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Abstract. We prove that if f is an open homotopy 2-regular mapping of a complete metric
space X onto some Buclidean space E" such that f has fiber £, then (X, f, E", E® is a trivial fiber
space.

Tntroduction. Let f be a mapping from a space X onto a space ¥ with fiber K.
Restrictions have been specified by Dyer and Hamstrom [4], Hamstrom [8], [91.
Hall [7], Seidman [I1], and others, under which (X f, ¥, K) is a locally trivial
fiber space. Dyer and Hamstrom consider cases in which K is compact and f homo-
topy n-regular (n<2) or completely regular (Seidman) or totally regular (Hall).

The principal result of this paper is the following. If f is an open homotopy
2-regular mapping of a complete metric space & onto some Euclidean space E"
such that f has fiber E2, then (X, f, E", E®) is a trivial fiber space. A similar result
for the case where f is a homotopy k-regular mapping (k< 1) with fiber E**! has
been proved by Fendrich [6].

1. Definitions and resuls from other papers. Continuous functions will be
referred to as mappings. If A is a subspace of a metric space B and g is a mapping
from A into B which moves no point as much as 6>0, g will be called a §-mapping.
If g is a mapping from 4 onto B and there isa space K such thatfor each b e B, f~ (b
is homeomorphic to K, we call X the fiber of the mapping g.

Let f be a mapping from X onto ¥ with fiber K. We say that (X, f, ¥, K) is
a locally trivial fiber space if for each y in ¥ thereis an open sét U, suchthatye U,= ¥,
and a homeomorphism 4, from f ~}U,) onto Kx U, such that 7 h, = f|f ~i(Uy),
where 7 denotes the projection from K'x U, onto U, In the sequel, when the domain
and range of a projection are clear from the context, it will be denoted by the Greek
letter 7. We say that (X, f, ¥, K) is a trivial fiber spaceif thereis a homeomorphism &
from X onto Yx K such that mo h=f
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In this paper, an n-manifold M is a separable Hausdorff space with the property
that each point has an open neighborhood which is homeomorphic to E” or to H*,
where H" denotes the half space {Gx1, s x,) € E": x,20}. The set of points of 37
which are not contained in open sets homeomorphic to E is called the boundary-
of M and is denoted by Bdry M. The set of non-boundary points of M is called the
interior of M and is denoted by Int M. :

A continuous mapping g from a metric space X" onto a metric space Y is.
homotopy m-regular (h-m-regular) provided that for every x & X and £>0, there is.
some §>0 such that each mapping of a k-sphere (k<m) into S(x, 8) N (),
¥ €Y, is homotopic to zero in S(x, &) n £~ 1(»). The symbol S(x, 8) denotes the open
sphere about x with radius 6. The mapping g is completely regular provided that
for every >0 and y e ¥, there is some 6> 0 such that whenever d(y, y') <8, there is
a homeomorphism from g ~(y) onto ¢ (") which moves no point as much as .

If g is a homotopy m-regular (completely regular) mapping from X onto ¥
and Y = {y5, 4, ...}, where the sequence (y;) converges to y,, then the sequence
g~ () is said to converge homotopy m-regularly (completely regularly) to g™ (o).

THEOREM A [4, Theorem 5, p. 110 and the remark following it, p. 113]. If fis
a completely regular mapping of a complete metric space X onto an n-cell, Y, such
that each point inverse under Jis homeomorphic to a point set K, where K is a compact
metric space such that the space of homeomorphisms of K onto itself is locally con-
nected, then there is a homeomorphism h of X onto Yx K such that 7o h=f

THEOREM B [4, p. 106]. Suppose: K, X, and Y are metric spaces, K compact X
complete and ¥ finite dimensional, and [is a completely regular mapping of X onto ¥
such that (1) for each point p of Y there is a homeomorphism f, of C(K) onto f o),
where C(K) denotes the cone on K, and (2) there is a homeomorphism h of | JAK)
(peX) onto the direct product Yx K such that moh =fIUSK) (peY). Then
there is a homeomorphism h* of X onto the direct product ¥ x C(K) which is an ex-
tension of b and is such that o b* = IA

THEOREM C [8, p. 420]. Iffis a homotopy 2 -regular mapping of a metric space X
onto a metric space Y such that each inverse under S is a compact 3-manifold with
boundary which is imbeddable in E3 and the boundaries of the inverses under fare
mutually homeomorphic, then [ is completely regular,

THEOREM D [8, p. 422]. If M is a compact 3-manifold with boundary, then for
each positive number ¢ there is a positive number § such that every &-homeomorphism
of Bdry M onto itself can be extended to an ¢-hemeomorphism of M onto itself.

The next theorem is taken from Section 4 of [9]. Essentially, it is Theorem 4.16.
(p. 27) and the corollary following it (p. 28). Its setting is as follows: (M) is a se-
quence of compact connected 3-manifolds with boundary converging /1-2-regularly
to My, U M; is a compact metric space, the boundaries, X, X, K,, ... of these
3-manifolds are mutually homeomorphic. The space U M; can be, and is considered
to be, imbedded in some Euclidean space E™ in such a way that My is a polyhedral
subset of E3. The 3-manifold M, has a triangulation T;. In each M;, polyhedra,
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piecewise linear mappings, and so forth, are defined relative to T; and its refinements.
No relationships among the T} are assumed. Distances are the ordinary distances
in E™

‘ TueoreM E [9]. If S, is « polyhedral 2-sphere in Int My, then there is a sequence
(89, Si=M;, of polyhedral 2-spheres which converges completely regularly to Sp.

The setting of the next theorem is similar to that of Theorem E except that
each M, is a 3-cell, and |J M;, i>0, is embedded in E™ in such a way that

My = {(xy, oy x| ¥ +x3+x%<1 and x, = 0 for 4<i<m} .

The theorem remains valid if each M; is simply a 3-manifold with boundary such.
that M, is imbeddable in EZ.

ToworeM F [8, p. 415]. If Ry is a polyhedral 3-cell in My bounded by the
(polyhedral) 2-sphere Sy and Sy, Ss, ... is a sequence of polyhedral 2—spheres‘can—
verging O-regularly to Sy such that for each i, S; bounds the polyhedral 3-cell R;in M,
(and (Ry) converges to Ry), then the sequence (R;) converges h-2-regularly to R,.

TreoREM G [9, p. 33). If M is a compact 3-manifold with boundary, {hen the:
space of homeomorphisms of M onto itself leaving the boundary of M pointwise fixed
is LC" for each m.

TugoreM H [9, p. 38]. The space of homeomorphisms of a compact 3-manifold
with boundary onto itself is LC" for each n.

TurorEM J [9, p. 33]. Suppose that Cy is a 3-cell and C, is a 3-cell in Cy such
that C,  BdryC, is a 2-manifold with boundary. Denote by H, tljxe ivpac"e of ‘homeaz;.
morphisms of Cy onto itself leaving Bdry Cy pointwise fixed, by iy its identity, an
by Sy(iy, &) the (open) s-neighborhood of iy in H,. D.enot.e by H, the Space‘ of hazfeo-
morphisms of C, into Cy leaving C, n BdryCy pomtwm’fa fixed and car;yzng. ¢ bz—
—(C, 0 Bdry C,) intoInt C , by i, its identity, and by S,(i,, €) the (open) s-ne]zlg or-
hood of i, in H,. Denote by K the closure of C;~C,, byH the f'pace of gm.ea—
morphisms of K into itself leaving Bdry K pointwise fixed, by i its zdentzt)i, and by (z,.ez
the s-neighborhood of i in H. The space H, should be furthef restricted .to l;ons?h
only of those homeomorphisms f for which Cl(Cy—f(Cp) is a 3-manifold wi
boundary. o

If MJ is an integer and £>0, then there is a positiv.e number f §uch tha.t @) if i c1}s1
a mapping of B" into S,(i,, 6), then there is 2 ma'ppmg F o'f B mtg 'Sl(llg'a)‘ S .
that for cach x in B”, F(x)|C, = f(x) and (if) if /'is 2 mapping OfnS into zilz, ),
then there is a mapping F of §" into Sy (i , &) such that forv each xin S‘ , F(x)] Ci = f(x(:) f

‘We shall use this theorem in the case where C, is a 3-cell in the lnf inora] of
a 3-cell Cy. Then, very roughly, the theorem states that each n-s;f:ere];i hix; A
homeomorphisms of C, into IntC, extends to an .n—s;?herle octl' Is?rna homeo
morphisms of C, onto itself which leave Bdry C.‘1 pomtwme. fixe 1 : gr Zx;nés >
simply means that each “small” homeomorphism of C, into Im 'ltwise >
a “small” homeomorphism of C, onto itself that leaves BdryC, poin .
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2. Preliminary lemmas. Let f denote an open homotopy: 2-regular mapping
-of a complete metric space X onto some Fuclidean space E" such that each point
inverse under f is homeomorphic to E2,

Suppose that (y;) converges to y, in E". For each 7, let T; be a triangulation
of f~*(y,). In each £ ~1(y,), polyhedra will be defined relative to T;. No relationships
among the T;’s will be assumed. For any subset Q of f™(p), IntQ (Bxt Q) will
-denote the interior (exterior) of O with respect to ™ ().

DEFINITION. () A 3-cell C (2-sphere .S) is tame in 2 homeomorphism Z of E?
if there is 2 homeomorphism of Z onto £ which sends C (S) onto a standard 3-cell
{2-sphere). (b) A 3-cell C contained in the interior of a 3-cell C' is tame in C' if
there is a homeomorphism of C” onto the standard 3-cell of radius | which sends C
onto the standard 3-cell of radius .

2.1. LemMA. If By is a tame 3-cell in T (o), then there is a sequence (B,;)
of tame 3-cells, By,cf Y uny) Such that (Buwy) converges completely regularly
fo By,.

Proof. For 3-cellin 3-space, the concepts of tame and polyhedral with respect
to some triangulation are equivalent. Let T, denote some triangulation of f Iy
under which B, is polyhedral. Let B, denote polyhedral 3-cell in f~*(y,) which
-contains By in its interior. From the openness and /-2-regularity of f and the com-
pactness of By, it follows easily that given &> 0, for each of k = 0, 1, and 2, there is
some £;>0 such that if g is a mapping of S* (the k-sphere) into f~*(y,) with the
digmeter of g(S5¥) less than ¢ and the distance between 9(S* and B, less than {, (the
distance between two sets is defined to be the infimum of the distances between
pairs of points, one from each set), then g is nullhomotopic on a subset of ™) of
diameter less than e.

By an argument similar to the proof of Lemma 2.6 of [8], it follows that there
exists a subsequence ( Yun) of (¥;) and a sequence (M) of polyhedra, 2 )
<" (Puqp), such that (My;)) converges to M, = Bj. Let M = Myw M; (j=1).
The space M is of finite dimension, so it can be imbedded in some Euclidean m-space.
"Then by a theorem of Klee’s [10, p. 36], M can be imbedded in £3x E™ such that
M, is a polyhedral subset of E3,

For each polyhedral 2-sphere S in Int M, there are polyhedral 2-spheres S,
Sy <M, such that (S,) converges completely regularly to S, (Theorem E). From
simple homotopy arguments and the O-regularity of £, it follows that the sequences
(CI(ExtSy) and (Cl(IntSy) converge to CI(ExtSp) and CI(IntSy), respectively,
Then Theorems F and C imply that (Cl(.[ntSk)) converges completely regularly to

Cl(IntS,). Hence, if we take Sp to be the 2-sphere that is the boundary of B,
the conclusion follows.

2.2. COROLLARY. (i) If y, & E” and By is a tame 3-cell in f " y), then given
>0, there is some (>0 such that wheneyer d(y, vo)<U, there is a 3-cell B, contained
in f7YY) and an &-homeomorphism by, from B, onto B,.
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(ii) For each positive integer i, let S; denote a 2-sphere (tame 2-sphere) inf Yy,
and let (S)) converge’ completely regularly to a tame 2-sphere Sq in f~*(y,). Then the
sequence (CL(IntS,)) converges (converges completely regularly) to Cl(IntS), and the
sequence (CL(ExtSy)) converges to Cl(ExtSp).

3. Xis an (n+-3)-manifold. In this section, as in Section 2, f will denote a con-
tinuous, open, homotopy 2-regular mapping of a complete metric space X onto
some Euclidean space E” such that each point inverse is homeomorphic to E3.

Since (i) f'is open, and (ii) E" and each point inverse is separable, we have the
following lemma.

3.1. LiMMA. X is separable.

The remainder of Section 3 is devoted, to establishing Lemma 3.2.

3.2. LemMA. Each point p of X is contained in some open subset of X that is an
open (n+3)-cell whose closure in X is a closed (n+3)-cell. .

We will use the following selection theorem of E. A. Michael, as stated in
[4, p. 104].

THEOREM M. If 4 and B are metric spaces such that A is complete and the covering
dimension of BEn+1, Z is a closed subset of B, F is a mapping of A onto B such that
the collection of inverses under F is lower semi-continuous .(see Lem‘ma 3.11 below)
and equi-LC" (see Definition 3.5 below) and g is a mappzng. of Z into A such th;zt
for zeZ, g(z) € F~'(2), then there is a neighborhood U of Z in B such_tizat g can ]e
extended to a mapping g* of U into A such that for be U, g*(b)e F ({b). If each
inverse under F has the property that its homotopy groups of order <n vanish, then U
may be taken to be the entire space B. ‘ o

DEFINITION. An embedding /, of the standard 2—sp~hiere S2 into fTH(y) is
tame if it extends to a homeomorphism from E* onto f .(y). . .

For each y in E", let G, denote the space of tame 2in:ﬂ:)edt:hggs of S m}io f 1 ( y)e,
topologized by d(h,, hj) = sup{d(h,(x), h;,(zx?), xe:Sl‘ b Let G;,J dfnotelzot ei; ;jcu;d
of G, in the space of all mappings from S into f . () with ¢ cd c])pto GEY_ o
by the “sup” metric. Let G = {G,,ye E"}, let G* = U G,, and le = .y_

3.3. LEMMA. For cach positive integer i, let g, be an imbedding (not necessarily
tame) of S* into £y, for some y; in E". Suppose 2that (g) convfrgésl (t{; ta 2‘;};1);
z’mbacldr?ng g of 8% into £™() 112 E tE”.(;’ lzl)e)n (Intg(S®) converges to g

(S?) converges to CI{Extg/ .
" gi}:g‘l{'(.sc)llﬂrly, (;:(SZ)) converges completely regularly to g(S?). The resuit
follows from Corollary 2.2,
3.4, LiMMA. G* is complete under some metric d*. .
Proof. (a) The space G* is a closed subspace of the space of all mappings
o S\z’\/:illﬁh)e(aigdo; téjsr;lz:fyﬂ;lft:ﬁe proof of (a) is similar to the first part of the
proof of Lemma 2 of [4].
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(b) The space G*is a G;in G*, and therefore is complete under some metric J*.

Proof of (b). For each positive integer m, let H,, denote the collection of all
mappings g in G* such that sup{diamg~*(x), x e 2} 1/m. As in the second part
of the proof of Lemma 2 of [4], H,, is a closed subspace of G*.

A theorem of Bing’s [, p. 109] characterizes tame 2-spheres in E*® as those
2-spheres which can be approximated arbitrarily closely on both sides by 2-spheres
(a 2-sphere S’ in Int.S or in ExtS is within ¢ of §if there exists an &-homeomorphism
from S onto ). Let K,, denote the collection of all mappings g in G* such that g
is an imbedding of $? into some f~%(y) but g(S?) cannot be approximated closer
than 1/m on some one side. We will show that G* = G*~[U(K,, u H,), m=1].

Let g be an element of K,,. If g is not one-to-one, then g is in some H,. Thus
suppose that g is 1-1. We will show that g is in U K, m=1. For some y, in E",
g is an imbedding of §2 into f~(y,). There is a sequence (g,), g;€ K,,, which
converges to g. From the definition of X,,, for each i, gS?) cannot be approximated
closer than I/m on some one side. Without loss of generality, we can assume that the
approximation fails either in the interior of all the g/(S?)’s or the exterior of all the
9{S?)’s. Here we assume the former. The proof for the later case is similar.

Suppose that g is in G*, i.c., g is tame. From Bing’s theorem, there exists
a 2-sphere S’ contained in Int g($?) and a 1/2m homeomorphism ¢’ from g(S?)
onto S’. Let B be a tame 3-cell in f~(3,) that contains g(S?) in its interior. From
Corollary 2.2, there is a sequence () of &-homeomorphisms, his B— (),
such that (¢;) — 0. From Lemma 3.3 and the fact that (g) — g, if i is large enough,
hy(S") is contained in Int g,(S?). Hence for large i, Ijo &0 gogyt is a homeo-
morphism of g,(S?) onto /,(S") that moves no point as much as 1/m. This contradicts
the assumption that g,(S?) cannot be approximated within 1/m from the interior.

3.5. DEFINITION (i) A space W is m-~locally connected (LC™ provided that
for each point w of W and each positive number & there is a positive number § such

that every mapping of a k-sphere, k<m, onto a subset of S(y, 8) is homotopic to

a constant (nullhomotopic) on a subset of S(y, e).

(i) A collection G of closed point sets filling up a metric space is said to be
equi-1.C" provided that it is true that if y is a point of an element g, of ¢ and ¢ is
a positive number, there is a positive number § such that if g is an clement of G,
then any mapping of a k-sphere, k<, onto a subset of g n S(y, 8)is nullhomotopic
on a subset of g n S(y, ¢).

Remark. These properties are clearly topological and hence in order to prove
that each G, is LC™ and that G is equi-LC™ under the metric d*, it suffices to
establish them for the metric d.

3.6. LEMMA. Suppose that (9) is a sequence of tame imbeddings of S* (the
standard 2-sphere) into E* which converges to the identity mapping 9o. Let B; denote
the 3-cell bounded by S; = g,(S?) and let B denote the (standard) closed 3-cell in E®
that is bounded by S?. Then given ¢>0, there is a number N such that whenever i> N,
there is a homeomorphism G, of B onto B, such that (i) G,|S? = 94, and (i) d(idg, G)) <e.
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Proof. Let yo =0,y = 1,y; =4,.. Let Z=E*x{y,i>0}. Metrize Z
by dl(x,»), ', )] = |x—x'|-+|y—)'|. For each i, let g; be the imbedding of
§?x {0} into E*x y; defined by gi(x) = (9:), ). It follows from Lemma 3.3 that
(Intg;(§*)i>1 converges to Cl(Intgo(S2). Since (g,);s, converges to gy, the se-
quence (9i(S?))i»y converges completely regularly to gi(S?). For each i, let
B, = Cl(Intgy(5%)) and let S, = g;(S?). From Theorems F and C, the sequence (B,)
converges completely regularly to By. Therefore there is a sequence (1), #;>0,
which converges to zero, and a sequence (I;) of 71;-homeomorphisms from B; onto By.

For each. 7, h;o g;is a homeomorphism from S5 onto itself, If ; is large enough,
hyo g; extends to a small homeomorphism H; from B onto itself (Theorem D).
Then #;" o H, is a small homeomorphism from B onto B! that extends gi. Hence
ne hy o Hyis a small homeomorphism of B onto B; that extends g,, where 7 denotes
the projection from E*x{y} onto E°. m

Let B and B’ denote the standard 3-cells of radius 4 and 1, respectively. Let
§% = Bdry B. In the space of tame imbeddings of S2 into IntB’, let S'(id, r) denote
the ball with center the identity mapping and radius r. In the space of tame imbeddings
of B into IntB’, let S"(id, r) denote the ball with center the identity mapping and
radius r. Let S(id, r) denote the similar ball in the space of homeomorphisms of B’
onto itself leaving Bdry B’ pointwise fixed.

3.7. LemmA. If m Is a nonnegative integer and e>0, there is a number §>0 such
that if g is a mapping of S™ into S'(id, ), then there is a mapping G of S™ into
S"(id, &) such that for each x in S™, G(x)|S* = g(x).

Proof by induction on m. For m = 0, denial of the theorem easily leads
to a contradiction of Lemma 3.6. Assume that the lemma is valid for m<k. Let
&>0 and let g be a mapping of $¥"* into S'(id, &). The proof of Theorem J applies
here, with B’, CI(B'—B), and B taking the place of C;, C,, and K, respectively.
For the hypotheses of Theorem J to be satisfied, g should be a mapping froPJ S+l
into the space of tame imbeddings of C, into C,, whereas g only maps S*¥** m.to the
space of tame imbeddings of [Bdry C,—(C, n BdryC,)] into C;. However, in the
proof of Theorem J, only the restrictions to [BdryC,—(C, n BdryC,)] of the
imbeddings from C, into C; are used.

3.8. LeMMA. Given a nonnegative integer m and e>0, there exists 6>0 such
that if g is a mapping of S™ into S'(id, 8), then there is a mapping G of S™ into
SGd, €) such that for cach x in S™, GX)|S? = g(x).

Proof. Use part (ii) of The%rem J, and Lemma 3.7.

3.9. TueorEM. The spuce of tame imbeddings of S* into E* is LC™ for all m.
Hence, for cach y in E", G, is LC" for all m.

Proof. From Theorem [G] (or Cernavskii [3], or Edwards and Kirby [5.]),
the space of homeomorphisms of B’ onto B’ which leave the boundary pointwise
fixed is LC* for all k. This fact and Lemma 3.8 imply the theorem.

3.10. LemMA. G is equi-LC™ for each nonnegative infeger m.
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Proof. Suppose pe E”, s€ G,, m is a nonnegative integer, and e>0. Let B,
denote a tame 3-cell in f~*(p) which contains 5(S2) in its interior. From Corollary 2.2,
given §>0 there exists 5>0 such that whenever d(y, p)<8, y € E*, there is a tame
3-cell B, contained inf~!(y) and an {e-homeomorphism h, from B, onto B,. The
remainder of this proof of Lemma 3.10 is similar to the proof of Lemma 3 of [4].

3.11. LeMMA. The space G is lower semi-continuous in the sense that if (p))
converges to p in E", then G, is in the closure of |) G,,.

The proof of this lemma is similar to the proof of Lemma 4 of [4].

Let F denote the mapping from G* onto E" that carries G, onto y for each y
in E". Recall that p denotes some element of X. Let f(p) = ¥p- Define a function g
from the singleton {y,} into G* by letting g (y,) denote some element of G, for which
P is contained in the interior of [g(y,)] (S?). The hypotheses of Theorem M are
satisfied by G*, E", F, {y,}, and g. Therefore, there is an open set U containing y,
and a mapping H from U into G* such that (i) H|{ Ypt =g, and (i) F o H is the in-
clusion mapping of U into E".

Let X denote some closed n-cell in U which contains ¥p in its interior. Define
a function y from K'x S into £~1(K) by y(», 2) = H(3) (2). Clearly, y is continuous
and 1-1, and hence, y is an imbedding. '

Let N = | Cl[Inty(yxS?)], ye K, where the interior of y(yx S2) is taken
with respect to /' ~*(p). The function f|N from N onto X is continuous, and for each y
in K, (fIN)"*(3) is a 3-cell in f~%(») which we denote by B,. Let S, denote the
2-sphere boundary of B,.

3.12. LemMaA. If (y;) converges to y, in K, then (B,,) converges completely re-
gularly to B,,.

Proof. Let B, denote a tame 3-cell in £ ~(y,) that contains B,, in its interior.
From Lemma 2.1, there exists a sequence (B,,) of 3-cells, .B;.,cf ~(y;), which
converges completely regularly to B,,. For large i, S, is contained in B,,
(Corollary 2.2). Since the sequence (H( ¥p)) of homeomorphisms converges to H o)s
(Sy,) converges completely regularly to S+ The lemma follows from:Theorems F
and C.

3.13. COROLLARY. f|N is completely regular.
A simple argument yields the following lemma.
3.14. LeMMA. N is complete.

It is now established that f|Nis a completely regular mapping from the complete
metric space N onto the n-cell K with point-inverses homeomorphic to the 3-cell 8.
From Theorem A, N is homeomorphic to the (n+3)-cell Bx K under a homeo-~
morphism A such that mo h = f|N.

We assert that the open (n+3)-cell Int N is an open subset of X" containing p.
It is clear that p is in Int N. Suppose that Int N is not open in X. Let x, be a point
of IntN and let (x;) be a sequence in X—IntN that converges to x,. For each i,
let y; =7 (x,). Since X, is in the interior (with respect to f 7 (y,)) of the 3-cell
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(fIN)" (o), almost all of the y,’s are different from Yo. Without loss of generality,
we may assume that the y,’s, i # 0, are distinct, and that none is equal to y,. Further-
more, since (y;) converges to y,, and Yo is in IntK, we may assume that all the
y/'s are in K. From Lemma 3.12, the sequence (B: = (fIN)Y( ;) converges com-
pletely regularly to By = ( f'|N)™*(,). From Corollary 2.2, the sequence (Cl(Ext B,))
converges to Cl(ExtB,). Then, since for each i, x; € CI(ExtB)), it follows that
xo & CI(ExtBy). But this is a contradiction, since x, was taken to be in Int B,.

This completes the proot of Lemma 3.2.

3.15. CoROLLARY. X is locally compact.

3.16. COROLLARY. X is an (n-+3)-manifold,

Proof. Lemmas 3.1 and 3.2.

4. Proof of the Main Theorem.

4.1. LeMMA. Let X be a complete metric space. Let f be a homotopy 2-regular
open mapping of X onto I" (I = [0, 1]) such that for each y in I", f~X(y) is homeo--
morphic to E®. Suppose that A is a compact subset of X and, f(A) is contained in IntI",
Then there is an open (n+3)-cell in X which contains A and whose closure M is homeo-
morphic to the (n+3)-cell I" x B* under a homeomorphism £ such that (i) no & = f|M,
and (ii) for each y in I", £™' (B*x)) is a tame 3-cell in f1(y).

Proof. The lemma is trivially valid for n = 0. Assume that it is valid for
n<k. Letn = k+1 and suppose that X, I*x I, f: X — I*x I, and A satisfy the hypo-
theses of the lemma. For each (p, z) in I*x I, let G, ., denote the set of tame im-
beddings y of S? into £~ y, z) such that y(S?) contains 4 N f~*(y, z) in its interior.
Let G denote the collection of all G,,y. Let G* = |J Gi,,., and topologize G* by
the metric given by the distance function

d(y,y) = sup{d(y(x), y'(x)), xe §7}.

For each y, in I, let X, = f~'(I*xy,). Each X,, as a closed subspace of the-
complete space X, is itself complete. Let f, = f|X,: X,— I*xy,. Clearly, f is.
continuous, open, and homotopy 2-regular. The set A, = A nf *(I*xy,) is.
compact. Since (i) f (4) is contained in Int(I*x I), and (ii) Bdy(Z*x »,) is contained
in Bdy(I*xI), f(4,) is contained in the interior of 7*xy,. From the induction
hypothesis, there is a closed neighborhood M, of 4, in X, and a homeomorphism ¢&,.
from M, onto BxI*x{y,} such that (i) me &, = f,, and (ii) for each y in I*, the
3-cell EYBxyxy,) is tame in £y, y,).

For each y, in J, define a mapping g, from I* x y, into G* as follows. For each.
(3, 7 in I¥xy,, let (gy, 7)) ()= & (s, 3, o) for all s in S2. For each y in I,
gy, y,) is an imbedding of S? into f~*(y,y,). Moreover, since the induction
hypothesis implies that the 3-cell &, *(Bx yx¥,) bounded by g,(», y)(S?) is tame
in f~(p,,), this imbedding is tame.

Denote by F the mapping from G* onto I*x I that carries G, ., onto (y, z)-
for each (y, z) in I*x 1. As in Section 3, F is contimious. For each y, in I, Fog,
is the injection from I*xy, into I*xI.
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As in Section 3, G* is complete, G is equi-LC™ for each m, and G is lower
semi-continuous (Lemmas 3.4, 3.10, and 3.11). Hence for each y, in I, Theorem M
guarantees the existence of a neighborhood U of I*x y, in I* x I with the property
that g, can be extended toa mapping H, of Uinto G* such thatif ze U, H(z) € F~(z).
Since I*x y, is compact, there is some interval (a,, b,) for which /* x y,=I*x (a,, b,)
< U. Then Fo H, is the injection of I*x (a,, b,) into I*x I.

Since I is compact, there is a finite subset {a;, I<i<r} of 7, and mappings
{H;, 1<i<r}, such that (i) 0 = ay<a, <a,<..<a, = 1, and (ii) for each i, 1 <i<r,
Fo H; is the injection of I*x[a;_;, a;] into I*x 1.

As in Section 3, define

0it I [a-1, @] x 82— (I % [a;— 4, a;])
by
5i(wi Y z) = (Hi(w5 J’)) Z) .
Let
N; = U Cl(Int 50w, y, SB),  (w,»elx[a_,,a].

a

The arguments used in Section 3 prove that there is a homeomorphism hy
from N; onto BxI*x[a;_4, a;] such that

(a) noh; = f|N;, and

(0) ItN;=>A4 n f~(I* % (a;-y, ap)).

The set N; is compact and therefore closed in X.

The remainder of the proof of Lemma 4.1 is devoted to modifying the N;’s
and fitting them together into a single (k+4)-cell that satisfies the conclusion of the
lemma. -

Let 4’ denote the compact set |J N;, 1<i<r. For each i, I<igr—1, let
Xy =f"*xay), let f{ =f|X,, and let 4; = 4’ Af~1(X,)). Cleatly, each f; is
2 homotopy 2-regular open mapping of the complete metric space X; onto the
k-cell I*xa; such that for each (y, @) in I*x q;, the inverse of (y, a;) under f; is
homeomorphic to £3. Also, £/(4,) is contained in I* x a;. Hence from the induction
hypothesis, there is a closed neighborhood A4, of 4;in X; and a homeomorphism ¢&;
from M; onto I*x B such that mo & = £/,

For each (y, z) in I*x , let Gy, denote the set of tame imbeddings Vig,y OF S
into fT'y,2) such that y(,.,(S?) contains A’ Af7Yp, 2) in its interior. Let
G* = (J G{,,., and topologize G* via the metric given by

aw’, v = sup{d(y'(x), y(x), x5,

For each 7, 1<i<r, define a mapping ¢, from IFxa; into G* as follows. For
each (y,a) in I*xay, let (g(y, a))(s) = &4y, s) for all s in S2.

For each 7, 1<i<r~1, there are numbers ¢;and d;, ¢;<a;<d;, and a mapping
H{ from I*x [¢;, d;] into G*' such that (i) H; extends g}, and (ii) F o H, is the injection
of I*x[e¢;, d;] into I*x I The ¢;’s and d’s may be taken so that

0= a0<cl<a1<d1<02<a2<d2<..,<c,_1<a,-1<d-L<a, =1,
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As in Section 3, define

G I xer, d]x S2— f Y % [z, d])
by
: Lilw, v, 2) = (Hi(w, »)(2) .
Let
Ni = U Cl(Int&i(w, , 53),  (w,3) e I*x [e;. ],

where interiors are taken relative to the point inverses J~X(w, ). The arguments
used in Section 3 apply here to prove that (a) there is 2 homeomorphism 4] from Ny
onto B'x I*x [e;, d|] (where B’ denotes a standard 3-cell) such that = ok = N},
and (b) the interior of N; contains 4’ A f I x ¢y, dy)).

The set N is compact and hence closed in X, Redefine N;, 1<i<r as follows.

Ny = h{'"(BxI*x[0,c,]), N, = h A BxIFx[d,., 1]),
and for 2<igr—1,
- N; = 7' (BxI*x[d,_;, c]) .

Let

‘ Ty = hiUBx1*xe) = (FIN) U xc)
and let

T} = hi"Y(B'xI*x¢) = (FIN)"HI*xc) .

By construction, T;= 7. Let «; denote the inclusion mapping of T; into 7. Let
J = fICUT;~T). The mapping h{|CL(T;—T;) takes CI(T.—T,) onto

ClB x I*x ¢;—(hio oo by DH(BxIFx e))],

and mo hy|CU(T] —~T) = J.

For each (y, ¢)) in I*x¢;, F74(p, ¢;) is homeomorphic to the shell between
two 3-cells. Let L’ (L) denote a standard 3-cell with radius 1 (). Let K= CI(L'—L).
Then fis a mapping of CI(T} —T}) onto I* x ¢, such that each point inverse is homeo-
morphic to XK.

The mapping [ is completely regular. For suppose that (y,) converges to Yo
in I*x ¢;. The mappings f|T7 and f|T; are completely regular, since (a) The sets T}
and T, are compact, and (b) mo hi|T} = f|T; and mo hy|T; = f|T;.

For k = 1,2, ..., let M, denote the 3-cell (f]77)"*(3y), and let Q, denote the
3-cell (f|T)™'(y,). The sequences (M) and (Q,) converge completely regularly to
My and Q,, respectively. Let S, denote the 2-sphere boundary of Q. The sequence
(S)) converges homotopy 2-regularly to S,. Let R, = Cl(M,—Q) = F ).
The proof of Theorem F applies to prove that (Ry) converges homotopy 2-regularly
to Ry. Then from Theorem C, f is completely regular.

Theorem H implies that the space of homeomorphisms -from K onto itself is
locally connected. Hence from Theorem A, there is a homeomorphism H,; from
CI(T{~T}) onto KxI*xc; such that mo H; = .

5 — Fundamenta Math, T. CIX, z. 1
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We extend H; to a homeomorphism of T; onto Lx I*x ¢; as follows. The hypo-

theses of Theorem B are satisfied. In fact,
(2) fIT;: Ty— I*x¢; is completely regular,

(b) for each (¥, ¢;) in I*x ¢;, (T~ (¥, c;) is homeomorphic to the 3-cell L,

which is the cone on the 2-sphere S2, and

(c) HjH;}(S?*xI*xc) is a homeomorphism of H; '(S*xI*x¢) onto

S?xI*xc; such that
mo HJHTU(S2xI¥x¢) = fIHT Y(§*xI*x¢)).

Hence there is a homeomorphlsm H, from T; onto LxI*x ¢, which extends
HH;*(S*xI*xc;), such that mo H
from T; onto L' xI*x¢; by H*lCl(T —T) = H, and H|T; =

Next, we extend H;' to a homeomorphism @; from N/ onto L’ x I*x[¢;, di]
such that mo ©, = f|N;. The mapping Hi o b *(B'xI*xc;) takes B xI*xc,

homeomorphically onto L' x I*xc;, or, if the coordinate ¢; is suppressed, onto-
m T 11 p

L' x I*. If for each ¢;, ¢;<e;<d;, werefer to B’ x I* x ¢; as the “e;th level” of B’ x I* x
x [¢;, d;], then the mapping B; of B'xI*x[c;, d;] onto L'x I*x [c;, d;] defined by

Biw,y,2) = [(H o K™*| B'xI*xc)(w,, ¢, 2]

is a homeomorphism that preserves levels, and acts on each level as H, Foh™l| B'x
xI*x ¢; does on the cth level. Then @, = B, /; is the desired extension of HE

4.2. LEmMA. For each positive integer k there is an isotopy {®,, 0<t<1} from
LxI* into L' x I* such that

(i) @, is the inclusion mapping,

(i) @, is a homeomorphism from LxI* onto L' x I,

(iii) if t'>1¢, then &, (LxI¥) contains ®,(LxI*),

(iv) each @, is level preserving, that is, p o @, = q (where p and q are the apparent
projections), and

(v) for each t, 0<i<1, and each z in I*, (L x{z}) is tame in L' x {z}.

Proof. Use radial extensions of the inclusion mapping of L xI* into L' x I¥,

In the space T}, 4 n T} <IntT;. Therefore, in the space L' x I* x ¢;, @(4) n L' x
xI*x ¢;cInt(Lx I*x ¢)). This and the compactness of @,(d) imply that there is
some g;, 0<eg;<(d;—c;), such that for each z in [c;, ¢;+¢;],

; O N (I'xI*x)cInt(Lx I xz).
Let
Vit LxT*x ey, ¢;+8] — L' x I*x [¢;, ¢+ 2]
be defined by

‘/’i(x: Y Z) = (qs(z—'q)/m(x: y): Z) .

= f|T;. Define the homeomorphlsm HY
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This mapping is a level preserving homeoinorphisfn such that (a) Y;|LxI*xc;
is the inclusion mapping of LxI*x¢; into L'x I*x ¢;, and (b) Y;Lx I*x (c;+2)
is a homegmorphism onto L'x I*x(c;+¢;). Let

= (@7 oYy )LxTx[c;, c; 48] .

Then N;' is a (k-+4)-cell contained in 4 ~*(B’'x I*x [¢;, ¢;+¢;]) which in turn
is a subset of N;. The set N; U N;' is a (k+4)-cell which extends N,

In a manner similar to the derivation of N;', we can define a (k-+4)-cell M;"
such that (2) for some number #, for which ¢;<¢;+&;<c;+n;<d;, the set M;’ is
a subset of A~ (B'xI*x[e;+1;, di]), which in turn is a subset of N;, and
(b) Nyyy © M is a (k+4)-cell that extends Ny,q.

Let

—1

Ny=N.uUIN;UN Uk~ B xI*x[c;+e;, c;msl) U M{].
j=1

We assert that N, is the desired (k+4)-cell of the induction step of Lemma 4.1.
It must be shown that
(i) 4<IntN, and N, is closed in X,

(i) for each (y, z) in I*x I, the 3-cell Ny nf~*(y,2) is tame in f~X(y, 2),
and

(iii) there is a homeomorphism H from N, onto B x I¥x I (where B” denotes
a standard 3-cell) such that me H = f|N,.

Tn Lemma 4.2, for each #in [0, 1] and each y in J¥, the 3-cell (L xy) is tame:
in L’ x y. Therefore, for each y in I* and each zin [¢;, ¢;+&;], the 3-cell y{L x yx 2)
is tame in L’ x y x z. Hence the 3-cell (0;* o y;)(L x y x 2) is tame in O7 YL x y % 2).
Also, @7 Y(L' x y x z) is tame in f~*(p, z) since its boundary is the image of a tame
1mbedd1ng of §%'into 7~ %(y, 2).

Let z be a point either in (c;, ¢;+¢) or in (¢;+1;, dp). Let C and C’ denote
(O7 o Y )(Lxyxz) and O] YL’ x y x 2), respectively. Since C” is tame in ™ 1y, 2),
there is a homeomorphism g of f~1(y, z) onto E® such that g(C’) is a standard
3-cell in E3. Since C is tame in C’, there is a homeomorphism ¢ from C’ onto Bj,
the standard 3-cell of radius 1 in some Eunclidean 3-space E'3, which sends C onto-
B%, the standard 3-cell in E’3 of radius 4. Then £o g~*|g(C") is a homeomorphlsm
from ¢(C’") onto BY, and

(Eog7"1g(C)(9(C)) = £(C) =

Extend £o g~* radially to ‘a homeomorphism H of E3 onto E’3. Then He g
is a bomeomorphism from f~*(y,z) onto E’3 that carries C onto B% Hence

= (O] o Y)Lxyx2) = Ny f 70, 2)

is tame in f~(y, 2).
5'
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If z = ¢i+85 or z = ¢+, then
O o) (Lxyxz) = Nynf Ny, 2) = 07 '(L'xyxz),

which, as stated above, is tame in f~1(y, 2).

For the points z in 7 that are not contained in any of the [¢;, ¢;+¢;] or
[e;+n;, d;), there is some i, 1<i<r, such that N, nf~*(»,z) is equal to either
N, af~Xy,2) or N} nf~Y(», z), each of which, from the definitions of N; and Nj,
is tame in f7(y, 2).

Let s =4(—1)+1. Let

Ry=N,, Ry=N_, Ry=In"YBxI*x[c,+&,,c,+n]), Ry= MY,
Rs= Ny, s Rey = M'fi-ls Ry = N,.

For each R;, 1 <j<s, there is a homeomorphism y; from R; onto B" x I % [ot;— o]
such that woy; = fIR;, where oy =0, oy =cq, 0y = ¢ +&, o3 = cy+ny,
d4- = dyy ey Ogog = Cryy Ogoy = CroyFmgs Ogog = Crog ey, ooy = doy,
ag = 1. :

Let Hy = p,. Then yp;o y3*|B"x I*xa, is a level preserving homeomorphism
of B”xI*xa, onto itself. Define the homeomorphism 7, from B x I"x [a,, a,)
onto itself by

To(w, 9, 2) = [(yy 0 93 B ) I o) (w, p, ay), 2] .

Let H, = T, y,. Continue in this fashion, and define H; for 1<j<s. Now define
the mapping H from N, onto B” x I*x [0, 1]1by H|R; = H;, 1<j<s. Clearly, () His
a homeomorphism onto, and (b) e H = f|N,.

By the construction of N,, for each y in I*x[0, 1], £~ () n N, is a 3-cell
that contains ~*(») N 4 in its interior. Then, as in the proof in Section 3 that p
is in IntN, it follows that A=IntN,.

The compact set N, is closed in X. This completes the induction step of the proof
of Lemma 4.1.

4.3. LemMA. If A is a compact subset of X, there is some open superset U of 4
that is homeomorphic to E"*3 and whose closure is homeomorphic to B"**.

Proof. Since f(4) is compact, it is contained in some n-cell K = [0, m]".
Let X’ = f~Y(K). From Lemma 4.1, there is a closed subset M of X" that is a closed
(n+3)-cell such that A4 is contained in the open (n+3)-cell IntM. From
Corollary 3.16, X’ is an (z+3)-manifold. Therefore, by the Brouwer domain in-
wvariance theorem, IntM is open in X’. Let U = Int M.

4.4. PROPOSITION. Let X be a complete metric space and f a continuous, open,

homotopy 2-regular mapping of X onto Euclidean n-space E*, n a nonnegative integer,

~such that for each y in E, f~*(y) is homeomorphic to E®. Then X is homeomarphic
to E"*3,
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Proof. We use the following characterization of E” due to Brown 2, p. 812].
Let X be a topological space which is the union of a sequence ¥, = V,c... of open
subsets, where each V; is homeomorphic to E™. Then X is homeomorphic to E*.

Since X is a locally compact separable metric space (Lemmas 3.1 and 3.15),
it has a countable open basis {U;} of relatively compact sets. From Lemma 4.3,
there is some open subset ¥, of X such that ¥, is homeomorphic to £**3, CI(V,)
is homeomorphic to B"*, and CI(U,) is contained in ¥, Let W, = CI(U,) u Cl(¥y).
There is an open subset ¥, of X such that ¥, is homeomorphic to E**3, CL(V,) is
homeomorphic to B"*3, and W,c¥,. Let W, = CI(U,) u CI(¥,) and repeat this
process. Continuing in this fashion, we obtain a sequence ¥;cV,c... of open
subsets of X that satisfies the hypothesis of Brown’s Theorem.

4.5. THEOREM. Under the hypotheses of Proposition 4.4, (X, f, E", E®) is a trivial
fiber space, that is, there is a homeomorphism & from X onto E'*3 = E"x E® such
that f<mo ®, where © denotes the projection from E"x E* onto E".

Proof. We will show that (X, f, E", E®) is locally trivial. Then, since E" is
contractible, locally compact, and separable, (X, f, E", E%) is trivial ([12], p. 53).
Let yin E” be given. Let £>0 be such that y is contained in the interior of J* = [~ ¢, ¢]".

“For i=1,2,.., let L; = {ax| xe E?, |x| = 1,0<u<i}, i.e., the closed 3-ball

in E? of radius i. The space f~(J" is a locally compact metric space. Hence, it has.
a countable basis, say {U,}, consisting of relatively compact open subsets.

From Lemma 4.1, there is a closed neighborhood X, of U, in f~*(J*) and a ho-
meomorphism /; from K; onto L;xJ" such that me &y = f|K;. Again, from
Lemma 4.1 there is a closed neighborhood K, of the compact set K; U U, in f~4(J")
and a homeomorphism 4, from K, onto L,xJ" such that mok, = f|K,. In this
fashion, we define sets K; and homeomorphisms #; such that (2) £~ *(J™) = U K;,
(b) for each 7, K;, is a closed neighborhood of K; in £~ *(J"), and (c) for each i,
mehy = f1K;. : .

In the proof of Lemma 4.1, we considered subsets T} and T; of X, such that
T{ (T,) is homeomorphic to B'xI" (BxI") under a fiber preserving homeomor-~
phism A (h). We derived a fiber preserving homeomorphism H;* from 7; onto
L'x I" such that H;"|T; is a homeomorphism from T; onto L xI", where L' (L) is
a standard 3-cell of radius 1 (1). In the present case, we argue similarly to show the
existence of homeomorphisms H;* from K; onto L;xJ" such that () wo H; = f|K,,
and (b) H{'|K,_, is a homeomorphism from K;_., onto L, ;xJ"

Let §; = h,. For each y in J*, §; ¢ Hy |BdryL, x {y} is a homeomorphism
from BdryL, x {y} onto itself. Let o, denote its radial extension to a homeomorphism
of Cl(L,~L,)x{y} onto itself. Let g, be the homeomorphism of CI(Ly—Ly)xJ"
onto itself defined by g,(x, y) = (g,(x), y) for each (x, ) in Cl(L,—Ly)xJ"

Define 6,: K,— L, xJ" by

851Ky = 61, 6,ICI(K,~Ky) = g2 Hj .

Similarly, define 85, d,, ... such that for each i, §; is a homeomorphism of K; onto
L;xJ" for which (a) nod; = f|K;, and (b) §/K;—1 = §;-¢-
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Finally, define the homeomorphism 7' from f -1(j" = U K; onto E*xJ" by
T|K; = §;. Clearly no T =f1f M.

Remark. Theorem 4.5 does not imply that fis completely regular. An example
is given by Seidman [11, p. 465] of a metric for E*x E! that yields the product
topology, but that with respect to this metric, the projection mapping onto the first
factor is not completely regular. However, if the usual metric on E® x E" is imposed
upon X under some homeomorphism which satisfies the conclusion of theorem,

then f is completely regular.
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Neighborhoods of compacta in euclidean space
by

Gerard A, Venema * (Princeton, N. I.)

Abstract. In this paper the question of when a compact subset of Euclidean n-space has
arbitrarily small piecewise linear neighborhoods with k-dimensional spines is considered. A theory
is developed which completely answers the question in terms of the fundamental dimension of
the compactum and an embedding condition which is a weak form of the cellularity criterion.
‘The theory is the shape theoretical analogue of the demension theory of M. A. Stariko.

1. Introduction. Suppose X is a compact subset of Euclideart n-space E™.
1t is, of course, well-known that X has arbitrarily small piecewise linear (PL) neigh-
borhoods with (n—1)-dimensional spines. We want to determine the smallest value
of k such that X has arbitrarily small PL neighborhoods with & -dimensional spines.
This problem leads naturally to shape theory, since if X has arbitrarily small PL
neighborhoods with k-dimensional spines, then X has the shape of the inverse limit
of an inverse sequence of k-dimensional polyhedra and thus has fundamental
dimension <k. Hence we immediately see that the fundamental dimension of X
is a Jower bound for the possible values of k.

In this paper we present a theory which tells exactly when that lower bound is
achieved and what the smallest value of k is otherwise. Our theory is the shape theory
analogue of the demension theory of M. A. Stafiko [13]. Stafiko looks for neigh-
borhoods which not only have k-dimensional spines, but also have small retractions
onto the spines. (A precise statement of Starfiko’s tesults is given below). In our
theory the fundamental dimension plays the role of the covering dimension in
Stanko’s theory and a weak form of McMillan’s cellularity criterion (the inessential
loops condition) plays the role of the 1-ULC property. Our theory unifies the various
proofs of finite dimensional complement theorems which have appeared in [8], [3],
[5], [6], [14] and [11] since the main step in each of those proofs involves finding
small neighborhoods of compacta with k-dimensional spines where 2k+2<n.
Before stating our main result (Theorem 1.4) we define the terms. used.

DerNiTION 1.1 [1, p. 227). The fundamental dimension of a compactum X
is defined by Fd(X) = min{dim ¥|Sh(X)<Sh(¥)}.

* Research partially supported by grants from the National Science Foundation.
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