zero. For
values of X such that x=-y, we can write the integrand in the
preceding equation as follows :

| J =) ) (o) o,

But the ineremental radio of f(z) is never greater than u}]i.ty.
If ¢ is a positive number, there exists by Theorem 93 a positive

{a:.,.——- Ye
| a
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d, such that whenever [w—k| <(d,, then for any triangle APA’
in the set [APA"),, {AP A‘;l,A L I’:l‘”:y}[ < & It follows from the
proof proceding this theorem that Y<{Y,. Since ¥, and 44’ =gq

1
arc of the same order, it follows that tana,Y has an upper bound M.

Hence we have the following:
!xw__'yw
|

But M is fixed, and ¢ and 47— X, may be made as small as
we please. Hence the conclusion of the theorem follows.

§ 59. Young. Make the following modifications in Young's tre-
atment. Let @' be a point on the ray OP’ such that angle OPFY’
and angle OQ'P have the same measure ¥ and let Q be a point
on the ray OP such that angles OP'Q and OQP’ have the same
measure. Let OAP be a triangle satisfying the hypothesis of The-
orem 82.

Let K be a point on the ray 0@’ such that OK is congruent
to OF, and let L be a point on the ray OP such that OP’ is con-
gruent to OL. By Theorems 86 and 84 the angles 0Q'P, OP¢,
OKP, and OPK approach a right angle as PP’ and angle P'OP
approach zero. Then angle ¢’ PK approaches zero, and we have

<eM.(}n—X,)

by Theorem 91 that % approaches unity. It follows by Young's

argument that KP is of the same order as A®. Hence we have by
Theorem 94, Q'K is of order higher than the second with respect
to ¢'P. But Ay = KP’ which differs from Q'P by ¢'K Similarly,
dy differs from PQ by infinitesimals of order higher than the second.

Hence if we replace Ay by @'P' or by PQ, the result, in the
limit, in the difference equation set up by Young, will be the same.
Also we may replace Q' P by A®.£(y), and P’ Q by AD. f(y+Ay).
With these modifications we can proceed as at the foot of page 283,
We can proceed as Young does in solving Killing's equation on
pages 284 and 285. His argument at the top of page 286 shows
that f(x) = k.sin % These formulas are sufficient to establish the
categoricity of the space S.
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Independence examples.

We give here a set of independence examples similar to those
given in L. R. H. H,, and shall make the following changes?) in
the examples there given. Let S, and S, be the surface of a sphere
of radius 10, Let S, be the set of rational points belonging to a circle
and the regions for this space be segments of this set. All the spaces
S; to Sy, are the same as S;. In the case of S, let P and P be
a pair of opposite points and let C be the great circle having these
centers. Let the symbol y indicate the ordinate of the point 1 of
8,3 that is, y=0 if ¥ is a point of C; if Y is not on C, y is
numerically equal to the length of the interval YH, not greater
than a quadrant, of a great circle containing ¥ and perpendicular
to C at H; further, y is positive or negative according as Y is
on the P or the P side of C. Let M be a continuous, single-va-
(y)?
252’
y' is the ordinate of M(Y) and such that M(H)=H. In E,, let
a motion be a one to one continuous transformation of S, into
itself that transforms great circles into great circles an preserves
distances.

where

lued transformation of S, into itself such that y' =

1) Cf. L. R H. H, pp. 818—319.

University of Texas, Austin.
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