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Finally, define the homeomorphism 7' from f -1(j" = U K; onto E*xJ" by
T|K; = §;. Clearly no T =f1f M.

Remark. Theorem 4.5 does not imply that fis completely regular. An example
is given by Seidman [11, p. 465] of a metric for E*x E! that yields the product
topology, but that with respect to this metric, the projection mapping onto the first
factor is not completely regular. However, if the usual metric on E® x E" is imposed
upon X under some homeomorphism which satisfies the conclusion of theorem,

then f is completely regular.
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Neighborhoods of compacta in euclidean space
by

Gerard A, Venema * (Princeton, N. I.)

Abstract. In this paper the question of when a compact subset of Euclidean n-space has
arbitrarily small piecewise linear neighborhoods with k-dimensional spines is considered. A theory
is developed which completely answers the question in terms of the fundamental dimension of
the compactum and an embedding condition which is a weak form of the cellularity criterion.
‘The theory is the shape theoretical analogue of the demension theory of M. A. Stariko.

1. Introduction. Suppose X is a compact subset of Euclideart n-space E™.
1t is, of course, well-known that X has arbitrarily small piecewise linear (PL) neigh-
borhoods with (n—1)-dimensional spines. We want to determine the smallest value
of k such that X has arbitrarily small PL neighborhoods with & -dimensional spines.
This problem leads naturally to shape theory, since if X has arbitrarily small PL
neighborhoods with k-dimensional spines, then X has the shape of the inverse limit
of an inverse sequence of k-dimensional polyhedra and thus has fundamental
dimension <k. Hence we immediately see that the fundamental dimension of X
is a Jower bound for the possible values of k.

In this paper we present a theory which tells exactly when that lower bound is
achieved and what the smallest value of k is otherwise. Our theory is the shape theory
analogue of the demension theory of M. A. Stafiko [13]. Stafiko looks for neigh-
borhoods which not only have k-dimensional spines, but also have small retractions
onto the spines. (A precise statement of Starfiko’s tesults is given below). In our
theory the fundamental dimension plays the role of the covering dimension in
Stanko’s theory and a weak form of McMillan’s cellularity criterion (the inessential
loops condition) plays the role of the 1-ULC property. Our theory unifies the various
proofs of finite dimensional complement theorems which have appeared in [8], [3],
[5], [6], [14] and [11] since the main step in each of those proofs involves finding
small neighborhoods of compacta with k-dimensional spines where 2k+2<n.
Before stating our main result (Theorem 1.4) we define the terms. used.

DerNiTION 1.1 [1, p. 227). The fundamental dimension of a compactum X
is defined by Fd(X) = min{dim ¥|Sh(X)<Sh(¥)}.

* Research partially supported by grants from the National Science Foundation.
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DEerINITION 1.2. Suppose X is a compact subset of the PL 7z-manifold A"
The findamental dimension of embedding of X (abbreviated FDE(X ) is defined to be
the smallest integer k such that for every neighborhood U of X there exists a PL
neighborhood N of X such that XN U and N has a k-dimensional spine. As
remarked above, it is obvious that FDE(X)>Fd(X).

DEFINITION 1.3 [14]. The compactum X< M" is said to satisfy the inessential
Ioops condition (abbreviated TLC) if for every neighborhood U of X there exists
a neighborhood ¥ of X in U such that every loop in ¥— X which is homotopically
inessential in ¥ is also inessential in U—X. In other words, if iy and j, are the
inclusion induced homomorphisms in the diagram

) 1(7)
i /’n

/
N
N 7, (U= X)

ny(V—-X)

then kerigckerjy.

The inessential loops condition is a condition on the embedding of X into M
and is clearly weaker than the cellularity criterion of McMillan [7].

TueoreM 1.4. Suppose X is a compact subset of E".

Part I If n # 3 and Fd(X)>n—2, then FDE(X) = Fd(X).

Part II. If n # 4 and Fd(X)<n-—3, then either

a) FDE(X) = Fd(X) and X satigfies ILC, or

b) FDE(X) = n—2 and X does not satisfy ILC.

So FDE(X) takes on one of only two values, Fd(X) or n—2, and the inessential
loops condition can be used to detect which. Since the inessential loop condition

and the fundamental dimension are invariant under ambient homeomorphism, we
have the following corollary.

COROLLARY 1.5. If X<E" (n # 3,4) and h: E"—
morphism, then FDE(X) = FDE(h(X)).

Theorem 1.4 should be compared with the following theorem of Stariko which
is the Main Theorem of [13]. (The terms dem and 1-ULC are defined in § 2.)

THEOREM 1.6 (M. A. Stafko). Suppose X is a compact subset of E".
Part I. If n # 3 and dimX>n—2, then demX = dim X.

Part W. If n # 4 and dim X<n~3, then either
a) dem X = dim X and E"—X is 1-ULC, or
b) dem X = n—2 and E"— X is not 1-ULC.

It is necessary to exclude n = 3 from Part I of both Theorems 1.4 and 1.6 since,
for example; the 1-dimensional compact subsets of E* construtcted in [2] and [8}

E" is a topological homeo-
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have fundamental dimension (dimension) 1 and fundamental dimension of embedding
(demension) 2. Part IT of Theorem 1.4 is true for n = 4 if the (apparently) stronger
disk pushing property is substituted for TLC [11], but it is not known whether
Part II of either Theorem 1.4 or 1.6 is true as stated for » = 4. Most parts of
Theorem 1.4 extend straightforwardly to compacta embedded in arbitrary PL
manifolds, so they will be stated in that generahty whenever possible in later sections.
of this paper.

2. Definitions and a characterization of fundamental dimension. In this paper,
all spaces are assumed to be subspaces of some finite dimensional Euclidean space.
A polyhedron is the underlying set of some locally finite simplicial complex. A piece-
wise linear (ov PL) n-manifold is a polyhedron in which the star of each vertex is
a piecewise linear n-cell. Suppose M" is a PL n-manifold, ¢ denotes the metric
on M", XaM" and £>0. Then the e-neighborhood of X in M is N/(X)
= {pe M| o(X,p)<se}. A polyhedron KcintM" is called a spine of M™ (or
equivalently, M" is a regular neighborhood of K) if M" simplicially collapses to K.
If K is a spine of M, then (M, K) is homeomorphic with (M(f), K) where M(f)-
denotes the mapping cylinder of some PL map f: M — K. Call M an e-regular
neighborhood of K if f can be chosen so that each fiber of M(f) has diameter <&
in M.

The following definition is that given in [4] and is equivalent to the one in [13].
A compactum X< E" is said to have dimension of-embedding, or demension, <k
(abbreyiated dem X'<k) if for every ¢>0 there exists a compact PL manifold neigh-
borhood M of X in E", Mc N(X), such that M is an g-regular neighborhood of -
some k-dimensional polyhedron K< M. An open set Uc E” is said to be uniformly
locally simply connected (or 1-ULC) if for every >0 there exists a >0 such that
each loop in U of diameter less than & is homotopically inessential in a subset of U
of diameter less than s.

The notation f=~ g means that the maps f and g are homotopic and f z g
means that f and g are homotopic via a homotopy whose track lies in U.

Whenever we write Sh(X), it is understood that X is compact. The following
proposition characterizes those subsets of PL manifolds which have fundamental
dimension “<k. A similar characterization of fundamental dimension for subsets
of the Hilbert cube is given in [9].

PROPOSITION 2.1. Suppose M" is a PL manifold and that X is a compact subset
of int M. Then WA(X)<k if and only if for every neighborhood U of X there exists
a neighborhood V of X in U and a compact polyhedron K< U, dim K<k, such that the
inclusion VC.sU is homotopic in U to a map of 'V into K.

Proof. First suppose that the UV condition holds. Then there exists a se--
quence {U;}%, of neighborhoods of X and polyhedra K;= U,, dimK;<k, such that

ey

X= (U, Uy, v KU, and the inclusion map f;: Ui &=Us is homotopic:
i=1
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in U, to a map fi: Upy1— K. If 9,2 K,C—U; denotes the inclusion map, then the
following diagram commutes up to homotopy.

B B Bi
U, < U, < Ugtm s Uy Uy e

e e Y/
Tll 1} YJI\ )-f/ 74\ W‘ J-} w+1t

K, «— Ky« Ryt . —K;j<— K1 ..
1 J1v2 2 f27v3 3 ifm-u ¢

So Sh(X) = Sh(m{K;,f;7i+1}) and thus Fd(X)<k.
: Now suppose that Fd(X)<k. We first consider the special case in which
M™" = E" Let ¥ be a compact metric space such that dim¥ = k and Sh(X)<Sh(Y).
w0

Embed Y in E*! 5o that Y is in standard position [3]; i.e., so that ¥ = () N,
i=1

where each N, is a regular neighborhood of a polyhedron P; in E**!, dimP;<k,
and N, cintN;. Let f= {f;, X, V}pn purs and g = {g;, ¥, X}garcrs, g be funda-
‘mental sequences such that gf ~ ly.

Let U be a neighborhood of X. Choose integers j and i, such that g{N)<U
for all i27, and let r: N;— P; denote the retraction. Now choose a neighborhood V'

U
of X in' U such that f(V)<N; and g,filV = p for all izi, =1, where f: VCU

is the inclusion map. It may be assumed that g, |P; is PL. Then ; g:.fu VF: gu 1V,
50 K = g, (P)) is the polyhedron needed to complete the proof.

Now if X< M™ # E*, we first embed M" as a PL subset of E*"**, We can then
use a PL retraction of a neighborhood of M™" onto M" to push the homotopies con-
‘structed. in the first part of the proof (the first part of the proof is now applied to
X< E#*+Yy into M™.

3. Codimension two. Suppose M"is a PL n-manifold and that X< M"is compact.
From results of Nowak [9, § 3], we see that it is only possible to have Fd(X) = n
if X=M"and dM" = @. Otherwise FA(X)<n—1 and (as remarked in the intro-
-duction) FDE(X)<n—1. So Theorem 1.4 is easily proved for Fd(X)znr—1. Also

Theorem 1.4 follows easily from the well-known shape properties of plane compacta *

‘(see [1, Chapter VII, §§ 7 and 8]) in case n<<2. In this section we prove the only
remaining case of Part T of Theorem 1.4, namely that in which Fd(X) = n—2 and
‘nz4. .

TueoreM 3.1. Suppose M" is a PL manifold and that X is a compact. subset
of int M™ with FA(X)<n—2. Then n, (U, U~X) = O for every neighborhood U of
X in M".

COROLLARY 3.2. If M" and X are as in Theorem 3.1 and n>4, then FDE(X)
<n—2. If FA(X) = n—2, then FDE(X) = n—2.

Proof of Corollary 3.2. The second part of Corollaty 3.2 follows from the
first since FDE(X)2Fd(X) in every case. Given a neighborhood U of X, choose
a PL ;nanifold neighborhood N such that XcintNeNcU. Let N! denote the
1-skeleton of N and let Nj3~2 denote the dual (n—2)-skeleton; i.e., Ni~2 is the
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union of all simplices in the second barycentric subdivision of N which do not
intersect N'. It follows from Theorem 3.1 and Stallings’ engulfing theorem' [12]
that there is a PL homeomorphism A: M — M such that A/M"—N =id and
h(N') n X = &. But then X< R for some regular neighborhood R of A(N%~?)in U
and so the proof is complete.

Proof of Theorem 3.1 Let Us X and f: (4%, 84%) — (U, U~ X) be given,
where 4 denotes the unit interval [0, 1]. Since Fd(X)<n~2, Proposition 2.1 implies
that there exists a PL manifold neighborhood ¥ of X and a polyhedron K< U such
that dimK<n—2 and the inclusion VCU—F(84") is homotopic in U—F(94%)
to a map of Vinto K. By general position we may assume that £ is transverse to 8V’
and that f(4") n K = &. We also assume that U is connected by concentrating
only on the component of U containing f(4") if necessary.

Let U denote the universal covering space of U and let p: ¥ — U denote the
projection. Let V= p~ (V) and let f: (4%, 84%) — (U, U—p~}(X)) denote a lift
of f. Since the diagram

e

/
V—

plv

T— @

commutes, the homotopy lifting property can be used to lift the homotopy of ¥ down-
stairs to a homotopy H: Vx I— U such that H, = inclusion and H,(V)=p~'(X).
Throw H and f into general position.

We claim that 8V does not separate F(0) from f(1) in U. Let B denote a com-
ponent of 97 and parametrize the path J'(4%) in the natural way. Suppose f(4 YnB
consists of more than one point, say g, and g, are two consecutive points of
F(4"Y) A B. Note that J(4") must cross B in opposite directions at gy and g, since
otherwise we could construct a simple closed curve in U which only intersects B once.
That is impossible since I is simply connected. So F(4Y) crosses Bin opposite direc-
tions at ¢, and g,. We can then construct an arc from f(0) to f(1) with at least
two fewer points of intersection with 9% by replacing the arc in F(4*) from g, to g,
with an arc in B and then pushing the latter arc a little to one side of B. Thus, if v
separates f(0) from F (1), there must be a component B, of 8V such that f (4') N B,
consists of an odd number of points. But then (H|Bo xD)™(f (4Y) is a compact
1 -manifold with an odd number of endpoints. Since no sucl_l_l-manifold exists, we
can join J(0) and F(1) with an arc o which lies in 0—ov. _

Notice that since « does not intersect 87, o0 V= q and soa n X = &. Since U
is simply connceted, f(4%) U « is null homotopic in U. Projecting that homotopy
down, we sce that fis homotopic (reld4") tof': A= U—X. Thus (U, U—=X) = 0.

4. Codimension three. Tn this section we prove Part IT of Theorem 1.4 and then
use a theorem of Nowak [10] to give a purely algebraic criterion for compacta to
have fundamental dimension of embedding <fk.
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THEOREM 4.1. Suppose M™ is a PL n-manifold, n=35, and that X is a compact
subset of int M" with FA(X)<n—3. Then X satisfies ILC if and only if FDE(X)
= Fd(X). )

Proof. In the special case M" = E”, this is just Lemma 3 of [14]. However,
the proof given in [14] will work in any manifold, providing Proposition 2.1 of the
present paper is used to construct the homotopies needed in [14].

DEFINITION 4.2. Suppose M" is a PL n-manifold. The compactum X< M*
is said to have property 1-UV (or to be approximatively 1-connected) if for every
neighborhood U of X there exists a neighborhood ¥ of X such that each loop in V
is null homotopic in U. Property 1-UV is a shape invariant [I, p. 145].

DerNITION: 4.3, The compactum X< M" is said to satisfy the cellularity
criterion (abbreviated CC) if for every neighborhood U of X in M" there exists
a neighborhood ¥ of X in U such that each loop in ¥— X is null homotopic in U— X.

We omit the easy proof of the following lemma.

Lemma 4.4. Suppose M" is a PL n-manifold and X <intM" is compact. If X
satisfies 1LC and has property 1-UV. then X satisfies CC.

Proof of Theorem 1.4. Part II. For n=5, Part 11 of Theorem 1.4 follows
. almost immediately from Theorem 4.1. Suppose Fd(X)<n—3. By Corollary 3.2,
FDE(X)<n—2. So either FDE(X) = n—2 or FDE(X)<n~—3. In the latter case X
satisfies ILC (by general position) so Theorem 4.1 implies that FDE(X) = Fd(X).
If FDE(X) = n—2, Theorem 4.1 implies that X does not satisfy ILC.

Suppose now that n = 3 and Fd(X) = 0. Then X has the shape of a 0-di-
mensional set and consequently has property 1-UV. Given a neighborhood U of X,
we can choose a PL manifold neighborhood M of X such that M < U. Since
Fd(X) = 0, X does not separate M and so we can assume that each component
of M has a connected boundary. Applying Lemma 1 of [8] to each component of M,
we see that FDE(X)<I.

It remains only to show that FDE(X) = 0 if and only if X satisfies ILC. By
Lemma 4.4, ILC is equivalent to CC in the case we are considering. If X satisfies
ILC, then FDE(X) = 0 by the proof of [8], Theorem I’. If FDE(X) = 0, then X
satisfies ILC by general position. This completes the proof of Theorem 1.4.

To the author’s knowledge, the following 3-dimensional Complement Theorem
has not appeared before. The notation ~ means “is homeomorphic with.”

COROLLARY 4.5. Suppose X and Y are compacta in E* such that Fd(X) =0
= Fd(Y) and both satisfy the cellularity criterion. Then Sh(X) = Sh( Y) if and
only if E3~X ~ E*-Y,

@0

Proof. By Theorem 1.4, X =
disjoint union of a finite number of PL 3-cells; ¥ can be written as a similar inter-
section. Thus there exist 0-dimensional sets X' and Y’ in E® such that X' u ¥’

M; where M, cintM; and each M, is the
1
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cE'x0x0cE?, Sh(X) = Sh(X"), Sh(Y) = Sh(Y"), E*~X ~ E*>~X'and E3- ¥
~ E*—=Y'. Theorem 1.2 of [5] implies that Sh(X”) = Sh(Y’) if and only if
E3— X'~ E3—Y". Hence Sh(X) = Sh(Y) if and only if E3—X ~ E3—7VY.

We wish to use the following theorem of Nowak to compute the fundamental
dimension of embedding of compacta with property 1-UV. Tn the remainder of this
paper, [ denotes Cech cohomology with integral coefficients.

THEOREM 4.6 (Nowak [10, Theorem 2.1)). If X is a finite dimensional compact
metric space with property 1-UV and if there exists a k such that H(X) = 0 Jor:,
i>k, then Fd(X)<k.

Remark. Theorem 4.6 could be proved for k>1 using the techniques of this
paper as follows. First embed X in E*"? < E" for some large n. Then X will satisfy
1LC as a subset of E" by general position. Thus Lemma 4.4 implies that X satisfies CC.
Using the standard “disk trading” argument, we can construct arbitrarily small
neighborhoods U of X such that n,;(U) = n,(U—X) = 0. Then the relative Hure-
wicz theorem and Alexander duality (applied as in the proof of [14, Lemma 1])
imply that n(U, U~ X) = 0 for i<n~k~—1. Stallings’ engulfing theorem (applied
as in the proof of Corollary 3.2) implies that FDE(X)<k (providing k>2) and thus
Fd(X)<k.

COROLLARY 4.7. Suppose M" is a PL n-manifold and X is a compact subset

-of int M" satisfying ILC and having property 1-UV. If Hi(X) =0 for i>k, then

FDE(X)<k.
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