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1t follows that the carrier ¢y of W is a pinched surface which satisfies the condition

Pi(C)<p (W) .

Hence p,(Cy)<2k. We infer by (5.3) that the collection of all topological types of
carriers Cy, is finite. Since also the number / = /(P)< pi(P)<k is finite, we infer
that there exists only a finite number of shapes of polyhedra P with p,(P)<k and
no(P)<k. Thus the proof of Theorem (11.1) is finished.

The limitation of the values of p,(P) and of p,(P) does not suffice for the finity
of the collection of shapes of P. In fact, consider the 3-dimensional Poincaré sphere M
(i.e. a polyhedron which is a closed 3-manifold with (M) = p(M) =0 and
p3(M) = 1, but with a non-trivial fundamental group). Let 4 be a 3-dimensional
simplex of a triangulation of M. Then N = M4 is an acyclic 3-dimensional
polyhedron with a non-trivial fundamental group. Using the operation of collapsing,
one gets from N a 2-dimensional acyclic polyhedron P (of dimension <2) with
a non-trivial shape.

Consider now a system Py, ..., P, of polyhedra homeomorphic to P and con-
stituting a bouquet with center c. Setting Pf=P, U..UP, one gets for every
k =1,2,... an acyclic polyhedron P{f and one sees easily that Sh(Py) 5 Sh(Py)
for k = k'.

Let us add that the values of my(P) and of no(P) remain unknown. The following
problem remains open:

(11.4) PrOBLEM. Does there exist a connected polyhedron such that for every
standard representative of its shape not all carriers of wings are surfaces?

12. Non connected polyhedra. If Fy, ..., Py are components of a polyhedron P,
then every set P, is a connected polyhedron and we can assign to every standard
representative of it its scheme &;. The system consisting of those schemes is a finite
numerical system which can be considered as the scheme of the polyhedron P. It is

clear that Theorem (9.2) implies that this scheme determines the homotopy type
of P.
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On a question of H. H. Corson and
some related problems

by

Roman Pol (Warszawa)

Abstract. In this paper we investigate a property of a Banach space defined by Corson {7]
which is a convex counterpart to the Lindelsf property of weak topology.

1. Introduction. H. H. Corson defined in [7] the following property of a Banach
space J7 (which we shall call “the property (C)"): every collection of closed convex
subsets of I with empty intersection contains a countable subcollection with empty
intersection.

If a Banach space £ is Lindelsf in the weak topology then it has the property (C)
(as the closed convex sets are the same in the norm or weak topology) and Corson
asked [7, Remark (1), p. 7], whether the converse is true. It turns out that many
familiar function spaces C'(K) have the property (C) while their weak topology fails
to have the Lindeldf property (1), for example, this is the case, when X is the lexico-
graphic square. In fact, we show that the Banach spaces with the property (C) form
a rather wide class, closed under some standard operations.

We prove that the property (C) of a Banach space E is equivalent to a property
of the unit ball in the dual space E’ endowed with the weak-star topology, which
is & convex analogue to the countable tightness (%), We show further that for a compact
seattered space K the property (C) of the function space C(K) is equivalent to the
countable tightness of K in general, the property (C) of the function space C(K)
being, as stated above, related to a kind of the countable tightness in the space of
Radon measures on K, seems essentially stronger than the countable tightness of K —
however, we do not know a correspondent example. Another result about function
spaces is that if & is an Eberfein compact and E has the property (C), then so does
the space C(K, 1), but we do not know, for example, if C(S'x §) has .the pr.operty (©),
provided that €'(5) docs. We discuss these, and related, questions in the last

paragraph,

O} "l‘inﬁ 4h;«:uuntcrmrl to the classical characterization of compactness for the weak topology
[18, Theorem 11,2 (¢)) fails for the Lindeldf property:
(*) The terminology i explained in the next paragraph. - o
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2. Terminology and notation. Our terminology (and, if possible, notation) related
to general topology, function spaces, or topological vector spaces follows Engelking
[10], Semadeni [19], or Schacfer [18], respectively. Let us agree the notation. The
cardinality of a set 4 is denoted by |4[; the ath derived set of a space K is denoted
by K®; given a closed set 4=K we denote by K/A4 the spacc obtained from X by
pinching 4 to a point. If X is a compact space and E is a Banach space, then C(K, E)
is the Banach space of all continuous mappings from K to & endowed with the sup
norm and we write C(K) when E is the real line; if A=K is closed Co(K||4, E)
(resp. Cy(K||4)) is the subspace of all continuous mappings vanishing on 4 — it
can be identified with the subspace of C(K/A, E) [19, Ch. 11, § 4]. Given a Banach
space F, sets A, B<E and a scalar 1, we put

dist(d, B) = inf{)la~b||: ae 4, be B}
and

A+AB={a+lb: acd, beB}.

We denote by E’ the dual space of the Banach space E, {x, x'y stand for the value
of the functional x' € E at the point x € E, convd is the convex -hull of the set
AcE and finally, o(E’, E) denote the weak-star topology in E’.

Recall, that a space X has the countable tightness if, whenever x € A= K, then
xeC for a countable Ce 4 [10] and that an Eberlein compact i a space homeo-
morphic to a compact subspace of a Banach space endowed with the weak topology;

for the last notion as well as for the notion of a WCG Banach space the reader is
referred to [9, Ch. V].

3. The property (C).

3.1. The following property was defined by Corson (see Introduction): a convex
subset M of a Banach space E (®) has the property (C) if every collection of closed

convex subsets of M with empty intersection containg a countable subcollection with
empty intersection.

A base for the sequel is the following

LEvMA. Let E be a Banach space. If E does not have the property (C), then there
exists a collection € of nonempty convex subsets of the unit ball, closed under countable
intersections (*) and an e>0 such that Jor every convex subset M of B with the prop-
erty (C) there is a Cy e € with dist(M, Cy)=e.

Proof. At first let us verify that if

() for every collection of nonempty convex sets in E closed under countable

intersections and every o>0 there is a point ae E with dist(a, CY<o Jor
Ced, '

() In fact, we are only interested in the case when M is itself a Banach space.
() 1t means that () # ¢ G, if A=C is countable,
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then E has the property (C). Let % be a collection of nonempty, closed, convex
subsets of E closed under countable intersections; a standard reformulation of the
property (C) (cf. [10, 3.87) shows that it is enough to check that (V% # @. qu this
purpose, let us define inductively for every Ce @ nonempty convex sets C® and
choose points a;e E in such a way that

1) C=CP5¢Ws.,, diamci+Dgri,

(2) every collection 4 = {C?: Cce %} is closed under countable intersections,
@) dist(a,, CP<27t1,

We choose a, using (¥) with & = % and ¢ = 272, Assume that ¥ and , are de-
fined. For every Ce @ put C"1 = ¢ (4,4-271"1. B) where B stand (also
in the sequel) for the unit open ball in E. The sets C+?) are convex and nonempty,
by (3), the condition (1) is satisfied obviously and, finally, the family #%** satisfies (2),
as ¢ does. We complete the inductive step choosing a peint a;.,., by means of (%),
where " = ¢4+ and ¢ = 27973,

Now, the points ay, ay, ... form a Cauchy sequence, as by (3) and (1) we have

lla;—ap |27 4278407122 <3.07F for  ix1.

Let @ be the limit point of this sequence. By (3) we have dist(z, C) = 0 for Ce ¥
and hence ae ()% because each Ce ¥ is closed.

‘We pass to the proof of the lemma. Since E does not have the propert}f ©),
the property (+) fails for some " and o. Since & is closed under counta?]e inter-
sections there exists a natural number » such that each member of 2 intersects
the ball n-B. Put

1 o
E = {~(Cnn-B): Ce%’} and e=-—,
n n
The family ¥ consists of nonempty convex subsets of the unit ball, it is closed under
countable intersections and for every x e E there exists C, e € with dist(x, C,)>e.

We claim that ¢ and & are the family and the number we are looking for. For,
let M be a convex subset of E with the property (C) and suppose that dist(M, C)<e
if Ce®. Let us put C* = (C+s-B) n M for every C e ¥. The sets C* are conve:f
and nonempty and given a countable collection &< we have (N Azjl)
cN{C*: Ce#} (recall, that () s7 € ¥). Thus by the property (C) of M ﬂ".lCl‘B exx_st}sl,
xe (N {C¥: Ce¥}. But then dist(x, C)<e for every Ce %, a contradiction whic
completes the proof.

3.2. The lemma yiclds casily the following two- propositions.

ProrostTioN 1. Let T: E— F be a continuous linear mapping of a Banach
space E onto a Banach space F. If both F and the kernel of the operator T have the
property (C) then so does the space E. ) .

Proof. Suppose the contrary and let % and &>0 be as in the I-emm'a. Slricle eact':h
T~y has the property (C), there exists for every y e F a C, e % with dist(7™"y, )

B
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>e& By the Banach open mapping principle we have y ¢ TC, for y € F and thus
N{TC: Ce ¥} = B, a contradiction with the property (C) of F.

PROPOSITION 2. Let My, M,, ... be convex sets with the property (C) in a Banach
space E. If the union \) M; is dense in E, then E has the property (C).

Proof. For, in the opposite case there would exist a collection % and an ¢>0
as in the lemma. But then dist(M;, C;)>¢ for some C;e % and we would have
dist({) M;, ) C))=e, which is impossible, as () C, % & and |J M, is dense in E.

i i i i

3.3. As was pointed out by Corson (sce Introduction) the class of Banach
spaces which have the property (C) includes those which are Lindeldf in the weak
topology. The last class contains all Banach subspaces of WCG -spaces, by Tala-
grand [21], but not exclusively — for the examples see Pol [16], Talagrand [22], [23]
(cf. also Alster and Pol [2] and Gulko [11] and Pol [17, Example 2]). Here we give
some function spaces (all of them provide “standard examples” in topology) with the
property (C), which are not Lindel6f in the weak topology, thus answering a question
of Corson mentioned in Introduction.

ExaMpLE 1. Let, as in Corson [7, Example 2] C, be the space of all bounded
real-valued functions on the unit interval I which are continuous on the right and
which have a finite limit on the left, endowed with the sup nornt. Corson showed
that C, is not Lindelsf in the weak topology, but it admits a linear continuous
operator whose range — the space c,(I), and the kernel — the space C(I), are
Lindeldf in the weak topology. By Proposition 1 the space C, has the property (C).

Observe, that the space C, may be identified in a natural way with the function
space C(K) on the “two arrows space” K of Aleksandrov and Urysohn [1], [10,
3.10. C.

ExaMPLE 2. Let L be the lexicographic square [1] [10, 3.12.3 (d)], i.e.
L = [0, 1]x [0, 1] is endowed with the order topology induced by the lexicographic
order. The subspace K = {(x,y)eL: y=0 or y = 1} is the two arrows space.
Thus C(L) is not Lindelsf in the weak topology. However, C(L) has the property (C),
by Proposition 1, as the restriction operator T: C(L) —» C(K) has the range with the
property (C), by Example 1, while the kernel Co(LIIK) has the property (C) by
[7, Corollary 1] (since KJL is a continuous image of the one-point compactification
of the free union of continuum copics of the circle),

ExampPLE 3. If § is an uncountable compact separable space with the o,th
derived set empty (%) then C(S) is not Lindeldf in the weak topology [17, Theorem],
but it has the property (C). The last assertion is a particular case of Corollary 4.1.1,
but it can be also easily verified step by step by means of Propositions 1 and 2.

EXAMPLE 4. Let H be the Helly space, i.e. the space of all nondecreasing
functions from the unit interval into itself, endowed with the pointwise topology
[10,3.2.E]; H is a compact convex set. Let A (H) be the Banach space of all continuous

(®) For such examples see [19,8.5.10(G)] and Mrowka [15].
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affine functions on H [19, 23.1]. The set X of the extremal points of H, consisting
of those functions from A which take only the values 0 or 1, is in fact the two arrows
space. Thus, by the maximum principle [19, 23.1.10], 4(H) can be considered as
a subspace of C(K) and so, by Example 1, it has the property (C). But, it is easy
to see, that A(H) is not Lindeldf in the weak topology.

We do not know whether C(H) has the property (C) (cf. Added in proof}.

3.4. In this scction we characterize the property (C) of a Banach space in terms
of the dual space. The characterization bases on the following lemma, which is
a counterpart to Lemma 3.1; we shall exploit this lemma also in the next paragraph.

LEMMA. Assume that a Banach space E does not have the property (C). Then
there exists a subset A’ of the unit ball in the dual space E' and an >0 such that (a) for
every linear subspace M of E with the property (C) there is an x' € A’ vanishing on M,
but (b) for every countable C'A' there is a te E with ||t||<1 and {t, x") =& for
every x' e C'.

Proof. Let a collection % and an £>0 be as in Lemma 3.1 and let .# be the
family of all linear subspaces of E which have the property (C). So, given an M e /&
there exists (' &€ % such that dist(M, Cy)=e. Let B be the open unit ball in E.
Since (M +g-B) n Cyr = @, there exists by the separation theorem [18, Ch. IL, 9.1]
a linear functional xj; e E’ such that ||xjll = 1 and

sup {{x, xj>: x€ M+e-By<inf{(x, xp>: xe Oy} -
Since M is a lincar space and since [|xjl| = 1 we have
O] Xy M =0

Let us put 4’ = {x4: M e #}; we claim that this set and the & from (1) are the
objects we are looking for. We have only to check (b). But, if C' = {X4re> Xhays oo}
is a countable subset of 4’, we take a point 2 & ﬂ Cyy, 2nd (b) follows from the second

and  {x,xy>=>e  for every xe Cyy.

part of (1). v .

Tucorem. For a Banach space E the following conditions are equivalent:

(i) E has the property (C); .

(ii) the dual space E' (equivalently — the unit ball B' in E Y} endowed with
G(E', EY-topology has the property (C'): if x' & A' < E’ (resp. A' = B') then x' € convC
Jor a countable C' < A' . o Cr

Proof. The fact that the property (C') of B’ implies the property ©) o =z
follows immediately from the lemma, as 0 is in the ¢(E', E)-closure of the ?et’ ‘
defined in this lemma, by (a), but not in the o(E’, E)-closure of any convC’ wit.
C'< A’ countable, by (b). )

The fact that (i) implies the property (C') of E’ can be proved by general duality

(*) The equivalence of the property (C"y for E’ al:ld B’ follows fromhKrein—fmulian theorem
[18, Ch. 1V, 6.4]; however, we obtain this fact easily in the course of the proof.
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arguments as follows. Let o’ e A'cE' (we consider o(E’, E)-topology in E'). For
every x'ed’ put Cp = {xeE: {x, x>>{x,ad+1}. The sets C, are closed,
convex and () {C,: x'e A’} =, so there is a countable set C'cA4’ with
N{Cu: X' € C'} = B. Then o’ econvC’ = H'. Indeed in the opposite case there
was an x € £ such that {x, A ><{x, a'>+1for i e H’, [18, Ch. II, 9.1 and Ch. IV,
1.2], but then xe () {C,: x'e C'}, a contradiction.

3.5. The following corollary to the theorem extends a result of Corson [7,
Corollary 1] that function a space C(X), where X is the onc-point compactification
of a locally compact metrizable space, has the property (C); a particular case of
this corollary is a step in the proof of Theorem 4.1.

COROLLARY. Let {E}es be a family of Banach spaces and let F be the ¢,(S)-
product of the family, i.e. F is the space {x € T] E,: (||xl|}s & eo(S)} endowed with the

se§

sup norm. If each Eg has the property (C), then so does the space F.
Proof. The dual space F’ of F is the /,(§)-product of the family {Es}ses
[8, Ch.IL, § 2, (11)] and thus the unit ball B in F’ endowed with the o (I, F)-topology

is the subspace B' = {x" e [] B;: Y |Ixjl|<1} of the Tyhonoff product [] B of the
seS s se§
unit balls BicE{ endowed with the o(E[, E)-topology. By standard reasonings

related to such subspaces of products (cf. [10, Z-products, p. 158] one can easily
verify that since each B; has the property (C’), then so does B’ (the needed fact
that each product B; x...x B has the property (C") follows from the identity
(Es X .. X By)' = Ej %...x Ej}, by Proposition 3.2.1 ().

A straightforward proof of the corollary is sketched in Section 5.5.

4. Function spaces with the property (C).

4.1. The main result of this paragraph is the following

THEOREM. Let K = X, X X, x... be the countable product of compact scattered
spaces of countable tightness and let E be a Banach space with the property (C). Then
the function space C(K, E) has the property ©).

The particular case, when K is itself scattered and £ is the real line, scems to be
worth while noticing separately; we shall do it explicitly to emphasize the connections
between the topology of X and the linear-topological structure of C(K).

COROLLARY 1. For a compact scattered space K the Jollowing statements are
equivalent:

() if xe A=K, then xe T for a countable Cc A,

(i) if o7 is a collection of closed convex sets in CK) and st = & then
N% =D for a countable ¥<sf.

Here, the implication (ii) = (i) (for arbitrary X) is contained in Theorem 3.4,
but it can be easily proved directly — see Section 5.1.

(") One can also follow reasonings of Malyhin [13, Theorem 4],

* ©
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Of course, the assertion of the theorem is also true for continuous images of closed
subsets of such products X; x X, x ... so in particular we have (cf. IS, Lemmal-~1],
[19, 5.3.4] and [9, Corollary 3]).

COoROLLARY 2. If K is an Eberlein compact and a Banach space E has the prop-
erty (C), then so does C(K, E); in particular, if C(S) has the property (C) for a com~
pact space S then so does C(Kx S), as well as C(S, F), provided that F is a WCG space.

The rest of this paragraph is devoted to the proof of the theorem.

4.2. We shall need the following two simple facts. The first is a corollary to
a Malyhin’s result [15, Theorem 4].

LemMa 1. Let X be a compact space of countable tightness, let p € X and let & be
a family of finite subsets of X such that each Gy-set containing p contains a member
of F. Then there exists a countable subfamily F* of F such that each neighbourhood
of p contains a member of F*.

Proof. Put %, = {Fe#: |F|<n}. By the assumption there is an n such
that each neighbourhood of p contains a member of &,. It remains to use the fact
that the product X" is of countable tightness [10, 3.12.8(e)] to choose the family
FreF.

The next fact, closely related to tensor products, is certainly well-known, cf.
[18, Ch. TV, 9.2], [12, Corollary]; we indicate here briefly a direct (and fairly standard)
proof.

LemMma 2. Let K be a compact scattered space and let E be a Banach space.
For every linear functional f'e C(K, E)' there exist points ai, a,, ... from K and
functionals u',, iy, ... from E' such that

@ [171] = 3 Il vt 0,

®) <A fD = 2 f(a), uiy for every fe C(K, E).

Proof. One c‘an assume that E = C(S) [19, 6.1.9]. Identifying C(K, C(S))
with C(Kx S) we consider f” as a Radon measure g on Kx 8 [19, 18.4.1]. Let A be
the image of the total variation || under the projection p: Kx S — K [19, 18.3.1
and 17.2.1]. Since K is scattered, A is purely atomic [19, 19.7.7]; let ay, a3, ... be tl'.xe
atoms and let g, = u/p~'(a). Each g can be considered as an u;e C(S), again
by [19, 18.4.1). The points @, and the functionals u; satisfy (a) and (b).

4.3, At first we shall prove the theorem in the case, when K is a compact
scattered space of countable tightness, The proof goes by the induction with respect
to the ordinal o such that the ath derived set of K is finite and nonempty. The case
@ = 0 follows from Corollary 3.5 (with § finite), so let us assume that the assertion
holds for all f<a and let K be finite and nonempty. o

Assume, thatow = p-+1.LetT: C(K, E) — C(K®, E) be tl?e l'EStI:ICt]On opera-tor.
The kernel Co(K||K'P, E) of T has the property (C) by the inductive assumption,
while the range C(K®, E) of T has the property (C) by Corollary 3.5. It remains
to apply Proposition 3.2.1.
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Assume that « is a limit ordinal. It is easy to see that this case reduces to the
proof of the

ADDITION LEMMA. Let p be a point in our space K such that for every compact
space T<K disjoint from p the function space C(T, E) has the property (C). Then
C(K, E) has the property (C).

It is enough to verify that the space Co(K, E) of all functions from C(K, E)
vanishing at p has the property (C) (see Proposition 3.2.1). Assume the contrary
and choose a set 4’ from the unit ball in Cy(K, E)' and an >0 as in Lemma 3.4,

Let & be the family of all closed G;-sets in K containing the point p. Fix an
S e & and let G, be open sets such that S = (} G, and G, =G,. By the assumption

each M; = C(K||G,, E) has the property (C) and so does the space C(K||S, E),
by Proposition 3.2.2, as the union {J M, is dense in this space. It follows (sec

i
Lemma 3.4) that there exists a fs & A’ vanishing on C(K||S, E). It means exactly
that, representing /3 as in Lemma 4.2.2 by the points'a, 5, a5 5, ... and the functionals
U}, Un,g, -, We have a; g€ S for every i By the property (a) from this lemma,
there exists a kg such that

®) sl <de,

let Fg = {a;5! i<ks}=S. We can exploit Lemma 4.2.1 to choose a countable
family €<% such that every neighbourhood of p contains some Fg with Se .
The set A’ was chosen (see Lemma 3.4) in such a way that we can pick now
a te Co(K, E) with

@ litll<l  and <t fd=e
Put ¥V = {xeK: |[1(x)||<%s}; then V' is a neighbourhood of p and hence there
exists S, € ¥ with Fg,= V. So we have by (1), the first part of (2) and Lemma 4.2,2(b):

Sy = Xt @isd sy = 3 K2 (Gys0) Uhsor + 2, < (@igo)s Uhsoy

i<ks, 1> Tes,

<te )

iSks,

a contradiction with the second part of (2).

44. Now, let K= X;xX,x... be as in the thcorem and let p;: K- K;
= X; x..x X; be the projection. Each C(K;, E) has the property (C), by the case
just proved in 4.3 (cf. [11, 3.12.8(¢)]) and so does the isomorphic space

M, = {fop; fe C(K,, E)}.
Finally, the union {J M; is dense in C(K, E) [6, Ch. X, § 4,4] and an application of
i

for cvery Se €.

lgsoll + 3 Mifsoll<e s
i>kgy

Proposition 3.2.2 completes the proof of the theorem.
5. Comments.

5.1. Let K be a compact space such that the function space C(K) has the
property (C). Then

icm°®

On a question of H. H. Corson and some related problems 151

(ts) the space P(K) of probability Radon measures on K (®) has the property (C")
from Theorem 3.4;

(ty) if 4 is a closed subset of K and @ is a collection of probability Radon
measures on K such that for every neighbourhood V of A there is a measure from P
concentrated on V, then there exists a countable collection P* <P such that given
a neighbourhood V of A and >0 there is a pe P* with HEN\V)<zg;

(t,) if pe K and F is a family of finite sets in K such that each neighbourhood
of p contains some member of F, then there is a countable subfamily F*<F such
that given a neighbourhood V of p and an >0 there is an Fe F* with [FaV|/IF|
>1—¢;

(to) K has the countable tightness.

The condition (t;) is in fact equivalent to the property (C), by Theorem 3.4;
indeed, in notation of the theorem, P(K)< B, while B' is the image of P&y [0, 17
under the mapping (u,s;v,t) = s-u—s-v and such mappings preserve the
property (C') (cf. [19, 17.2.5] and [10, 3.12.8]). A direct proof that (©) = (t,) runs
as follows: put -

Cy = {fe C(K||A): [fduz1/i}
then () C, = & and there exists a countable set 2,2 with () {C,: pe 2} = &,

for pe? ;

u
define #* = ) #,. To show that (t,) = (t,) it is enough to consider for each
i

1

Fe & the measure py = li"I Y 8., where 8, is the point mass at x. Finally, we
| xeP

have the obvious implication (t;) = (to).

It seems interesting to clarify what are the exact relationships between the
conditions (t) (for scattered K they are simply equivalent, by Corollary 4.1.1);
we conjecture that (t,) is an essentially stronger property of a compact space than the
countabie tightness (tg).

Another natural question is, V\vhether the property (C') from Theorem 3.4
(or, equivalently, (t3)) is exactly the countable tightness of B’ (or P(K)).

5.2, Let us consider the following property of a compact space K following
from the property (C) of the function space C(K) (cf. Talagrand [23, Theoreme 6.6]):
M) every Radon measure on K has the separable support. That (C) implies (M) can be
justified as follows: Jet u be a Radon measure supported exactly on K, fix a natural {
and for x e X put

Co= {fe CK): [fduzlfi and f(x)=0},
then N €, = @ and so () {Cy: xe 4,} = @& for a countable 4;=K; now K = li) 4;.
X

This observation, a result of Sapirovskii [20] and a result obtained indePendently
by Alster and Pol [2] and Gulko [11] yield the equivalence of the following state-

() We consider P(K) with the weak-star topology.
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ments (cf. [2, 8.3 and footnote (MD: (a) every compact space K of countable tightness
has the property (M)(b) for every compact subspace K of the Z-product of real lines
[10, 2.7.13] the function space C(K) has the property (C).

By a result of Arhangel’skii [3] these statements are consistent with the usual
axioms for set theory, but we do not know, whether they can be proved without
extra axioms (cf. the note below).

5.3. The following question is related to Corollary 4.1.2 (cf. also Sec. 5.1):
if C(S) has the property (C), is it true that C(SxS) does have this property?

We formulate below a remark, which may be useful in some concrete situations.

Assume that S is a compact space and E is a Banach space admilting a linear
contimious operator T: E — F onto a Banach space F such that both C(S, kerT) and
C(S, F) have the property (C). Then C(S, E) has the property (C).

For, let U: C(S, E) — C(S, F) be the linear continuous operator defined by
Uf = Tof. Then kerU = C(S, kerT) and U is onto, by a theorem of Bartle and
Graves [4, Theorem 4] (cf. Michael [14]), so the conclusion follows from Prop-
osition 3.2.1.

As an application we shall show that the space C(K™ has the property (C),
where K is the two arrows space. As in Section 4.4, it is enough to verify this for
C(K", n'=1,2,.. Assume that C(K™ has the property (C). Then C(K™*?)
= C(K™ C(K)) and the property (C) of C(K"*!) follows from Example 3.3.1,
the last part of Corollary 4.1.2 and the above remark.

5.4. Note, that if a Banach space E has the property (C) then the weak topology
of E is realcompact. This follows immediately from a characterization given by
Corson [7, Lemma 9] and Theorem 3.4.

5.5. We give here briefly a direct proof of Corollary 3.5 which does not appeal
to functional-analytic methods. Let us adopt the notation of this corollary. Given
a set T<S and an xe F we write ||x||r = sup{||x||: seT}.

LeMMA. Let C be a convex set in the unit ball of F such that dist(0, C)=e. Then
there exists a finite set T< S such that ||x||y=%e for all xeC.

For, if is was not the case we could choose points x*, x2, ..., x" € C, where
1/n<eg/2, such that the finite sets {se€S: [|x}[|>%e} were disjoint. But then
x = (x'+...+x"/ne C and ||x||<e, a contradiction.

Let us assume that F does not have the property (C) and let a collection % and
an &> 0 be as in Lemma 3.1. Taking into account, that cach finite product Eg, x ... % K,
has the property (C), by Proposition 3.2.1, and exploiting successively the above
lemma, we can find a sequence of disjoint finite subsets Ty, T5, ... of S and members
Cy, Cs, ... of € such that ||x||r, 46, whenever x e C;. But then for x & () C, we have

i

X|

||x{}r,=>%e for every i, which is impossible.

Note. After this paper was completed, Professor A. Pelezynski has called to the
author’s attention a recent paper of R. Haydon “On dual L'-spaces and injective

icm°®

On a question of H. H. Corson and some related problems
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bidual Banach spaces”

(preprint), where the following result
pidual B g result was proved (The-

assuming the contimum hypothesis, there exists a compact space S which is
Sirst-countable and non-separable, but it is the carrier of a Radon measyre

Since S was constructed for other purpose, the properties are not explicitely
stated in Haydon’s paper, however they follow easily from the facts proved there.
Now, let us observe that:

(0) C(S) does not have the property (C), by 5.2, and so, under the continuum
hypothesis, the condition (t,) in 5.1 does not imply the condition (t3) (cf. also Introduc-
tion);

(b) since S does not have the property (M) formulated in 5.2, being first-
countable, it follows that cach of the equivalent statements (a) and (b) in 5.2 is inde-
pendent of the ZFC-axioms for set theory.

Added in proof.

a) The paper of Maydon quoted in the Note appeared in Isracl J. Math. 31 (1978),
pp. 142-152,

b) G. Godefroy proved in Pacific J. Math. (to appear) that if S is a compact set in the
space B(P) of the first Baire class functions on the irrationals with the pointwise topology
then C(S) has property (C), and morover that P(S) embeds in B(P).

¢) Since the Helly space H (Example 4) embeds in By(P) the result of Godefroy men-
tioned in b) shows that C(H), and even C(P(H)), have property (C). Another proof of these
facts was given in the author’s paper mentioned below. K

d) In "Note on the spaces P(S) of regular probability measures whose topology is de-
termined by countable subsets® (preprint) we show that if C(SV) has property (C) then also
C(I’(S)) has property (C), and in particular, P(S) has countable tightness.
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On families of o-complete ideals
by

Adam Krawezyk and Andrzej Pelc (Warszawa)

Abstract. Our main results are the following: Assume Martin's Axiom. Then

1. For every A4-22° and every family {u,: a<A} of two-valued uniform measures on 2% there
exists an X< 2® non-measurable with respect to any of them.

2. For every cardinal % such that 2% <x<1st cardinal carrying a 2%-complete 2%-saturated
ideal the following holds: il 2<2° and {1zt <A} is a family of 2@-additive two-valued measures
on %, then there exists an X'<x non-measurable with respect to any of them.

0. Terminology and preliminaries. We shall use standard set-theoretical notation
and terminology. Letters %, A, u will always denote uncountable cardinals. “J is an
ideal on X will mean “J is a o-complete proper ideal of subsets of X such that
{x}eIforall x & X™. Anideal Tis A-complete iff {x;: &<n}cTimplies U{X;: E<n}
el forn<A, Acardinal A is called the character of an ideal I on % (chl = A)iff 1is the
least cardinal such that 3X'<w, |X| = 1, X ¢ I. Anideal I on x is uniform iff chf = x.
If 7 is an ideal on %, then J* will denote the dual filter.

Ideals I; and I, on % arc called compatible iff there exists an ideal 7 on % such
that I, u I, I,. It is casy to sec that I;, I, are compatible iff [, A I5 = @ iff
I, n I = @&, Otherwise I, I, are incompatible.

MA. will denote Martin’s Axiom. We shall use the following consequence of
MA (see [4]):

1. The union of < 2° ¢closed nowhere dense subsets of a metric complete separable
space is nowhere dense.

A subset & of the reals is calted strongly Lusin if for every Lebesgue measurable
sct A |2 Al<22” I A has Lebesgue measure 0. It is also a consequence of MA.
(see [2], ef. also [11, [4], [6]) that

2. A strongly Lusin set exists,

We use the following notation:
U, Ay ) - For cvery family {I,: <A} of u-complete ideals on x we have
Ul(fa I P().
L3S
U*(x, A, j0) — For cvery family {I,: a<A} of p-complete uniform ideals
on x we have U (L, u ) 5 P().
ad
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