Concerning continuous curves of certain types 1).

By

W. L. Ayres (Philadelphia).

A number of authors 2) have discussed continuous curves 3) which contain no simple closed curve and have shown that they possess a number of interesting properties. It is the purpose of this paper to show that many of these properties remain true in more general types of continuous curves.

We shall consider the following five types of continuous curves M: (1) M contains at most a finite number of simple closed curves, (2) if e is any positive number, M contains at most a finite number of simple closed curves of diameter greater than e, (3) M contains only a finite number of arcs between any two points of M, (4) every connected subset of M is arc-wise connected, (5) every closed and connected subset of M is a continuous curve. A continuous curve which satisfies the first condition will be said to be simply cyclic, one which satisfies the second condition will be said to be almost simply cyclic and one which satisfies the third condition will be said to be simply joined.

Of the twenty possible relations between the five types I have been able to settle all except two. The questions as to whether, or not, (2) implies (4) and that (5) implies (4) are not settled in this paper 1).

Excluding these two cases every implication between the five types is given in this paper. In every other case an example may be found to show that there is no implication.

Theorem 1. If every connected subset of a continuous curve is arc-wise connected, then every closed and connected subset is a continuous curve 3).

Proof. Let K denote any closed and connected subset of the continuous curve M and let T denote any open subset of K. If x and y are any two points which lie in a connected subset of T, by hypothesis there exists an arc xy which lies wholly in T. Therefore K is a continuous curve by a theorem due to R. L. Wilder 4).

Theorem 2. Every closed and connected subset of an almost simply cyclic continuous curve is a continuous curve.

Proof. Let K be any closed and connected subset of an almost simply cyclic continuous curve M. Let us suppose that K is not a continuous curve. Then by the Moore-Wilder Lemma 5) there exist two concentric circles C_1 and C_2 and an infinite sequence of continua, K_0, K_1, K_2, \ldots, all belonging to K such that (1) each of these continua contains a point on C_1 and a point on C_2 and lies entirely in $L = C_1 + C_2 + I$, where I denotes the annular domain bounded by C_1 and C_2, (2) no two of the continua have a point in common and no one of them except possibly K_0 is a proper subset of any connected point set which is common to K and L, (3) the set K_0 is the sequential limiting set of the sequence of sets K_1, K_2, K_3, \ldots.

1) B. Knaster and C. Kuratowski have given an example which satisfies condition (5) but not condition (4) and thus show that (5) does not imply (4).

2) See A connected and connected im kleinen point set which contains no perfect subset, Bull. Amer. Math. Soc., vol 33 (1927), pp. 106—9. The question as to whether (2) implies (4) remains as an unsettled question.

4) Presented to the American Mathematical Society May 1, 1926.

Let $K = K_0 + K_1 + K_2 + \ldots$. The sets K_1 and $K_2 - K_1$ are both closed and have no common points. Then for each point of K_1 there exists a circle whose interior contains this point but no point of $K_2 - K_1$. The set of all such interiors of circles for all points of K_1 forms a connected domain containing K_1 but no points of $K_2 - K_1$. The set of points of M lying in this domain is an open subset of M. The continuum K_1 contains a point A_1 on C_1 and a point B_1 on C_2. Then M contains an arc $A_1 B_1$ which lies wholly in the open subset of M) and thus contains no point of $K_2 - K_1$. The arc $A_1 B_1$ has a last point x_1 on C_1 and the subarc $x_2 B_1$ of $A_1 B_1$ has a first point y_1 on C_2.

Let us continue this process. In general, the sets K_n and $K_1 = K - (K_0 + K_1 + \ldots + K_n) + x_1 y_1 + x_2 y_2 + \ldots + x_{n-1} y_{n-1}$ are closed and have no common points. Then for each point of P of K_n, there exists a circle whose interior contains P but no point of K_n. The set of all such interiors for all points of P of K_n forms a connected domain D_n containing K_n but no point of K_n. The set $M \cap D_n$, the intersection of M and D_n, is an open subset of M. The continuum K_n contains a point A_n on C_1 and a point B_n on C_2 and thus M contains an arc $A_n B_n$ which lies wholly in the open subset $M \cap D_n$. The arc $A_n B_n$ contains a last point x_n on C_1 and the subarc $x_{n+1} B_n$ of $A_n B_n$ contains a first point y_n on C_2. The arc $x_n y_n$ lies, except for its end-points, wholly in the set I.

Let $N = x_n$. Then M contains an infinite sequence of arcs N_1, N_2, N_3, \ldots such that no two of the arcs have a point in common and for every value of i, N_i contains a point x_i on C_1 and a point y_i on C_2 and except for these sets, N_i wholly lies in I. There exists a sequence of positive integers n_1, n_2, n_3, \ldots and two points X and Y such that (1) X lies on C_1 and is the sequential limit point of the sequence x_1, x_2, x_3, \ldots and Y lies on C_2 and is the sequential limit point of the sequence y_1, y_2, y_3, \ldots. (2) All of the points x_n lie on one of the two arcs of C_1 from x_n to X and in the order $x_n, x_{n+1}, x_{n+2}, \ldots$. X and all of the points y_n lie on one of the two arcs of C_2 from y_n to Y and in the order $y_n, y_{n+1}, y_{n+2}, \ldots$.

The limiting set N_0 of the sequence N_1, N_2, N_3, \ldots is connected and contains X and Y. It thus contains a point on every circle concentric with and lying between C_1 and C_2. Let the radius of C_1 be denoted by r_1 and suppose η is a number such that

$$r_1 - r > 10 \eta > 0 \quad \text{and} \quad r_2 > \eta.$$

Let C_1 and C_2 be circles concentric with C_1 and with radii $r_1 + \eta$ and $r_2 - \eta$ respectively. The set N_0 contains a point Z_1 on C_2 and a point Z_2 on C_2. Since M is connected, there is a point in M between Z_1 and Z_2, which is in the distance η of either Z_1 or Z_2 as the case may be. There exists an integer n_0 such that N_0 contains two points p_1 and p_2 such that

$$d(p_1, Z_1) < \eta \quad \text{and} \quad d(p_2, Z_2) < \eta.$$

Then p_1 can be joined to Z_1 by an arc U_1 of M and p_2 can be joined to Z_2 by an arc U_2 of M such that every point of U_1 is within a distance η of Z_1 and every point of U_2 is within a distance η of Z_2.

The arc $U_i (i = 1, 2)$ has at least one point in common with N_0 for every $j \geq k$. The arc U_i has a last point L_i in common with N_0. The subarc $L_i Z_i$ of U_i has a first point F_i in common with N_0. Then $L_i Z_i$ has a last point L_i in common with N_0. Continuing we have, for each i and j such that $i = 1, 2, 3, \ldots$, the subarc $L_i Z_i Z_j$, of U_i has a first point F_i in common with N_0 and the subarc $F_i Z_i$, of U_i has a last point L_i in common with N_0. For every j, the arc $F_j L_{j-1}$, has one end-point on N_0 and the other on N_0 and no other point in common with either arc. Then the arcs $F_n L_{n-1}$ of $U_1, L_{n-1} Z_{n-1}$ of N_0, $L_{n-1} F_{n-1}$ of U_2 and $F_{n-1} L_n$ of N_0 form a simple closed curve J, which is of diameter greater than 6η since U_i lies in the interior of a circle of radius $r_1 + 2 \eta$ and U_i lies in the exterior of a concentric circle of radius $r_1 - 2 \eta > r_2 + \eta$.

Concerning continuous curves.

$x_n, x_{n+1}, x_{n+2}, \ldots$. X and all of the points y_n lie on one of the two arcs of C_2 from y_n to Y and in the order $y_n, y_{n+1}, y_{n+2}, \ldots$. Y.

The limiting set N_0 of the sequence N_1, N_2, N_3, \ldots is connected and contains X and Y. It thus contains a point on every circle concentric with and lying between C_1 and C_2. Let the radius of C_1 be denoted by r_1 and suppose η is a number such that

$$r_1 - r > 10 \eta > 0 \quad \text{and} \quad r_2 > \eta.$$
Concerning continuous curves.

Case I. Suppose that \([J_n]\) contains an infinite subsequence \(J_{n_1}, J_{n_2}, J_{n_3}, \ldots\) (if \(i > j\), \(J_i = J_{n_i}\) and \(J_j = J_{n_j}\), then \(k > m\) such that each curve \(J_n\) contains both \(A\) and \(B\). By hypothesis \(M\) contains only a finite number of arcs \(C_1, C_2, \ldots, C_s\) from \(A\) to \(B\) such that no two have any points in common except \(A\) and \(B\).

Let \(L_n\) denote the set \(\sum \overline{C_i}\). The set \(L_n\) contains only a finite number of simple closed curves so there exists an integer \(r_i\) such that for \(i \geq r_i\), \(J_i\) contains at least one point not in \(L_n\). Then \(J_i = J_{n_i}\) contains a point \(p_i\) not in \(L_n\). On the arc \(A\overline{p_i}B\) of \(J_{n_i}\), let \(x_i\) be the first point of \(L_n\) on \(A\overline{p_i}\) and \(y_i\) the first point of \(L_n\) on \(\overline{Bp_i}\) on \(B\). Suppose \(y_i\) belongs to \(C_{n_i}\) and \(y_i\) to \(C_{n_s}\) \(s_i\) and \(t_i\) being not necessarily different but if \(s_i = t_i\), then we will suppose the order \(Ax_i y_i B\).

Let \(C_{n_{i+1}}\) be the arc formed of \(A x_i\), \(C_{n_i}, \overline{p_i}, y_i, B\) of \(C_{n_i}\) and \(y_i\) of \(C_{n_s}\), and \(y_i\) of \(C_{n_s}\). Continue this process with \(L_{n_{i+1}}\) in place of \(L_n\). In general the set \(L_{n_{i+1}}\) contains only a finite number of simple closed curves. Thus there exists a number \(r_i\) such that if \(i \geq r_i\) then \(J_i\) contains at least one point not in \(L_{n_{i+1}}\). Then \(J_i = J_{n_i}\) contains a point \(p_i\) not in \(L_{n_{i+1}}\). On the arc \(A\overline{p_i}B\) of \(J_{n_i}\), let \(x_i\) be the first point of \(L_{n_{i+1}}\) on the arc \(A\overline{p_i}\) and \(y_i\) be the first point of \(L_{n_{i+1}}\) on \(B\). Suppose \(x_i\) belongs to \(C_{n_i}\) and \(y_i\) to \(C_{n_s}\). If \(s_i = t_i\) then we will suppose the order \(Ax_i y_i B\) on \(C_{n_i}\). Let \(C_{n_{i+1}}\) be the arc of \(M\) from \(A\) to \(B\) composed of \(Ax_i\), \(C_{n_i}, p_i, y_i, C_{n_s}, y_i, B\) of \(C_{n_s}\).

The set \(L_{n_{i+1}}\) contains at least \(i\) arcs from \(A\) to \(B\) in \(M\) and, since we may continue the process indefinitely, the hypothesis that \(M\) is simply joined is contradicted.

Case II. Suppose that \([J_n]\) contains an infinite subsequence \(J_{n_1}, J_{n_2}, J_{n_3}, \ldots\) such that each curve \(J_n\) contains \(A\) but does not contain \(B\). Let \(K_1\) be a circle with center at \(B\) and radius \(\frac{1}{2}\varepsilon\). The exterior of \(K_1\) contains \(A\). Since \(M\) is connected in \(B\), at \(B\) there exists a circle \(K_1\) with center at \(B\) such that every point of \(M\) in \(K_1\) can be joined to \(B\) by an arc of \(M\) every point of which lies in the interior of \(K_1\). As \(B\) is the sequential limit point of the sequence \([J_n]\) there exists an integer \(r_i\) such that \(J_{n_i}\) contains a point \(q_i\) in the interior of \(K_1\). Let \(C_i\) be an arc of \(M\) from \(q_i\) to \(B\) lying entirely in the interior of \(K_1\). Let \(p_i\) be the first point of \(C_i\) in common with \(J_{n_i}\) in the order from \(B\) to \(q_i\). Let \(C_i\) be the arc from \(B\) to \(A\) which consists of \(Bp_i\) of \(C_i\) together with either of the arcs of \(J_{n_i}\) from \(p_i\) to \(A\).

\footnote{Cf. R. L. Moore, Concerning continuous curves in the plane, loc. cit.}
Concerning continuous curves.

Case IV. Suppose that \([J_n]\) contains an infinite subsequence \(J_{i_1}, J_{i_2}, J_{i_3}\), such that each curve \(J_{i_n}\) contains \(A\) but not \(B\).

Cases III and IV may be proved impossible by methods similar to those of Case II. Thus all four cases are impossible. But if \(M\) is not almost simply cyclic we must have one of the four cases. Therefore the continuous curve \(M\) is almost simply cyclic.

Theorem 6. A simply cyclic continuous curve is almost simply cyclic.

This is an obvious consequence of the definitions.

Theorem 7. A simply cyclic continuous curve is simply joined.

This result may be proved by methods very similar to those used in Case I of the proof of Theorem 5.

Theorem 8. Every connected subset of a simply cyclic continuous curve is arc-wise connected.

This theorem is a consequence of Theorems 3 and 7.

Theorem 9. Every closed and connected subset of a simply cyclic continuous curve is a continuous curve.

Theorem 9 follows from Theorems 1 and 8.

Theorem 10. Every boundary point of an \(S\)-domain \(^1\) of a simply joined continuous curve is accessible from the domain.

Proof. Let \(P\) be a boundary point of an \(S\)-domain \(D\) of a continuous curve \(S\) which is simply joined. Then \(D \cup P\) is connected and is therefore arc-wise connected by Theorem 3.

Theorem 11. If \(e\) is any positive number, then a simply joined continuous curve contains at most a finite number of mutually exclusive connected sets of diameter greater than \(e\).

Suppose that a simply joined continuous curve \(M\) contains an infinite set, \(K_1, K_2, K_3, \ldots\), of mutually exclusive connected subsets each of diameter greater than some positive number \(e\). Each set \(K_i\) contains two points \(x_i, y_i\) which are at a distance apart greater

\(^1\) A connected subset \(D\) of a continuous curve \(S\) is said to be a \(S\)-domain if for every point \(P\) of \(D\) there exists a circle \(K\) with center at \(P\) such that the set of all points of \(S\) which (1) lie interior to \(K\), and (2) lie with \(P\) in a connected subset of \(S\) that lies wholly interior to \(K\), is a subset of \(D\). Cf. R. L. Wilder, loc. cit., p. 841. A point \(P\) is said to be a boundary point of a \(S\)-domain \(D\) if \(P\) is a limit point of \(D\) but does not belong to \(D\). A boundary point \(P\) of a \(S\)-domain \(D\) is said to be accessible from the domain if for every point \(Q\) of the domain there exists a line \(PQ\) which lies except for the point \(P\) entirely in the domain \(D\).
Beweis des Satzes, dass jede abgeschlossene Menge positiver Dimension in einem lokal zusammenhängenden Kontinuum von derselben Dimension topologisch enthalten ist.

Von

P. Alexandroff und L. Tumarkin (Moskau).

1. Unter einer abgeschlossenen Menge wird im Folgenden ein beliebiger kompakter metrisierbarer topologischer Raum 1) verstanden. Eine zusammenhängende abgeschlossene Menge heisst ein Kontinuum.

Bekanntlich ist ein Kontinuum dann und nur dann stetiges Bild der Einheitsstrecke \(0 \leq t \leq 1 \), wenn es lokal (oder im Kleinen) zusammenhängend ist 2); im letzteren Satze ist auch die Bedeutung des Begriffes des lokalen Zusammenhanges enthalten.

Der Dimensionsbegriff wird im allgemein üblichen Urysohn-Menger'schen Sinne verstanden 3).

Endlich heisst ein topologischer Raum \(R^n \) in einem anderen

