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Abstract. The setting of the paper is the hyperspace of all nonempty subcontinua of a metric
continuum. A converse to the notion of a Whitney property is introduced. This converse notion,
called a Whitney-reversible property, is investigated in connection with the following: Dimension,
contractibility, shape, tree-like, acyclicity, hereditary indecomposability, and certain circle-like
continua. Some unanswered questions are raised.

1. Introduction. Since this is the first paper on this topic, and since we introduce
some new concepts related to other relatively new ideas, we will give in this section
a somewhat lengthy discussion which hopefully clarifies and motivates the rest of
the paper.

Let X be a continuum, i.e., a compact connected metric space which is non-
degenerate (= consists of more than one point). By a subcontinuum of X we mean
a nonempty (but possibly degenerate) compact connected subset of X. By the hyper-
space of X we mean

C(X) = {A=X: A is a subcontinuum of X}

with the Hausdorfl metric (see [17] or [26]). The term mapping is synonymous with
continuous function. In 1932, Whitney [35] showed that there is a mapping
i C(X) — [0, + o0) such that (a) if 4, Be C(X) and A< B # A, then pu(A)<u(B);
() u({x}) = 0 for each x e X. Throughout this paper the symbol will always
denote any mapping from C(X) into [0, + o0) satisfying (a) and (b) above; p will be
called a Whitney map. In [9, p. 1032] it was proved that Whitney maps are monotone,
i.e., u~Y(¢) is connected for each f. Hence, u~ 1(t) is a continuum whenever
0<t<pu(X). Thus, the property of being a continyum passes from X to u~(s).
It has recently been of interest to see what other properties of X must also be properties
of p~1(z). Precisely: A topological property P is said to be a Whitney property [23}
provided that whenever a continunm X has property P, so does 11~ (z) for each Whitney
map p for C(X) and each #, 0<t<p(X). Much work, by many authors, has been
done on Whitney properties. A comprehensive treatment of what is known is in [26,
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Chapter XIV] — some results, appropriate to this paper, will be mentioned later.
Now, however, we discuss the notion of ‘Whitney-reversible properties.

Before defining the notion of a Whitney-reversible property, we give a geometric
interpretation of it. Let X be a continuum, let x be a Whitney map for C(X), and let
t, €0, p(X)] such that {#,}7>,— 0 as n— co. For each n = 1,2, 0., p7Nt) is
a continuum which we visualize as being a horizontal level in C(X) [see Fig. I11.

/ a7ty
/ x !‘_1(tn)
< a0y =F{x)
c(x)
Fig. 1.

Since p is an open mapping [9, p. 1032], the levels 1~ (1) converge to p”*(0) as
n— 0. We use the symbol F;(X) to denote the space ~*(0). It follows easily from
the definition of u above that

F(X) = {{x}e C(X): xe X}

and, hence, Fy(X) is called the space of singletons. Note that X and F;(X) are homeo-
morphic in a natural way by associating x with {x} for cach x € X. Thus, as n— o0,
the levels p~%(z,) “approximate™ X closer and closer. Roughly speaking, Whitney-
reversible properties are those properties which are preserved by this approximation.

More precisely, we have the following definitions [26, Chapter XIV, E]: A topo-
logical property P is said to be a strong Whitney-reversible property (respectively,
a Whitney-reversible property) provided that whenever X is a continuum such that
1~1(¢) has property P for some Whitney map (respectively, all Whitney maps)
u and each #, 0<t<pu(X), then X has property P. Thus: Whitney propertics are
those topological properties which pass from X to cach ™ '(t), whereas Whitney-
reversible properties are those topological propertics which pass from u~ 1y,
0<i<p(X), to X. Hence, these notions are “converses” to each other. However,
we have made a distinction between stromg Whitney-reversible properties and
Whitney-reversible properties. In this connection, let us note the following. There
are continua X, which have a certain topological property P, and Whitney maps
HisHa: C(X)— [0, +c0) such that puy*(#) has property P whenever 0<z<p,(X)
but u5 1(s) does not have property P for some s, 0<s<u,(X). This happens, for
example, when P is the property of being contractible [29]. When this happens, of
course P is not a Whitney property. It is not known if the “reverse” can happen,
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i.e., it is not known if there is a Whitney-reversible property which is not a strong
Whitney-reversible property [26, (14.56)].

As regards relationships between Whitney properties and reversible properties,
we make the following comments. There are Whitney properties which are not
Whitney-reversible properties; such is the case for the property of being arcwise
connected [26, (14.48)]. There are strong Whitney-reversible properties which are not
‘Whitney properties; for example, the property of being indecomposable [26, p. 454].
Clearly, the negation of a Whitney property is a strong Whitney-reversible property
[26, (14.46)]. Finally, we mention that there are properties which are both Whitney
properties and strong Whitney-reversible properties; for example, the property of
being locally connected [26, (14.48)].

The purpose of this paper is to determine some strong Whitney-reversible properties.
The paper is a continuation of the work done in [26, Chapter XIV, E]. In particular,
some of the results here answer questions raised in [26]. We mention that some of
our results show that certain Whitney properties are strong Whitney-reversible
properties [see (3.3) and (5.5)). Thus, these results are “converses” to the correspond-
ing (known) results about Whitney properties.

For some properties P, we will show the following: If Xis a continuum such that
there is a Whitney map u for C(X) and a sequence {£,}7=;— 0 as n— co such that
1~ 1(z,) has property P for each n = 1,2, ..., then X has property P. We will call
such a property P a sequential strong Whitney-reversible property. Tt is not known
if every strong Whitney-reversible property is sequential [26, (14.55.1)].

Throughout this paper we adopt the following notation. The symbol ANB
denotes the complement of B in A. For groups G, and G,, the symbol G; = G,
means G; is isomorphic to G,. Foreachn =1,2, ..., R denotes Euclidean n-space
and S" denotes the n-sphere in R**1,

5" ={pe R | = 1}.
By the symbol ANR we mean a (possibly non-compact) absolute neighborhood
retract for the class of all metrizable spaces. Recall from above that the symbol X
always denotes a continuum. Since X and F,(X) are homeomorphic in a natural
way (see above), we will use the symbols X and F,(X) interchangeably.

A mapping from a space Z, into a space Z, is said to be inessential provided
that it is homotopic to a constant mapping; otherwise, it is said to be essential.
The space Z, is said to be contractible with respect to Z, provided that every mapping
from Z, into Z, is inessential [24, p. 370 A mapping f from Z; to Z, is called an
r-map provided that there is a mapping g from Z, to Z, such that fog: Z,—Z,
is the identity map [4, p. 7. If f1 Z;— Z, is an r-map, then Z, is said to be an
r-image of Z, 4, p. 8l

Terminology not defined above may be found later or in appropriate references
at the end of the paper.

The following result will be used many times in this paper.

(1.1) If =C(X) is a subcontinuum of C(X) such that [JZ]le ¥ for each
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subcontinuum 3 of &, then & is an r-image of the hyperspace C($) [22, Section 1].
Hence, & has all those properties which-hyperspaces have and which are preserved
by r-maps. ‘

Proof. Define f: C(¥)— & by f(Z) = £ for each Ze C(¥) and define
g: P> C() by g(4) = {4} for each A e &. Then f is continuous [17, p. 23],
g is continuous, and fe g is the identity map on &. Therefore, & is the r-image of
C(&) by f.

The most frequent application of (1.1) will be to the set Wl w(X )]). By
monotoneness of g [9, p. 1032], ™ ([#, u(X)]) is a subcontinuum. of C(X). Thus,
by using [17, 1.2], we see that u™*([¢, 1 (X)]) satisfies all the hypotheses on & in (1.1).
Hence:

(1.2) For any 1€ [0, p(X)), p~([t, p(X)]) has all those properties which hyper-
spaces have and which are preserved by r-maps.

2. Dimension. In [26, (14.57)] it was asked if the property of being one-
dimensional is a strong Whitney-reversible property. In [1] the answer was shown
to be “yes” for the special case of finite-dimensional continua X. We will show in (2.8)
that the answer is “yes” with no restrictions. We show even more in (2.6) and (2.7),
which are the main results of this section. We begin with the following two general
theorems which will be used in the proof of (2.6).

(2.1) THEOREM. For any t such that 0t < u(X), dim [~ ()] <dim[p~*((t, u(X)])]-

Proof. Let I' = y~((¢, u(X)]). Since the theorem is obvious when dim[I'] = oo,
assume for the purpose of proof that dim[I'l = n<co. Suppose that

() dim [~ (Op@)]=a+1.

Then, by [12, VI4, p. 83], there is a closed subset A of x~!(¢) and a mapping /> A—S"
such that f can not be extended to all of u~(z). Hence, [12, p. 87], fis essential. Let

& = {Bepu ([t, u(X)]): B> A4 for some deA}.

By using the definition of x (in Section 1), it follows easily that [¥~A]=TI". Thus,
dim[#\4]<n. Hence, since 4 is a closed subset of &, we have by [12, Corollary,
p. 84] that f can be extended to a mapping g: & — S". Now observe that & is
a subcontinuum of C(X) since it is compact (by an easy sequence argument using
compactness of 4 and of C(X)) and arcwise connected (by using {17, 2.3 and 2.6]).
Thus, by using [17, 1.2}, it follows easily that & satisfies all the hypotheses of (I.1).
Hence, since hyperspaces are contractible with respect to ANRs [18, 1.6], we have
by (1.1) and [24, p. 371] that & is contractible with respect to S*. Therefore, ¢ is
inessential which implies that fis inessential, a contradiction. Thus, (x) is false and,
therefore, we have proved (2.1).

As we will see in the proof of (2.6), the value of (2.1) for our purposes is to show
that dim[u~*(2)] is finite if dim [,u_l((t, w(X )])l is finite.

(22) THEOREM. For any t such that O0<t<p(X), dim{p~*([t, u(X])]
= dim [7*((t, p(D)])]- '
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Proof. Let I' = p~*((¢, p(X)]) and let @ = p~*([¢, u(X)]). Since the theorem
is obvious when dim[I'] = co, assume for the purpose of proof that dim [I'] = n<co.
Then, by (2.1), dim[e~*()]<n. Thus, since

0= 50 o [ 05427 wO0)]

it follows using the Sum Theorem [12, ITI2, p. 30] that dim [Q]<n. Therefore, since
e and dim[I'] = n, we have that dim[Q] = dim[I"] which proves (2.2).

Let us note the following corollary.

(2.3) COROLLARY. For any
= dim[C(X)].

Proof. Recalling from Section 1 that Fy(X) = p~'(0) and that Fy(X) is
homeomorphic to X, we see that (2.3) follows immediately from (2.1) and (2.2)
by setting ¢ = 0.

Our next result is a sharpening of (2.1) for the case when dim [ ()] is finite.
It will be used in the proof of (2.6), and it is a generalization of [18, 2.3] — see (2.5).

(2.4) Thuorem. If. 0<t<u(X) and if dim ") < o0, then dim[p~(2)]
<dim [~ ([t p ()]

Proof. Assume that 0<f<p(X) and that dim[u~1(#)] = n<o. Let &
= p~{(z, p(X)]). By (2.2), it suffices to prove that

contimuum X, dim[X]<dim[C(XINF(X)]

() n<dim[¥] .

To prove (x) first observe that, since hyperspaces are acyclic [34, 1.2] and since r-maps
preserve acyclicity, we have by (1.2) that

() & is acyclic.

Assume n = 1 (the proof in this case will be similar to the proof in [9, p. 1029]).
Since < u(X), there exist 4, Be u~*(z) such that 4 # B. By [17, 2.3 and 2.6] there
are arcs o« and f§ in & such that anp”'() = {4}, Bop i) = {B}, and
Xe[oxn B Since p7(#) is a continuum, it follows easily that p~ () uau B is
a non-acyclic (in fact, non-unicoherent) subcontinuum of &. Thus, by (1),
dim[9°]> 1. Next, assume n>1 (the proof in this case is a modification of the first
part of the proof in [18, p. 709)). Let Y, = " }(¢). Since dim[Y{] = n, there is
a compact subset A of ¥, and an (n— 1)-dimensional cycle 9"~ in A such that y*~*
is essential in 4 and bounds in ¥ [2, p. 21]. Let Y, = {Be &: B> 4 for some
A e A}. By using the definition of 1 (in section 1), it follows easilythat ¥y n ¥, = A.
Note that ¥,, being analogous to the set & in the proof of (2.1), is acyclic by (1.1).
Thus, y*~* bounds in ¥,. Recall from (1) that & is acyclic. Hence, by letting ¥ = &,
we see that ¥, ¥, and ¥, satisfy the hypotheses of [18, 2.4]. Hence, since n>1,
we have by [18, 2.4] that dim[Y]>n. Therefore, we have proved (x).

(2.5) Remark. The result in [18, 2.3] says that if dim[X]< o0, then dim[X]
<dim[C(X)]. Tt is also known that if dim[X]z3, then dim[C(X)]= o 32,
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Theorem 5]. With respect to the two results just mentioned and (2.4), let us note the
following: For each n = 2, 3, ..., there is a continuum X, with Whitney map p,
for C(X,) such that, for a suitably chosen #,, dim [, *(t)] = n—1 and
dima [y ([t,, p(X)N] = n. Such is seen to be the case when X, consists of »
perpendicular segments A, ..., 4, emanating from the origin in R" and

t, = max{u,(41), ..., m(4,)}

where g, is any Whitney map for C(X,); in fact, u, 1z,) is an (n—1)-cell and
ty *(Itn> (X)) is an n-cell.

Now we come to one of the main results of this section,

(2.6) THEOREM. Let t be fixed, 0<t<p(X). If dim[u~*()]<n for each s>t
and for some fixed n<c, then dim[u~i()]<n and dim [p™'([2, p(X)])]<n+1.

Proof. Let , denote the restriction of u to u~%((¢, p(X)]). Then, using the
compactness of C(X), it follows easily that iy is a closed mapping of p~*{(¢, p(X)])
to (z, u(X)]. Also, by hypothesis, dim[py*(s)]<n for each se (¢, p(X)]. Hence,
by [12, p. 92],
(%) dim [uz (2, p (]| <n+1.
By (2.1) and ( %) we see that dim [~ (#)] < co. Thus, by (2.4) and (#), dim [u~ ()] <n.
By (2.2) and (%), dim [p~*([7, u(X)})]<n+1. We have proved (2.6).

Our next main result is an easy consequence of (2.6). Another application of
(2.6) is in the proof of (3.4).

(2.7) TuEOREM. For any given n<co, the property of being of dimension <n
is a strong Whitney-reversible property.

Proof. Use (2.6) with ¢t = 0.

We state the following corollary since it answers the question in [26, (14.57)]
mentioned at the beginning of this section.

(2.8) COROLLARY. The property of being one-dimensional is a strong Whitney-
reversible property.

Except for the case when n<2, the following result gives more information about
dim[X] than is contained in (2.6).

(2.9) TaEorEM. If dim[u” Y(s)]<n for each s>0 and for some fixed n<w,
then dim[X]<2.

Proof. Setting # = 0 in (2.6), we sce that dim[C(X)]<n+1<o0. Hence, by
the result in [32] mentioned in (2.5), we have dim[X]<2.

The result in (2.9) and the full generality of (2.6) should be compared with the
discussion in (2.5).

We have completed the results in this section. Answers to the following questions
are not known.

(2.10) QuesTiON. Are the properties in (2.7) and (2.8) sequential strong
Whitney-reversible properties? In fact, can the result in (2.6) be generalized so as

Whitney-reversible properties 241

to be “sequential”? We recall that it is not known if there is a strong Whitney-
reversible property which is not sequential [26, (14.55.1)].

(2.11) Question. Is the property of being finite-dimensional a strong (or,
sequential strong) Whitney-reversible property ? The result in (2.7) provides a partial
answer.

(2.12) QuesTioN. Can (2.9) be strengthened, under the same hypotheses, to
conclude that dim[X] = 1? By using(2.7) we see easily that this question is equiv-
alent to the following question raised in [28, 2.2]: It dim[C(X)]< o, then must
dim[X] = 17

3. Contractibility with respect to ANR’s. In (3.1) we prove that contractibility

' with respect to an ANR is a sequential strong Whitney-reversible property. We will

then deduce a number of consequences of this result, the most interesting one being
perhaps (3.4). We mention that in (3.7) we will show that contractibility is not
a Whitney-reversible property.

(3.1) TueoreM. Ler ¢t be fixed, 0<t<pu(X). Let Y be an ANR. If there is a se-
quence {t,hway—> 1 as n-— o such that t,21 and WA,y is contractible with respect
to Y for cachn=1,2,.., then wi(t) is contractible with respect to Y. Hence, the
property of being contractible with respect to Yis a sequential strong Whitney-reversible
property.

Proof. Let /2 g~ ()= Y be a mapping. We will show that f is inessential.
Let & = p!([r, u(X)]). Since ¥ is an ANR and 1”(t) is a closed subset of &,
we have by [4, p. 88] that there is an open subset U of &, with w~()= U, and a con-
tinuous cxtension g: U — Y of f. Since {1,}7%,— t as n— co and since x4 is an open
mapping [9, p. 1032], we infer that there exists s = 7, for some fixed » such that
u~([t, s]) = U. Let g denote the restriction of g to i~ 1(s). Then, since pt~*(s) = u™(t,)
is contractible with respect to Y, g, is inessential. Hence, since Y'is an ANR, we have
by the homotopy extension theorem [4, 8.1, p. 94] that g4; can be extended to
a mapping

he ™ (Iss X)) —Y.

Since A(A) = g(4) = g(A4) for cach Ae o (s), the formula

) fg(Ay, if Aep'(r.sD,
kA) = h(A). it Aep™(Is, (D
defines & mapping & from all of &' to Y. Noting that hyperspaces are contractible
with respect to ANR's [18, 1.6], we have by (1.2) and [24, p. 371] that & is con-
tractible with respect to Y. Hence, & is inessential. Therefore, since k is an extension
of £, fis inessential. This completes the proof of (3.1) (since the second part of (3.1)
follows from the first part by setting ¢ = 0).

A number of seemingly different properties are known to be equivalent to con-
tractibility with respect to every ANR. Welist some of them inthe following corollary
to (3.1):
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(3.2) COROLLARY. The result in (3.1) holds when the property “contractible with
respect to Y™ is replaced by any one of the following properties: Having trivial shape,
being a fundamental absolute retract, being a wealk proximate absolute retract, and
being absolutely neighborhood contractible.

Proof. For continua it is known that each of the properties listed in (3.2)
is equivalent to contractibility with respect to every ANR (see for example [5, p. 95],
[13], and [19, 2.1]). Therefore, (3.2) follows from (3.1).

Some properties which are equivalent to contractibility with respect to every
ANR, but which are not listed in (3.2), may be found in the references in the proof
of (3.2). These properties are in particular, therefore, sequential strong Whitney-
reversible properties.

Some properties are equivalent to contractibility with respect to each member
of a certain class of ANR’s. Such is the case for the properties in (3.3) and (3.4)
below.

(3.3) CoroLLARY. The result in (3.1) holds when the property “contractible with
respect to Y™ is replaced by the property of being acyclic in dimension one (i.c.,
HY() = 0).

Proof. Any given continuum is acyclic in dimension one if and only if it is
contractible with respect to the circle S* [8, 8.1]. Henee, (3.3) is a consequence of (3.1).

The result in (3.3) is a special case of results in section 4. Let us note that (3.3)
can be interpreted as being a converse to [25, Theorem 4] and [31, Corollary 6],
where it is shown that acyclicity in dimension one is a Whitney property.

The next result is our main application of (3.1). It gives a partial answer to the
following question asked in [26, (14.57)]: Is the property of being chainable a strong
‘Whitney-reversible property? For more discussion, see (5.6).

(3.4) THEOREM. Let ¢ be fixed, 0t<p(X). If p~Y(s) is tree-like for cach s,
t<s<pu(X), then u~*(t) is tree-like. Hence, the property of being tree-like is a strong
Whitney-reversible property.

Proof. Since tree-like continna are one-dimensional, dim[u™'(s)] = | for
each s such that #<s<u(X). Hence, by (2.6), dim [~ %(#)] = 1. Case and Chamberlin
[7, Theorem 1] have proved the following result: (x) A one-dimensional continuum
is tree-like if and only if it is contractible with respect to every linear graph, By (%),
w”(s) is contractible with respect to every linear graph for each s>7. Hence, since
linear graphs are ANR’s, we have by (3.1) that x~*(¢) is contractible with respect
to every linear graph. Therefore, since dim[u™*(#)] = |, we have by (+) that g~ (¢)
is tree-like.

(3.5 Remark. Recently there has been an increased interest in e-triodic
tree-like continua (see for example [11], [14], and [15]). For this reason we mention
that, by (3.4) and [23, 3.3], it follows that if 1~ "(z) is tree-like for each 1, 0 <t < pu(X),
then X is an a-triodic tree-like continuum. More generally, by [23, 3.3]: I, for
a continuum X and a Whitney map p for C(X), we have dim{u~(z)]<n for cach
t>0, then X does not contain an (n-+2)-odd.
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Whitney-reversible properties 243
. Another result about tree-like continua is in (5.5). We mention the following
question whose answer is not known.

(3.6) QuestioN. Is the property of being tree-like a sequential strong Whitney-
reversible property? From the proof of (3.4) we see that if (2.6) were a “sequential
theorem” [see (2.10)], then the question just asked would have an affirmative answer.

We have scen in (3.1) that conzractibility with respect to an ANR is a Whitney-
reversible property. The following example shows that contractibility is not a Whitney-
reversible property. This answers a question in [26, (14.57)].

o o

3.7) ExameLr, Let X = Xy 0 [U Y,Ju[U Z,] where X, is the convex arc
n=1 n=1

in R? from (=1, 0) to (++1, 0) and, for eachn = 1,2, ..., ¥, (respectively, Z,) is the
convex arc in R? from (-1, 0) (respectively, (+1,0)) to (0, —27") (respectively,
(0, +27") ~sce Fig. 2. Then: X is a non-contractible dendroid such that 4 *(z)
is contractible for any Whitney map g for C(X) and any ¢ such that 0<r<p(X)

-~

X a0

Fig. 2 Fig. 3

The fact that p~'(7) is contractible for #>>0 can be seen by observing that, for fixed
>0, the members of C(Z;) N u~*(t) are uniformly, for all 7 and j, far away from the
members of C(Y;) A p~1(#) — see Fig. 3. The details are omitted. We mention that
this example shows, in contrast to (3.1), that contractibility with respect to a given
non-ANR need not be a Whitney-reversible property (since ¢™(z) is contractible
with respect to X, whenever 0<r<u(X), but X is not contractible).

4. Acyelicity. 1t is known thut being acyclic in dimension one is a Whitney
property ([25, Theorem 4] or [31, Corollary 61]), but that being acyclic in dimension
two is not a Whitney property [29]. In [26, (14.57)] it was asked if being acyclic
is a strong Whitney-reversible property. We answer this question affirmatively in (4.3)
below. First, we prove the following general result:

(4.1) TrnoreM. Let X be a continuum and let p be a Whitney map for C(X).
Then, for any n and any s and t such that 0<s<i< w(X), we have

H(u (0 = H'(n™ (s, 71) -
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Proof. Let ¥, = p~X[s, t]), let Y, = p™([t, (X)) et 4 = Yy n Yy = u7 (),
and let ¥ =Y, U Y, = u~}[s, u(X)]). Since (¥; Y, ¥;) is a compact triad, it is
a proper triad [10, p. 257]. Hence, the Mayer-Vietoris cohomology sequence

1) e HY(Y) = HYY)@H'(Yy) — H'(A) — H" H{(Y) — ..

is exact [10, 15.3c, p. 43]. Since hyperspaces are acyclic [34, 1.2] and r-maps preserve
acyclicity, we have by (1.2) that ¥ and Y, are each acyclic. Therefore, by cxactness
of (1), H"(Y,) ~ H"(4).

The result in (4.1) has a geometric interpretation, namely: The cohomology
of the band pu~'([s, t]) is completely determined by the cohomology of the top
level p™1(2).

We will now use (4.1) to obtain the following stability theorem for acyclicity
of levels:

(4.2) ToeOREM. Let X be a continuum and let p be a Whitney map for C(X).
Let se[0, u(X)] If there is a sequence {t;}izy—s as i— o such that, for each
i=1,2, .., ;=5 and H'(p"(t)) = O for some fixed n, then H"(u™'(s)) = 0.

Proof. Bv (4.1), H"(u '([s,#])) ~ H'(u"'(1)) = 0 for each i=1,2,..
Therefore, since

pHs) = _Dlu"([s, ),

we have by the continuity of cohomology [10, p. 260] that H"(u™'(s)) = 0.

The following corollary answers the question in [26, (14.57)] mentioned at the
beginning of this section.

(4.3) CorOLLARY. The property of being acyclic in dimension n is a sequential
strong Whitney-reversible property.

Proof. Use (4.2) with s = 0.

5. Heyeditarily indecomposable continua. A continuum X is hereditarily inde-
composable if and only if whenever K and L are subcontinua of X such that X n L
# @, KoL or LcK. The pseudo-arc is the unique hereditarily indecomposable
chainable continuum [3, Theorem 1] and a pseudo-solenoid is any hercditarily inde-
composable circle-like continuum which is not chainable (i.e., not the pseudo-are) ~--
see [33, p. 580].

In this section we will be concerned primarily with the types of continua
mentioned above. Qur main results are in (5.3) and (5.5). The one in (5.5) generalizes
and augments (14.54) of [26]. The reasons for our interest in these results will be
discussed in (5.6).

Let us note the following definitions. A mapping f from a continuum ¥ to a con-
tinuum Z is said to be an &-map provided that the diameter of £~ f'(1)] is less than
for each y € Y. Let % be a given nonempty class of continua. Then: A continuum ¥
is said to be ¢-like provided that for each ¢>0 there exists an ¢-map from Y onfo
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some member of €. Let us note the following well-known and easy-to-prove fact
which will be used in the proof of (5.3):
(5. If %y, €y, and €y are collections of continua such that each member of €,
is @y-like and cach member of €, is €5-like, then each member of % is € 3-like.
The following fact will be used several times in this section:

(5.2) Let ¢ be fixed, O<t<u(X). If By, B, ep Yt) such that By B, # @
and By # By, then there is an are Bep= () such that By and B, are the end points
of B ([27, Lemma 1] or [33, 3.6]).

(5.3) Tuorim. Let ¢ be Jixed, 0t < pu(X), and let € be a givén class of continua.
If there is a sequence {t sy = £ as i —> co such that t, 2t and w () is hereditarily
indecomposable @-like for eachn = 1,2, ..., then W) is hereditarily indecomposable
G -like.

Proofl. Assume the hypotheses of (5.3). We define functions f,: u”~ y—pm (L),
n=1,2,..,as follows. Let n be fixed. Let 4 € w~(t). Since p~'(#,) contains no arc,
it follows casily from (5.2) that there is at most one Be wi(t,) such that Bo4;
furthermore, by using [17, 2.3 and 2.6], such a B exists. Let f,(4) = B. An easy
sequence argument using the compactness of u~(t,) shows that f, is continuous for
cach = 1,2, .. To sce that u~'(z) is hereditarily indecomposable, let A, and 4,
be subcontinua of LL"J(t) such that A, n 4, # @. Then, for each n = 1,2, 0.,
LA f,[4,] # @ and, since £, is continuous, £,[4,1 and £,[4,] are subcontinua
of w~(t,). Hence, since cach 1~ (1) is hereditarily indecomposable, we have that
for any given n = 1,2, ..., [,[A]<f,[4;] or f,14,1<=f,[4,]. By going to a sub-
sequence (if necessary), we assume without loss of generality that f,[d;1=/,[4,]
for each = 1, 2, ... By using the definition of x in section 1, it follows easily that
the sequences { f,[4,]}7% and {f,[4]}r=y converge to A, and A, respectively.
Thus, A, = A,. Therefore, from what we have shown, we infer that x~*(z) is here-
ditarily indecomposable. To sce that (1) is @-like, first observe by using [17,. 2.3
and 2.6] that f, maps ;”'(+) onto u~'(z,) for each n =1, 2, ... Easy computations
show that for any given &0, there exists n(e) such that fuey i an ¢-map onto
1 (b o). Hence, it follows using (5.1) that u~*(#) is ¥-like. This completes the proof
of (5.3).

The following proposition will be used in the proof of (5.5). Though some re'sglts
in the literature could be combined to replace its use in proving (5.5), the proposition
would seem to be of some independent interest (comp., [26, (14.73.13)].

(5.4) ProvosiTioN. Let ¢ be fixed, 0t<pu(X). If wl(t) contains no  are,
then

o Cm () — um It 200,
defined by o(d) = \J A for each Ae Cu (1)), is one-to-one.

Proof. When ¢ = 0, o, is one-to-one with no assumptions about wi@). If
>0, then (5.4) follows easily using (5.2).
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(5.5) THeOREM. Let ¢ be fixed, 0<i<u(X). If there is a sequence {t,}7 ¢
as n— oo such that, for each n = 1,2, .., t,2t and p~ (1) is (1) hereditarily in-
decomposable, (2) the pseudo-arc, (3) any particular (fixed) pseudo-solenoid, or
(4) hereditarily indecomposable tree-like, then p=(t) is as in (1), (2), (), or (4)
respectively. Hence, the properties in (1) through (4) are sequential strong Whitney-
reversible properties.

Proof. To prove (1), simply let ¥ = {u~*(t): n = 1,2, ...} and apply (5.3).
To prove (2), let ¥ = {[0, 1]} and use (5.3) and [26, Theorem 1]. Now we prove (3).
By taking € = {S'} and applying (5.3), we see that p~(¢) is an hereditarily in-
decomposable circle-like continuum. Hence, (i) u~*(¢) is the pseudo-arc or a particular
psendo-solenoid. Let us note the following known facts: (i) The property of being
the pseudo-arc is a Whitney property [9, p. 1032], as is the property of being a par-
ticular pseudo-solenoid [33, 4.11]; (iii) If o,, defined in (5.4), is one-to-one and if
p~1() has a certain Whitney property P, then p™'(s) has property P for all s>
[30, Corollary 26]. Now, by using (5.4) and (i) through (iii) above, it follows easily
that u~'(z) is the particular pseudo-solenoid that p ity is for each n =1, 2, ..,
This completes the proof of (3). To prove (4), let % denote the class of trees (i.e.,
simply connected linear graphs) and apply (5.3).

(5.6) Remark. It is known that being any of the types of continua in (1)
through (4) of (5.5) is 2 Whitney property (see [9, p. 1032], [20, 4.2], and [33, 4.11)).
Thus, (5.5) provides a converse to these known results. Our interest in (5.5) is also
due to the following considerations. In [26, (14.57)], the following question was
asked: Is being (a) chainable or (b) circle-like a strong Whitney-reversible property?
In (5.5) we showed that the answer to this question is “yes™ in the 1lcreditz1rily
indecomposable case. Moreover, in (5.5) we saw that topological type was preserved
(in general this does not happen). The answer to the question above is not known.
Since chainable continua are tree-like, we see from (3.5) that a continuum X, which
would show that the answer to (a) is-“no”, would need to be an a-triodic non-
chainable tree-like continuum. On the other hand, if an affirmative answer were
obtained to the question above, then we would have converses to the resultsin [21, 6.2].
Besides (3.4) and (5.5), we mention the following partial answers to the question
above. In [1] it was shown that being (c) hereditarily decomposable and () hereditarily
decomposable chainable are each sequential strong Whitney-reversible propertics.
Let us note the following analogue of (d) for circle-like continua;

(5.7) THEOREM. The property of being hereditarily decomposable circle-like is
a sequential strong Whitney-reversible property.

Proof. Assume there is a Whitney map u for C(X) and a sequence {£,}22,— 0
n~ co such that u~(z,) is hereditarily decomposable circle-like for each n ; "1“ 12
By (c) of (5.6), X is hereditarily decomposable. It remains to show that X is circlé-linke.
Note the following two facts: (1) each nondegenerate proper subcontinuum of each
1l(t,) is a hereditarily decomposable chainable continuum; (2) if Y is a non-
degenerate subcontinuum of X, then the restriction of pto C(Y) is a Whitney map
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for C(Y). Using these two facts, together with (d) of (5.6), it follows that each
nondegenerate proper subcontinuum of X is chainable. Hence, since X is decompos-
able, X is chainable or circle-like by [16, Theorem 4]. Choose and fix #. Suppose
that X is chainable. Then, since chainability is a Whitney property [21, 6.2a], u~(z,)
is chainable, Thus, since ™ *(z,) is also circle-like, p™*(t,) contains a nondegenerate
indecomposable continuum by [6, Theorem 3]. This contradicts the hereditary
decomposability assumption on g~ *(z,). Therefore, we have proved that X is circle-
like. :

In (5.5) through (5.7) we have seen that certain subclasses of the chainable and
circle-like continua are reversible. It would be interesting to obtain some other such
classes. In this connection we mention that the property of being an arc (tespectively,
a circle) is a sequential strong Whitney-reversible property (26, (14.50) and (14.51)).
These two results give converses to the results in [21, 6.4].
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