Soit maintenant E un ensemble jouissant de la propriété (L), et soit $f(x)$ une fonction définie et continue dans E. D'après notre lemme, nous pouvons poser $E=K+R$, où K est un ensemble ds première catégorie, et $m f(R)=0$. L'eusemble E jouissant de la propriété (L), K est un ensemble au plus dénombrable, ce qui entraîne que $m f(K)=0$. Or, on a évidemment $f(E)=f(K+R)=$ $=f(K)+f(R):$ les formules $m f(K)=0$ et $m f(R)=0$ donnent donc $m f(E)=0$, et notre proposition est démontrée.

Il en résulte (d'après le résultat de M. Lusin) que si $2 \mathrm{~s}_{0}=\mathrm{s}_{1}$, il existe un ensemble linéaire de puissance du continu, dont toute image continue est de mesure rulle.

Il est encore à remarquer que tout ensemble E jouissant de la propriété (L) satisfait à la condition (C) suivante:
(C). Quel que soit la suite infinie de nombres positifs $a_{1}, a_{2}, a_{3}, \ldots$, il existe une suite infinie des intervalles $\delta_{1}, \delta_{2}, \delta_{3}, \ldots$ recouvrant E et telle que la longueur de l'intervalle δ_{n} est a_{n}. pour $n=1,2,3, \ldots{ }^{1}$).

Soit, en effet, E un eusemble jouissant de la propriété (L), $a_{1}, a_{2}, a_{9}, \ldots$ une suite infinie donnée de nombres positifs. Soit $r_{1}, r_{2}, r_{\mathrm{a}}, \ldots$ une suite infinie formée de tous les nombres rationnels. Désignons par $\delta_{2 n-1}$ l'intervalle $\left(r_{n}-\frac{1}{2} a_{2 n-1}\right.$, $\left.r_{n}+\frac{1}{2}, a_{2 n-1}\right)$. L'ensemble $\delta_{1}+\delta_{2}+\delta_{5}+\ldots$ est évidemment partout dense, et parsuite l'ensemble $Q=E-\left(\delta_{1}+\delta_{3}+\delta_{5}+\ldots\right)$ est non dense, donc, d'après la propriété (L), au plus dénombrable, soit $Q=\left(q_{1}, q_{2}, q_{8}, \ldots\right)$. Désignons par $\delta_{2 n}$ l'intervalle ($q_{n}-\frac{1}{2}, a_{2 n}, q_{n}+\frac{1}{2} a_{2 n}$). Les intervalles $\delta_{1}, \delta_{2}, \delta_{3}, \ldots$ recouvrent évidemment l'ensemble E et la longueur de δ_{n} est $=a_{n}$ (pour $n=1,2,3, \ldots$).

On pourrait encore démontrer sans peine que toute image continue d'un ensemble jouissant de la propriété (L) est un ensemble satisfaisant à la condition (C).
${ }^{1}$) C'est M. E. J. $S_{z p i l r a j n ~ q u i ~ a ~ p o s e ́ ~ r e ́ c e m m e n t ~ l e ~ p r o b l e ̀ m e ~ d ' e x i s t e n c e ~}^{\text {a }}$ d’un ensemble linéaire non dénombrable satisfaisant à la condition (C).

La propriété de Baire de fonctions et de leurs

 images.Par
W. Sierpiński (Varsovie).

On dit qu'une fonction $f^{\prime}(x)$ juuit de la propriété de Baire, si, quel que soit l'eusemble parfait P, elle est continue sur P quand on néglige un ensemble de première catégorie par rapport à P^{1}).

On dit qu'un ensemble plan E jouit de la propriété de Baire, si tout ensemble plan parfait P, sur lequel E est de deuxième catégorie, contient une portion I, telle que $\Pi-E$ est de première catégorie sur P^{2}).

Nous appellerons image d'une fonction $f(x)$ (d'une variable réelle) l'ensemble $I(f)$ de tous les points (x, y) du plan, tels que $y=f(x)$.

Théorème: Si la fonction $f(x)$.jouit de la propriété de Baire, son image $I(f)$ jouit de la propriété de Baire.

Démonstration. Soit $f(x)$ une fonction jouissant de la propriété de Baire. Pour démontrer que l'image $I(f)$ de $f(x)$ jouit de la propriété de Baire, il suffira évidemment de prouver que si P est un ensemble plau parfait et borné, sur lequel $I(f)$ est partout de deuxième catégorie (c'est-à-dire de deuxième catégorie sur toute portion de $P), P-I(f)$ est de première catégorie sur P. Soit Q la projection de P sur l'axe $O X$: on voit sans peine que la projection Q_{1} de l'ensemble $P . I(f)$ est dense dans Q, et que Q est un ensemble parfait. La fonction $f(x)$ jouissant de la propriété de Baire,
${ }^{1}$) Cf. Fund. Math. t. V, p. 20.
${ }^{2}$) Cf. Fund. Math. t, IV, p. 319. On pent démontrer que pour qu'un ensemble E jouisse de la propriété de Baire, il faut et il suffit qu'on ait pour tout ensemble parfait $P: P E=\left(F-K_{1}\right)+K_{2}$, où F est un ensemble fermé et K_{1} et K_{z} sont des ensembles de première catégorie par rapport à P.
il existe un ensemble K de première catégorie sur Q, tel que la fonction $f(x)$ est continue sur $Q-K$, et nous pouvons évidemment supposer que K eśt un ensemble F_{σ}, donc $Q-K$ - un G_{δ}. Désignons par I_{1} la partie de l'ensemble $P . I(f)$ qui se projette sur K, et par I_{2} - celle qui se projette sur $Q-K$. La fonction $f(x)$ étant continue sur l'ensemble $Q-K$ qui est un G_{j}, l'ensemble Γ_{2} est évidemment un G_{j} plan, donc un ensemble jouissant dé la propriété de Baire. Il suffira done de démontrer que I_{1} est de première catégorie sur P. Or, cela résulte sans peine de la remarque que l'ensemble K est de première catégorie sur la projection Q de P, et du fait que I_{1} a au plus un point sur toute parallèle à l'axe d'ordonnées.

Notre théorème est ainsi démontré.
Il importe de remarquer que le théorème inverse n'est pas vrai, tout au moins si l'hypothese du continu ($2 \mathrm{~S}_{0}=\mathrm{s}_{1}$) est vraie ${ }^{1}$). En effet, nous prouverons que si $2 \mathrm{~N}_{0}=\kappa_{1}$, il existe une fonction d'une variable réelle, $f(x)$, qui ne jouit pas de la proprieté de Baire et dont l'image jouit de la propriété de Baire.

Soit $E_{1}+E_{2}$ une décomposition de la droite $y=0$ en deux ensembles disjoints, contenant chacun au moins un point du tout ensemble linéaire parfait ${ }^{2}$). M. N. Lu sin a démontré qu'il existe dans chaque intervalle de longueur 1 un ensemble non dénombrable qui est de première catégorie sur tout ensemble parfait ${ }^{3}$): nous appellerons un tel ensemble: ensemble de M. Lusin. Soit L_{1} un ensemble de M. Lusin, situé sur le segment $(0,0)-(1,0)$ de l'axe $O Y$. et L_{2} - un ensemble de M . Lusin situé sur le segment (2,0) - $(3,0)$ de l'axe $O Y$. Si $2 N_{0}=\kappa_{1}$, les ensembles E_{1}, E_{2}, L_{1} et L_{2} ont évidemment la même puissance (égale à celle du continu). Il existe donc une correspondance biunivoque entre les points de E_{1} et de L_{1}, et une autre entre les points de E_{2} et de L_{2}. Si $x \in E_{1}$, soit $f(x)$ le point correspondant de L_{1}, et si $x \in E_{2}^{\prime}$, soit $f(x)$ le point corres pondant de L_{2}. La fonction $f(x)$ sera ainsi définie pour tout x réel.

Il résulte de la définition de la fonction $f(x)$ que l'image $I(f)$ de la fonction $f(x)$ est un ensemble plan qui contient au plus un
${ }^{1}$) C'est un problème do M. Lusin (v. ce volume, p. 308) qui suggere la question si toate fonction dont l'image jouit de la propriété de Baire, jouit ellemême de cette propriété.
${ }^{\text {2 }}$) Quant à l'existence d'une telle décomposition, voir p. e. Fund. Math t. I, p. 8.
${ }^{3}$) N. Lasin: Fund. Math. t. II, p. 155.
point de toute droite parallèle à l'axe $O X$ et dont la projection sur l'axe $O Y$ est l'ensemble $L_{1}+L_{2}$. Ce dernier étant un ensemble de M. Lusin, on en conclut sans peine que $I(f)$ est un ensemble (plan) de M. Lusin ${ }^{1}$), donc un ensemble satisfaisant à la condition de Baire.

Or, on voit sans peine que la fonction $f(x)$ ne jouit pas de la propriété de Baire. En effet, d'après la définition de $f(x)$, nous aurons $f(x) \leqslant 1$ pour $x \in E_{1}$ et $f(x) \geqslant 2$ pour $x \in E_{2}$. Chacun des ensembles E_{1} et E_{2} contenant des points de tout ensemble parfait, il en résulte que pour tout ensemble parfait P les ensembles $P E_{1}$ et $P E_{2}$ sont denses dans P. La fonction $f(x)$ est donc partout discontinue sur tout ensemble parfait. Notre assertion est ainsi dé montrée.

Il est à remarquer qu'on pourrait encore démontrer le théorème suivant:

Pour qu'une fonction d'une variable réelle $f(x)$, jouisse de la propriété cle Baire, il faut et il suffit que chacun des ensembles $\underset{x}{\mathrm{E}}[f(x)>a]$
(où a est un nombre réel quelconque, ou, si l'on veut, un nombre rationnel quelconque) jouit de la propriété de Baire ${ }^{2}$).
${ }^{1}$) C'est M. Kuratowski qui a remarqué que tout ensemble de puissance s est une projection biunivoque d'une ensemble de M. Lusin: voir F'und. Math. IV, p. 323.
2) J'apprends que ce théorème a feté connu encore on 1913 à M. O. Nikodym Sa dómonstration paratra prochaînement dans un autre récueil.

