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strategy for Player I in the game G(Dim,, X). Finally, by Proposition 3, we have
dimX<n.

COROLLARY 3. If a normal space X has a o-closure-preserving cover F such that
each Fe % is countably compact, closed and dim F<n, then dimX<n.
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On some Marcus problem concerning functions
possessing the derivative at points of discontinuity only

by

F. M. Filipezak (£6d2)

Abstract. In this paper we obtain (Theorem 1) affirmative answer on the following Marcus’
problem [1]:

Does there exist a function with a dense and, at the same time, boundary set of points of
continuity, which possesses the derivative at each point of discontinuity and which possesses no
unilateral derivative at any point of continuity?

Theorem 3 generalizes the obtained solution so that any dense, denumerable set given earlier
is a set of points of discontinuity of some function satisfying the conditions formulated in the
Marcus problem. As an auxiliary theorem we use Theorem 2 on the existence of homeomorphisms
of the class Cy, mapping the given, arbitrary, dense, denumerable set onto another such set.

1. Introduction. It is known that the existence of the derivative at a point for
a function of a real variable does not depend on the continuity of the function at
this point. All the same, the derivative exists only in an at most denumerable subset
of the set of points of discontinuity. Therefore the condition that the derivative
exists at each point of discontinuity can be satisfied only for the functions whose set
of points of discontinuity is at most denumerable. In connection with the above,
it is interesting to know whether there exist functions singular in the sense that they
have the derivative in the set of points of discontinuity, which is denumerable and
infinite, and they have no derivative at the remaining points. With this question the
following problem of S. Marcus is connected (see [1], p. 13, Problem 5):

Does there exist a function with a dense and, at the same time, boundary set
of points of continuity, which possesses the derivative at each point of discontinuity
and which possesses no unilateral derivative (neither the left-hand nor the right-
hand one) at any point of continuity?

Theorem 1 of this paper gives an affirmative answer to the above question, and
Theorem 3 generalizes the obtained solution so that any dense denumerable set
given earlier is a set of points of discontinuity of some function satisfying the con-
ditions formulated in the Marcus problem. As an auxiliary theorem we use Theorem 2
on the existence of homeomorphisms of the class Cy, mapping the given arbitrary
dense denumerable set onto another such set.
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In the paper we consider real functions defined in the set R of real numbers.
The symbols f ~(x), f ~(x), f " (x) and F *(x) denote the Dini derivatives of the function f
at the point x, respectively, the lower left-hand, the upper left-hand, the lower right-
hand, and the upper right-hand ones.

2. Solution of the Marcus problem. Let (x;, x5, ...), = 2,275 x, be a dyadic
k=1

expansion of the number x <0, 1), containing infinitely many terms equal to zero.
Such a representation is "determined uniquely by the number x. Denote by X, the
non-negative remainder of dividing the number

n
k;].]xk”'xk——ll (xo = 0)
by 6, and put
= (%4, %as )
Ve {0, when 3|%,,
1, when 3}t%,
and

o
Ds= Y27

n=1

g(x) = (x}, x3, ..

n
It is easily seen that the sum ) |x,—x,—,| is a number of changes of the values
k=1

in the sequence (Xg, Xy, ..., X,) and that:

x, =0 <> X, is an even number (0, 2 or 4),
=1 <« X, is an odd number (I, 3 or 5).

LemMa 1. The function g is continuous from the right at each point x €0, 1).

Proof. Let x = (x4, x;, ...);, and let & be any positive number. We choose
an m such that 27" <e. In the sequence (x, x,, ...) there are infinitely many terms
equal to zero, therefore we have x, = 0 for some n>m. For any p = (¥, V2, -..)s
€0, 1) satisfying the inequality

(¢€)) O<p—x<2™
we have
2 Xy =13 for fk<n.

Indeed, if x; <y for some /<n, then, considering the smallest such /, we would
obtain the inequality
=] (l)
pmx= T2 Hpmz2 e Y 2 ¥ g o g
k=1 k=1+1

‘,4
k=n+1

contradicting (1). Similarly, the supposition that x,>y, for some /<n leads now
to the inequality
x—yz27— 27k>0

k=1+1
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which contradicts (1). From the relations (2) already proved there follows an éstimate
lg()—~g (< Y 27 pi—xl<27"Ig2 <
k=n
implying the equality lim g(p) = g(x). B
yorx+

LEMMA 2. The function g is continuous from the left at each point xe (0,1)
whose dyadic expansion (xy, X, ...); contains infinitely many terms equal to 1.
Proof. Let ¢ be any positive number, and m a natural number such: that
27"« . Since in the sequence (x,, X, ...) infinitely many terms x;, = 1, there exists
an n>m such that x, = I. If the number y = (yy, »,, -..), €40, 1) satisfies the
inequality
O<x—y<27",

then x, = y; for k<n. Indeed, if y,<x; and y, = x, for k</, where /<n, then

L3
22—1\' = 2—1:’

n+1

n—1

x— ZZ Hog—yp227 = Y" k

which contradicts the inequality x—y<27" Similarly, if y,>x; for some I<n,
and x, = y; for k<, then we would obtain the inequality y>x contradicting the
assumption. From the equality x, = ;, we now obtain the estimate

]
190 —g NS 2 M~ <27 <2<

which proves the left-hand continuity of the function g at the point x. B
LeMMA 3. If, for the mumber x = (x1, X3, ...), € (0, 1), there exists an n such

that x, = 1, and x,, = 0 for k>n, then

g(x)—27" when X%, = 1,
gx) when X, =3 and x,_4 =0
3) limg(y) = or %, =5 and x,—y = 1,
yoE g(x)+27" when X, =3 and x,_,; = 1

;1 =0.
Proof. Reasoning similarly as in the proof of Lemma 2, we get the following
statement:

(4) If O<x—y<27" then y, = x, for k<n, where y = (Yi:¥a2s w2~

or X, =5 and x,-

Let m>n be any natural number. We shall now prove the proposition:
(5) If O<x—p<2™™ then x, = )y for k<n, y, =0 and y; = 1 for n<k<m.

Suppose that the proposition () is false. Then, in virtue of (4), there exists an
index / such that n</<m and y, = 0. Hence we obtain the inequality

I-1 £l
.\‘-—)’22—"“ Zz—k__ ZZ—k = 2—l>2-m
n+t I+1

contradicting the assumption of the proposition (5).

4
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Let y be any point satisfying the inequality
O<x—p<2™™.

From the assumption of the lemma and from the proposition (5) it follows that

X = (X1, s Xyo1-1,0,0,..),
and
Y= e Xm0, 1, e L Vit Yz )2
If X, =1 and x,_; = 0, then
X=(Xy,sXy_2,0,1,2,2,..),
y = (xls ces _11—2: 0: 05 11 st 1! ym'l-lv .vm-f-Z! "')7
g(x) (Xla EEEE) 11—25 0, 1, I, )2 N
g = (¥1s s X322, 0,0, 1y ey 1, Ypa gy Pezs )2 s
gM=g(x) = =27+ ;12“"(J'L~1)
and

limg(y) = g(x)-27",
y=x—
for with y — x—, we have m — oo and

@
—27mg ¥ 27Ky~ 1)<0.
m+1

Ifx,=1and x,_, = 1, then

X=(Xy, ., Xpun,1,1,2,2,.),
j; = (551’ AR —n 2’ 2 3 3 ym+1s}’m+2! "')
g(x)z(x'“ ’xn 1 1, )
gy = (x1, ... xn 25 15 1,05 0, 00 Vot 15 V2o )2 s
g(N—g(x) = —27"427 "4 Z 27y =1
m-+1
and
limg(y) = g(x)—2"".
yorx—
If X, =3 and x,_, =0, then
X = (Xg, s Xp2,2,3,4,4,.),
F= (% s %m2,2,2,3, 00003, T s Frnwezs o)
gx) = (x1, 0, X522, 1,0, 1, 1, )3,
GO = (50 e Xnm22 1, 1,0, 00, 0, Yk 5 Pz )2
gMN—g() = 27"+ 3 27K p—1)
m1
and

lim g(3) = g(x).
yox—
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If X, =3 and x,_; = 1, then
X = (J—Ela . :xn-2=3: 3a 4,45 --):
y = (551: "’—Cn-«Z’ 35 4, 5: .,5, }_)m+15y—m+23“')7
gx) = (x4, s %1-2,0,0,1,1,..),,
g = (X5 s %022, 0, L, 1, o, 1, Vit Yotz )2 s

g—g(x) = 27"+ 3 27— 1)
m+1
and
hm g(» =gx)+27".

- x—

If X, =5 and x,_, = 0, then

JZ:('?U ,J—Cn_2,4,5,0,0,..),

:\7 - (:\:h ~a:€n-—2=4a4s5, 5 }_)m-i-l! J—)m+2: )s
g(x) = (x4, s X2, 1, 1,0,0,..),,
g()’) = (xll’ ixr’l—?ﬁ l> 1’ 1’ ey 15.Vm+1’yr’n+2, )2 H

©
"y 27k

m+1

g(N—g(x) =27"-27

and
limg(y) = g(x)+27".

yox

Finally, if X, = 5, and x,_; = l', then

X = (%y, s %4-2,5,5,0,0,..),

= (X 7J—cn—2’5=0’ Lo 1, P ts Pt s
g(\.) =(J’,1= sxrll—lnl’lvoaos-")Zs
g(l’)=(’€’1, ”;l~2=1?0>13“‘ 1 yl’rl+11yr,n+25 "')’

§(-g(@) = —27"+ 22""

and
limg(y) = g(x). B
porz—
LemMma 4. If, for the number X = (xy, X3, )2 €0, 1), there exists an n such that
X, =1, and x, = 0 for k>n, then

© g (H<-1 when X, =3 and

Xp—1 = 0;

FW=-1, gtm<—1 ad gFx)> %

D g <0, F-BL, gTW<E and FTW)S2 when T, =5 and %, = 1.
Proof. We shall define the sequences (u(m)), (v(m)), (y(m)) and (z(m))
(m = n+1,n+2, ...), convergent to x, and such that u(m), v(m)<x<y(m), z(m).

Let u(m) = (g, Uy, 2> 00 = (01,025 )25 Y1) = (Y1, Y2, ), and z(m)
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= (24, 23, -..)2, and, in the case of X, = 3 and x,_; = 0, let there be:

W=V, =Y o= zg=2x, for k<n;

Uy = Uiy = Uytg = Upes = . =0
and
Upios = Upgn = oo = Uy = Uygn = Uy = 15
Uy = Upsy = Upyz = . =0 04 Dppy = Upup = o = U = 13
Ynbt = Vntz = oo = Vet = Va1 = Vasz = =0 and  yp =y, =13
Typ1 = Zgtz = o = Ty = By = gz = . =0 and =2z, =z, =L
Then
N ol ot o
g(-"‘) - (xlz X2, ---)2! g(u(m)) - (ulz Uz, )2 ’
;o | e
9(”(’”)) = (v}, V3, «-)2s g(y(m)) = (¥, Y2, )2
and
’ f
g(Z(ﬂ’l)) = (21, 235 <)z s
where
Xp =u,=vp =y, =2z Tfor k<n;
’ .
X =0 and X =xX4=..=1;
1 ’ ’ ’ ’
Uppg = lpag = oo = Uy = Uy g = Upys = .. =0
and
+ ’ ’ ’ .
Uy = Upgg = Upyy = Uppz = 1
’ ’ ’ ’ ’ ' .
Uppy = Uppa = oo =0, =0 and 0, =0p4y = Upyz = ... = 1;
O 7 — ’ o — ’ —_ ' _— —_ ,/ — .
Yo =Vma1 =Ymr2z=-.=0 and . =yua=.. =y =1;
! — ’ — ! _— — ”I - . — ~I —
Ly = Iyt T Ity T e = Y and “pdl T Euk2 T o T fmtl < 1.

Hence we obtain the equalities
x—u(m) =52"""3, gx—gu@m)=-72"""" and
90 =guem) 7.
x—u(m) 5°
gx)—g(v(m) = —27™ and
9= 9(vim) _
X=v(m)

x—v(m) =277,
—1;

y(m)—.y =2"" g(ym)—g(x) = —-27" and
' gm)—g= _ .
’ y(m)—x ’
zm)—x =32"""%  glz(m)—g@x) = —27""*  and
' g(em)=g() _ 1
z(m)—x %
which imply the relations (6). ‘
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In the case of X, = 5 and x,.,; = 1, we assume

y=v=p=z=x for k<n;

Uy = Uppy = Uy = o0 = 0 -and Uyy = Uppy = = Uy = 1;

Uy = Uptyf = Vi3 = Upppg = o = 0 and Uppd = Upy = oo = Uy = Upyp =15

Vbt = Va2 = oo = Yt = Vit2 = Va3 = ... =0 and y,

i

Y =Vmer =13
Zypy = Zy4n = oo = Eyy = Iy = Zpypr = ... =0 and z,=12z,=1.
Then we have '

Xp=w =uv, =y,=1z for k<n;

x,=1 and

u, =0 and

Hppd = Xpap = o =0
Uppy = Upgy = o =13
V=t =0 and 04y = Uhyo = o = Upey = Vpges = Uppg = o =1
v =Py =0 and  yr=3p=Jupr = =1

1

! ! ‘ r ’ .
Zhpy = Zhyy = e = Zpg =0 and  zp =z, = Zpy = .0 =13

4 ¢ —
Yot = Yotz =

il

) —glu(m] _

x—u(m) =2"", gx)—gum]=0, —————=0;
x—-u(m)
. - 1
smol) = 320, g@—glbmy =27, LTI,

glymi-g() 4
ym—x 3?
glzml-9&) _
z(m)—x

ym)—x = 3.27m-1 glym]—-g(x) = 4.m=1

Z(m)—x = 27", glz(m)]—g(x) = 2-277,

From the above equalities there follow the relations (7).

LemMA 5. If the dyadic expansion (Xy, X5, ..)z of the number x € {0, 1) contains
infinitely many terms equal to 1, then

® W<—1, @=L gT@W<—1
Proof. Consider any natural number m. There exists for it a number my>m
such that %, =0 and %,,-; = 5.
Denote by m,, where s=1,2,.., 6, the smallest of the natural numbers
n>myg satisfying the condition X, = & (% = 0). We have

and  FE(x)=%.

m< g <my<..<Mg;
x, = 0 and x; =0, when my<n<my ;
x,=1and x;, =1, - when my<n<m, or when ms<n<msg ;
%, =0and x;, =1, when

x, =1 and x, =0, when

my<n<mj or when m,<n<ms;

my<n<niy .
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‘We assume

u(m) = (g, Uy, o)s  0(m) = (01,02, 025

ym) = (y1)y2s"')2 and Z(m) = (Ziszz’-")Zs
where

u, = x, tor k<my, =0 for k=m ;

v, = X for k<ms, v, =0 for kzms;

¥ = x for k<my, p.=1for my<k<ms, y, =0 for kzmg ;

z, = x, for k<mg, Zy, = Zyeaz =1
and

Zmgr1 =2, =0 for kzmg+3.

By calculating we now obtain

/
u = xi for k<my, w, =0 for kzm,,

o
C<x—u(m) = Y, 27Fx 27",
k=my
w

gx)—glu(m)] = 3, 27*gz27™

and -
© 9@ —glu@m] 1
x—u(m) 2°

/
vy = xp for k<ms, v, =1 for k2ms,

®
O<x—o(m) = Y, 27hxg2 ™%t
k=m3

§@ =gl = % 2w-D< -2
and ’

90—glo(m] _ 1.

10) <
x—v(m) 27

v = xp for k<my,, y;=0 for my<k<mg and =1 for kzmg,

me—1 w0
O<y(m—x= Y 27H1l—x)— Y 27bg g2 mtt,
k

=nm4 k=ms
mg—1 ©
glymI—g(x) = — Y 275+ ¥ 27H 1 —xp < —-27",
k=mgq k=mg

glyml-gt) 1,
y(m—x Sy

¢
Zpe = 1,

an

r I
z;, = x; for k<mg, Zper1 =0, zp=1Tor kzms+2,

icm

On some Mareus problem concerning functions possessing the derivative at points 225

)
O<z(my—x = 27m2 ™™ 1y 42721, L)~ Y, 27Fm
. k=mg+3
<2—m6+2—mo—2<2—m5+1 ,

) oo
glzm)]—g(x) = 27 =27 4+ T 27K -2
k=mg+2

(12 B
) z(m)—x 4°
Since u(m), v(m)<x<y(m), z(m), and u(m), v(m), y(m) and z(m) tend to x as
m - oo, therefore from (9)-(12) there follow the inequalities (8). B
DEFINITION. We assume

JeHn) =fx) = Ltlgx—)+gkx+)]  for xe0,1) and n =0, £1, £2, ...,

where

g(x=) = lim g(»)

yorx—

and  g(x+) = Emg(») (900—)=g(1-).
peoxt

TugoreM 1. There exisis a function f: R—R with a dense and, at the same time,
boundary set of points of continuity, which possesses the derivative at each point of
discontinuity and which possesses neither the left-hand derivative nor the right-hand
one at any point of continuity.

The function f defined above is such a function. This easily follows from
Lemmas 1-5.

3. On a homeomorphism mapping a denumerable set onto another denumer-
able set.

Turorem 2. For any denumerable sets A and B, dense in (0, 1) and for any
number ae (0, 1), there exists a function f: 40, 1> T:) 0, 1) such that f(4) = B,
f'is continuous in <0, 1) (feCy), and 1—agf(x)<1+a for xe<0, 1.

Proof. Let 4 = {a,,a5,..} and B = {by, b3, ..} Put @ =Dbo=0 and
a, = b, = 1. For the sequences (mg, my, ...y and (g, ny, ...), defined below, we
assame:

Q)] flay) = b”k

max{a,,,ji Jj= 0,1,.., k-1; gy < o,

for - k=0,1,2,..;

i

Cr
of = min{a,: j=0,1,., k=1 > O} 5

max{b,,: j=10,1,. k—1; b, <b,}

!

I

di

and

1

di = min{b,,: j=0,1, .., k=1 b,>b,} for k=2,3,..
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We define the sequences (m,) and () of natural numbers in such a way that
they should be one-to-one and satisfy the conditions:

[®) (Mo.tny, ymy}={0,1, 0, k+1} for k=1,2,..;
3 {ng,nys oy ny}2{0, 1, .., K} for k=0,1,..;
@ A =fioix) for  xe 0, DN(G, ), k=1,2,..;

&) 0<fie () —fi(x)<27%a  for

Moreover, we define the functions f; in such a way to satisfy additionally the
conditions: ‘ ' ‘

‘xe(er, ) k=1,2,..

6) fla,) =b,, for j=0,1,..,k;
@ [fEG) —fi - 1 (x)| <27 *a;
8) l—a+2 Y a<fi(x)<1+a—2"%.

We assume mg = 5y =0 and m; = n; = 1 and f,(x) = x. Suppose that for
J<2k we have defined the function J; and the terms m; and n;. We put
my,=min{ne N: n # m; for j=0, 1, vy 213 .
We define term n,, and function f,, in such a way' that, for b,,. = fou@.0),
the conditions (4), (5) and (7) are satisfied.
We assume in turn

Power =min{ne N: n # n; for j=0, 1, ..., 2k}

and select /5, and m,,, ; such that, for Qppgresy = f{kil(b,,z,m), the conditions (4), (5)
and (7) are satisfied. The existence of the terms Ny and my,, o satisfying the above
conditions follows from the density of the sets 4 and B in (0, 1). The existence
of the functions f, and f,,., satisfying the conditions (4), (5) and (7) is obvious.

Now it is easily seen that the sequences (m) and () of natural numbers are
one-to-one and satisfy the conditions (2)-(5).

The function f defined so far in the set {ao, a,, a,, ...} will be continued onto the
entire interval {0, 1).

The function f; thus defined satisfies, of course, the conditions (4)~(7), and, on
account of the inequality
I—a4-2"" gy (()<l+a—2"5 1y,
the condition (8), too.

From the condition (7) it follows that the sequence (f;) is uniformly convergent
in €0, 1>. Since £(0) = 0, therefore, in virtue of the elementary theorem of math-

ematical analysis, the sequence () is in the interval <0, 1) uniformly convergent
to the function limf, which is of the class C,. With that

(mf) = lim .

icm®
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From the goudition (6) we deduce that

lim fa,,) = b,, for

k—ron

Jj=0,1,..

This means that the function limf, is a continuation of the function f defined by the
condition (1). In this context, we assume

f(x) = limfix) for xe(0,1.
ko

So we have f(d,) = b,,. and in particular, f(0) =0, f(1) = 1; in view of t?xe
inclusions (2) and (3), /' (A4) = B. The function fis in {0, 1 of the c{ass Cy, ‘a.l.ld its
derivative /7 = limfy. Hence, and from the inequality (8), we obtain the estimate

xe0, 1)
which, in virtue of the assumption ae(0,1) and the equalities .f (0) =0 and
() = 1, means that the function f is increasing and it maps the interval (0, D

onto itself. .
COROLLARY. For any denumerable sets A and B dense in R, there exists a homeo-

[—agf'(x)<l4+a for

onto
morphism of the class Cy, f: R — R, such that
f(dy=B and ni<f(x)<n® for
Proof. Let

xeR.

o) = —ctgnx for xe(0, 1),

and let g: <0 ]>m—‘:>D 0, 1> be a homeomorphism satisfying the conditions:

e (B = glp~'(A)] and l1<g'(x)<2 for xe<0,1).
2

Such a homeomorphism exists on the basis of Theorem 2.
Put ‘
f6 =ofgle™'®)]} for xekR.
Then, f is a homeomorphism mapping the set 4 onto the set B, and its derivative f~
is a continuous and bounded function:

nmi<fi(x)<n? for xeR.

4. Remarks and generalization of the solution.

re exists /i unction satisfying the conditions of
Remark §. There exists a convex fi

Theorem 2.
Remark 2. There exists
above corollary and the inequz]tlit).l tl-il<{0 )
rhitrarily fixe er from the interv , D
a.1laltfl:i'lli;l(§/11iTl;°i‘ ‘};:Jlj?b(,(,clz denumerable set A dense in R, there .exz‘fts ﬁ ﬁ”m{o;l
h R —»MR x;’/zo,ea set of points of discontinuity is the. set.A wlfose‘ derga’tlzve )z f,);)i;:_l;;
fovrix € A, and for which none of the unilateral derivatives N_(x) and B (x

xeRNA.

a homeomorphism f satisfying the conditions o}’ the
"(x)<l+a for xe R, where a is an
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Proof. Denote by B a set of points of discontinuity of the function f from
Theorem 1. The set B is dense in R. Thus, in virtue of the corollary, there exists

R onto
a homeomorphism of the class C;, g: R — R, such that

gA) =B and =% <g'(x)<n* for xeR.

Put

for xeR.

h(x) = flg ()]

Then, the function 4 satisfies the conditions of Theorem 3. B
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Some existence and non-existence theorems
for k-regular maps

by

David Handel (Detroit, Mich.)

Abstract. A continuous map f: X — R" is said to be k-regular if whenever x,, ..., x; are
distinct points of X with j<Ck, then f(x1), ..., f(x;) are linearly independent. Using some algebraic-
topological machinery, a non-existence theorem for 2k -regular maps on a disjoint union of k closed
manifolds is obtained. In the other direction, we show explicitly that if X is a metric space and A is
a closed neighborhiood retract in X, then existence of k-regular maps X—4 —~ R™ and 4 — R"
implies existence of a k-regular map X — R™*" Some applications of these existence and non-
existence results are given.

1. Introduction. The study of k-regular maps is motivated by the theory of
Ceby¥ev approximation. In that theory, a set of n real-valued continuous functions
on X is called a k-Cebysev set of length n if these functions are the components of
a k-regular map of X into R". The reader is referred to [8, pp. 237-242] for the
significance of this concept.

Closely related to k-regularity is the concept of affine k-regularity: f: X — R"
is affinely k-regular if and only if g: X — R given by g(x) = (1,/(x)) is
(f+1)-regular. Affine k-regularity has been considered in [2], [1], and [7]. Some
previous work on k-regularity, using algebraic-topological tools, appears in [5], [3],
and [4].

The problem we consider is the following: Given X, k, and n, does there exist
a k-regular map X — R"? In Section 2 we prove the following:

THEOREM 2.4, Let My, ..., My be closed, connected manifolds of dimensions
Ny oy My, respectively. Suppose, for 1<igk, the qpth dual iriefel—Whifney class

of M, is non-zero, If a 2e-regular map of the disjoint union 11 M, into RY exists,
i i=1

k
then N22k+ Y (n+aq).
i1 , .
In [1], an affine analogue of the following is proved by geometric methods:
THEOREM 1.1 (Boltja11skiI—Ry§kov—§a§kin). Let n>l. If a 2k-regular map
of R" into RY exists, then N2(n+1Dk.
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