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Flipping properties and supercompact cardinals *

by
Carlos A. Di Prisco (Caracas) and William S. Zwicker (Schenectady, N. Y.y

Abstract, We give a characterization of supercompact cardinals in terms of a combinatoriak
property. Weakening this property we obtain a second combinatorial property which characterizes-
strongly compact cardinals, We prove that a more uniform version of this second property is again.
equivalent to supercompaciness.

In a paper entitled “Flipping properties and large ‘cardinals”, Abramson,
Harrington, Kleinberg and Zwicker [1]study a certain type of combinatorial property,
the so called flipping properties, which link, in a uniform way, the different notions.
used to define various large cardinals.

In this paper we continue the same line, introduce new flipping type properties.
and discuss their relationship with A-ineffability, strong-compactness and super-
compactness.

Let % be an uncountable cardinal and 1> be an ordinal. P,(A) is the sets of’
subsets of A of cardinality less than x. The definition of super compact cardinals was
introduced in [4].

% is A-supercompact if there is an ultrafilter U on P,(4) such that

@) For all PeP,(1), P={QeP,)| PSQO}e U (U is “fine”).

(ii) For every collection {4,| a<§<x} such that 4,e Ufor all a<$, ﬁaA,, el

a<

(U is “x-complete™).
(iii) If {d,| a<2} is a A-sequence of element of U then the diagonal inter-
section of the A,’s, A A € U where A\ 4, = {PeP,(1)] Pe A foreachae P} (Uis
P2y «<A

“normal”).

% is supercompact if it is A-supercompact for all Azx.

Standard notation is used. If Ais a set #(4) denotes £’s power set, and |4]
is A’s cardinality. We will switch freely between discussing and ultrafilter U and its
associated measure i & (P(A) — 2. If 4 and B are sets, B 4 is the set of functions:
with domain B and range contained in A. Lower case Greek letters name ordinals.
%* is the cardinality of % and A% = | U A%

a<x

* Some of the results in this paper appeared in the first named author’s doctoral dissertation:
done under the supervision of Prof. E. M. Kleinberg.
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Jech [2] defined closed, unbounded, and stationary subsets of P,(4) and showed
that any member of a normal x-complete fine ultrafilter is stationary. Magidor used
the definition to generalize the notion of ineffability as follows:

Let % be a cardinal and A>x an ordinal. x is called A-ineffable if for any
function f: P,(A) — P,(A) such that f(P)=P for all PeP,(), there is a subset 4
of A such that the set {PeP ()| 4 n P = f(P)} is stationary.

Following the ideas of [1], if #: A— 2(P(4)), we call ¢’ a flip of ¢ (¢'~ 1)
T t: A— P(PLA) and for all a<i, t'(x) = t(w) or t'(e) = P(A)—~t(x).

THEOREM 1. The following are equivalent:

(i) % is supercompact.

(ii) % is A-ineffable for all Azx.

(i) For all Azx, if t: A— P(P,(A) then there is a t'~ t such that A t'(x)

a<i
is Stationary.

Proof. The proof will follow from the next three lemmas. Lemma 1 establishes
the equivalence of (ii) and (iii) “level by level”, that is to say for cach Az, x is
A-ineffable if and only if for each A-sequence of subsets of P, (1) there is a flip of the
sequence which has stationary diagonal intersection. In Lemma 2 we obtain the same
flipping property from the assumption that x is A-supercompact. Lemma 3 shows
how to build fine x-additive normal ultrafilters by using (iii).

The equivalence of (i) and (ii) was first proved by Magidor in [3] using some
embedding properties of supercompact cardinals.. The combinatorial proof that
follows seems to us a much simpler one. (Stan Wagon has informed us that he and
J. Baumgartner also obtained a combinatorial proof of Magidor’s theorem).

LemMa 1. A cardinal % is A-ineffuble if and only if for all t: A— P(P ()
there is a 1’ such that t'~t and At'(6) = {PeP(})| Pet'(®) for all € P} is
a<i

stationary. That is to say, % is )-ineffable if and only if for any A-sequence of subsets
of P[A) there is a flip of the sequence with stationary diagonal intersection.

Proof. SupposesisA-ineffable, andlet £: 1 — P(P,1). Define f: P, (1) — P,(A)
by f(P) = {«eP| Pet(e)}. Letnow A=A besuchthat § = {PeP ()| A NP = Fita):
is stationary. Define ¢': 1 — 2(P,(})) as follows: #'(2) = #(«) if & & 4 and ()
= P(A)—t() if oo ¢ A.

Suppose Pe S (ie. PnAd =f(P)) and let aeP. If ue d then ¢ e f(P) and
Pet(w) = t'(w). If a¢ A then ¢ f(P) and Pé¢ t(x), hence P eP(A)~t(0) = t'().

In any case, P € t'(2). So we have shown that S& A #'(x), which must therefore be
a<i

stationary.

Conversely, let f: P (1) — P J) be such that for all P f(PY=P. Define
11 2 P(PX) by t{a) = {PeP,) aef(P)}. Let ¢ be such that '~ ¢ and
A\ t'(¢) is stationary.

<A
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put 4 = U {Ff(P) PeAt' (@} Let’s check that if Pe A t'(x) then P 4
a<i <2

= f(P). Obviously f(P)SP n 4, so we have only to check -that 4 n P<f(P).
By the definition of 4, this is true if for any Q € A t'(¢)) we have P n f(Q)<f (P).
a<i

Indeed, if Qe At'(@), let aeP nf(Q) then Qet(x). On the other hand as
a<d
Qe At (@), Qet'(®)so t'(w) = t(x). ButaeP and Pe A 1'(2), so P e t'(c) = #(e)
<A a<A

and hence o & f(P). B
LemMA 2. If % is A-supercompact then for each t: A — P(PAA) there isa t' ~ ¢
such that /\ /(o) is stationary.

<A
Proof. Let u be a normal measure on P,(4), and let £: 1— 2(P[2)). Define
t': A— P(P,A) by

, (o) if  p(t@)=1,
(o) = { P(N)—t(@) otherwise.

Then p( A #'(«)) = 1 and therefore A #'(%) is stationary. ®
a<d <l

LemMA 3. Property (iii) of the theorem implies that % is supercompact.

Proof. Lety = 2%, and well order the subsets of P,(%) by ordinals less thany.
So for each a<vy, 4, is the ath subset of P(4).

For every ASP (W) let F(4) = {Q e P,(»)| Q n L€ A}, and define t: y—P(P,(1))
by t(e) = F(d,) for all e<y. Let ¢’ be such that #'~ ¢ and A #'(¢)) is stationary.

a<A
We define a filter U on P,4) as follows. if A=P (%), then 4 = 4, for some
o<y, Let Ae U if and only if (&) = 2(c0). ’
1t is easy to check that U is in fact a filter on P,(A). We will now prove that U
defines a fine, %-additive, normal measure on P,(7).
a) To show that U is fine, let P e P,(1), then P = A, for some a<y. If PeU
then #'(6) = P(y)—F(dy). And if Qe( BA t'(B) 0 {a} then Q&P (y)—F(4),

i.e. P¢ Q. We have then shown (A ') n {8 o {QI Q=2P} = & which contradicts
the fact that /\f’(/i) is statlonary

<‘)v
b) To see that Uis an ultrafilter, let 4, SP,(4). If 4, ¢ Uthen t'(0) = P (A)—F(4p)-
Let 4, = PfA)—4,. Suppose A;¢U then ¢ () = P(y)—F(4y) = F(P3)—4p)

= F(4,). So (/\z (®)  {x, B} = B, a contradiction. Hence 4, = P,() -4, eU.
Similarly if A e U then P (1)—4,¢U.
) U is x-complete. Let P e Py) be such that for any « € P, 4, € U. Suppose

A, weP)¢ U. First, () {4,] «eP} = A, for some f<y,50 t'(B) = P.(7)—F(4y)
QE"(P (cjl; /};ﬂ) Let QePyy) st Q2PU{f}. If Qe At’(é) then Qe F(4,)

for all ae P and Qe F(P(A)—4y). That is to say o) r\leA for all aeP and

3 — Fundamenta Math, 7. CIX, z. 1
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@nlgdy=1{4,] aeP}, a contradiction. So we have shown that if
N\
N {4, «eP}¢ U then (;A (@) n P n {B} = @ which contradicts the fact that
<7

4 t'(¢) is stationary.
[£37

d) Uis normal. Let {Ba,},,;< 1 be a collection of subsets of P,(4) such that B, & U
for all x<2. We will show that A B,e U. Let f: A — p be such that for each o<,
P ’
Ba = Af(a)'

Cramm. C = {QeP,)| fla)e Q for all we O n A} is closed and wnbounded,

C is closed. Suppose 20S01S..€ Q... is an increasing sequence of
elements of C of length d<x. Then Q = |J 1@yl £<6} e C because if ae O n A
then o€ Q; N A for some £<6 and so flWe Q:c0.

- Cis unbounded. Let PeP,(4), and construct an increasing sequence as

follows: Qp = P, 0,4y = 0, {f(®)| ze 0,04} Let 0 = {0, n<w}. Then
P=Q and Qe C. This concludes the proof of the claim.

If aAlB, ¢ U then by b) P, (1)—( AAB,,) eU. Let 4; = P (1)~ A B,. We have
< o< <A
t'(B) = F(4p) = {QeP () e Qn A such that Qni¢B}.

N\
LetPe (iAv (@) {f}thenTaeP A Asuchthat P A 4 ¢ B, hence P ¢ C (otherwise
<
Ffl)epr an'd 0 Per'(f () = F(dyq), thus P de Arewy = B,) so if 4B, ¢ U,
we contradict the fact that A ¢/(&) is stationary (because ( A #/( ) n{ /?} N C = @)
o g<y < .
This completes the proof of the lemma and of Theoren: 3,1.
) A similar result holds for strongly compact cardinals. First we will give a de-
finition.
A cardinal x is mildly A-ineffable if for any f: P,(4) — P %)
’ ' . such. that f(P)c P
for all PeP,()) there is a set A</ such that for xall Pe;.f(l), 7
{QeP I QP4 =r) NP}
is unbounded.
THEOREM 2. The following are equivalent
@ 2 is strongly compact.
(i) % is mildly \-ingffable for all 3.
(i) V Az if 1 A—P(PA) there is a t' ~ t such that VYPeP) ()
is unbounded, -
Proof. The proof is quite similar to that of Theorem 1. Once again (ii) <> (iii)
can be done level-by-level (i.e., (ii) and (iii) are equivalent for any fixed Az ). Note

that in Lemma 3 all the properties. of the measu: i
re obtained, except normalit , rely
(?nly on the fact that ﬂP t'(x) is unbounded for any PeP,(4). I
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We now turn our attention to a different flipping property equivalent to super-
compactness. In the first theorem we flipped a given sequence to obtain one with
stationary diagonal intersection. As in the case of ineffable cardinals (see [1]) the
notion of stationary can be sidetracked by requiring instead that the diagonal inter-
section of the flipped sequence be unbounded when taken in any order.

THEOREM 3. % is supercompact if and only if ¥ Azx if t: A— P(PAX)) there

is a t'~ t such that for all permutations m: A— 1, /\ t' o n(e) is unbounded.
a<i

Proof. Just as in Lemma 2 if » is supercompact and z: 1 — 2(P,(A)) we can
flip ¢ to obtain #’~ ¢ such that A\ #'(«) is stationary. Now it is easy to see that if

a
7 A Ais any permutation /\ #’.o m(e) is also stationary and therefore unbounded.
o

In fact, if =: 1 — A is any permutation, the set C = {P e P,(})| a e P if and only if
7(x) € P} is closed and unbounded. Hence (A #'(0)) n C is stationary. As (A /(@) N

n Ce A t'on(x) we have the desired result.
@
The most obvious way to attack the converse would be to show that if A #(«}
a<i

is not stationary then there is a m: A— A such that A 7o 7(e) is not unbounded.
a<i

This would establish the equivalence of the two flipping properties. It appears, how-
ever, that one would need the additional assumption |P(4)| = |A] to make this
argument go.

Instead we proceed as in Lemma 3. Again let {4,] a<y} be an enumeration
of all the subsets of P,(1) (where y=2%7). For each u<y let t(x) = F(4,)
= {PeP,y)| P led,), and let t'~ ¢ be such that A t'o z(e) is unbounded for

each permutation 7 of y. Define u by u(4,) = 1 if and only if F(4,) = #'(2). The
other properties of u being routine to check, we shall just present the normality

argument.
Suppose that for each o< we have a subset B, of P,(4) such that pu(B) =1

and that u( A B,) = 0. We would like to tinker with the B, sequence so as to eliminate
a<i
any possible repetitions. The new sequence, B,, should have the original properties.
assumed for the B,, and should in addition be nonrepeating. One such tinkering
procedure is:
B'(o) = B(o) v {a}—{{8}] d<a}.
It is easy to see the B, have the desired property. Let § be such that P,(4)— %;.B; = Ag,
and f: 1— 9 be such that for each o<, By = 4y (f is one to one).
Now consider 7: y — y be the permutation given by
f(@ for all a<A,

n(0) = <8 if a = f(5),
o otherwise .
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a<l
Pet'(f) = F(dy) (since pu(dp) =1) and so JaeP n i such that Pni¢ B,
On the otherhand V a € P, P € ¢’ o n(c), in particular for everyae P N L, Pet' o n(x)
= t'(f(e)) = F(A;) 50 P n de Ay, = By, a contradiction.
Then u(/A B;) =1, and g is normal.

<l

As At'om(n) is unbounded, take Pe/\¢'om(x) such that =~ '(f)eP, then
<l
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On saturated sets of ideals and Ulam’s problem
by

Alan D. Taylor * (Schenectady, N. Y.)

Abstract. A set # of countably complete ideals on w, is called A-saturated iff for every col-
lection {X,: a<A} € § (w,)— ) # there exists {a, B} € [A]* such that X, N X5 ¢() #. An old problem
of Ulam asks if there can exist a 2-saturated set + of size ;. We show that a weak version of
Kurepa’s hypothesis implies that if |.# |< @, then # is not even w,-saturated. This answers a question
of Prikry. Some related results are obtained and several questions are stated.

§ 0. Introduction. Over thirty years ago S. Ulam raised the following question
(see [6]). Let % be an uncountable cardinal less than the first weakly inaccessible
cardinal. What is the smallest cardinal 1 having the property that there exists a family
of A two valued countable additive measures defined for the subsets of (singletons
having measure 0 and » having measure 1 for each of them) such that every subset
of x is measurable with respect to at least one of these measures? The following
version of this question was stated as Problem 81 of [7] and will be referred to here
as Ulam’s problem.

ProsreM (S. Ulam). Can one define 8, ¢-additive 0-1 measures on @, so that
each subset is measurable with respect to one of them?

In this paper we will consider several generalizations of Ulam’s problem.
Several new results are obtained and many older results from the literature are col-
lected together. Some eighteen open problems are also stated.

We begin by establishing some notation. v will denote an arbitrary cardinal,
while 2 and p will be reserved for infinite cardinals and » for an uncountable cardinal,
We will use the phrase “ideal on x” to mean “proper uniform ideal on 57, (Anideal I
on x is called wniform iff [x]“*<1I) The (normal) ideal of non-stationary subsets
of the regular cardinal % is denoted by NS,.

If I'is an ideal on % then J* denotes 2 (%) —I (the sets of “positive I-measure”
and I* denotes {XSx: x— X e I} (the sets of “I-measure one”), If 4 e I'* then the
restriction of 7 to A is the ideal

It4d ={Xcx: Xndel}.

* Research supported by NSF grant MCS 77-04147.
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