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Dimension of non-normal spaces
by

Keio Nagami (Matsuyama)

Abstract. Let X be a general topological space and dim X the covering dimension of X due
to Katetov defined by means of finite cozero covers. If V' is a cozero set of X, then dim V'<dim X.
If {Vi} is a countable cozero cover of X, then dimX = sup dim V;. Several applications of the
subset and sum theorems thus stated are also given.

0. Introduction. Let X be a topological space. Then dim X<# if each finite
cozero cover of X is refined by a finite cozero cover of order <n+1. This definition
of covering dimension for general topological spaces stems from Katétov [4] and
coincides with the usual definition of covering dimension for normal spaces. There
has been a great amount of studies for the dimension of normal spaces in many
aspects. On the contrary we have only a few for non-normal case. Especially, con-
cerning subset and sum theorems we have had nothing with the exception of those
due to Katétov [4]. Sections 1 and 2 below constitute the body of the paper where
subset and sum theorems for non-normal spaces will respectively be given. In Sections
3 and 4 we give product and inverse limiting theorems for non-normal or normal
spaces which will refine known results. In this paper all spaces are non-empty
topological spaces and maps are continuous.

1. Subset theorem.

1.1. THEOREM. Let V be a cozero set of a space X. Then dimP<dimX.

Proof. When dim X is infinite the inequality is clear. Consider the case when
dimX = n. Let % = {U,: a e 4} be an arbitrary finite cozero cover of V. It is to be
noted that each U, is cozero in X since ¥ is cozero in X. Let f be an element of
C(X,I) with V= {xe X: f(x)>0}. Set

V,={xeX: fx)>1i}, F,={xeX:f(x)=1/i}.
=<
Then V' = () ¥, and V,cF,=V;,, for each i. Set
i=1
Wy = {Wiy=U,u(X~F,): aed}.

Then %, is a finite cozero cover of X. Let %y = {Uy,: a€ A} be a cozero cover
of X such that U;,= W;, for each o e 4 and order #;<n+1. Set

Wy = {Wa = (U0 V2) O (U= Fp) v (X Fa): wed}.

3%
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Then W, is a finite cozero cover of X. Let %, = {Uy,: «€ A} be a cozero cover
of X such that U,,< W,, for each z € 4 and order #,<n+1. Continuing in this
fashion, we get sequences W' = {W,: aed} and %; = {Ug,: ae A} of cozero
covers of X satisfying the following three conditions:

) Up=W,, ced

Q) W= U1, 0 VYU U=Fi) U (X=Fiyy), acd.

(3) order %, <n+1.

Set

Cs

D ={D,= U(UynV): aed}.
i=1

il

Then each D, is cozero in X. Let x be an arbitrary point of V. Pick k with x e V.
Since %, covers X, there exists f € 4 with x & Uy;. Then xe Uy n V= Dy. Thus &
covers V.
Let us prove that Uy, n ¥;.; < U, by induction on /. Since
U Voc Wi a Vo= (U, (X—F))n ¥V, = U, 0 VU,
the assertion is true for i = 1. Assume that the assertion is true for i<m. Then by (1)
and (2),
Unt1a 0 Vira© Wt 1,4 O Vw2
= ((Umu N Vasr) O (U,~F,) v (X—Fm+z)) N Vs
= ((Umm n Vm+1) a} )/m')-Z) v ((Uuwl?yn) gl Vm+2)
(U, Vs U U,E,.

Thus the induction is completed. Hence
w© o
D,= UUun V)= UUpn ViU,
i=1 i=1
To prove order @ <n-+1 let x be an arbitrary point of ¥ and j the minimum with
xeV;. Let j<i. Then
UpnVicWynV;

=((Ui-1.n Vo (U~ Fi-9) v (X"Fz-n)> nv;
U100 V.

I

Hence U, n ¥;=U;, 0 ¥;, which implies that the order of @ at x is the order
of %; at x. Thus the order of & at x is at most n+1. That completes the proof.

1.2. DEFINITION. Let X be a space and S a subset of X. S is said to be cozero-
embedded in X if for each cozero subset U of S there exists a cozero set ¥ of X with
VaS=U.

1.3. THEOREM. Let X be a space and S a cozero-embedded subset of X. Then
dimS<dim X.

icm
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Proof. Let % = {U,: ae 4} be a finite cozero cover of S. Let V,, a e 4,
be cozero sets of X with U, = ¥, n S. Set ¥ = ) ¥,.. Then by Theorem 1.1 there
exist cozero sets W, of X such that W,cV, for each ae 4, V = |J W,, and the
order of {W,: ae A} is at most dimX+1. Then %" = {W, n S: ae 4} is a cozero
cover of S such that W, n ScU, for each «€ 4 and order % <dimX+1. That
completes the proof.

This is a generalization of Katétov’s subset theorem [4] where § is assumed
to be C*-embedded in X.

1.4, Remark. If S is C*-embedded in X, then S is clearly cozero-embedded
in X. However the converse is not true in general. Let Q be the rationals in the reals R.
Then Q is clearly cozero-embedded in R. Choose fe C(Q,I) such that f(x) = 1
for x<./2 and f(x) = 0 for x>./2. This f cannot be extended over R.

It can easily be seen that a subset S of a space X is cozero-embedded in X
if and only if for each finite cozero cover % of S there exists a finite cozero collec-
tion ¥ of X such that ¥|S<% and Scv*(= U {V: Ve?).

If each subset of a space X is cozero-embedded in X, then X is hereditarily normal.
However the converse of this assertion is not true as follows. Let X = [0, w,) be
the space of countable ordinals. Then X is hereditarily normal. Let G be the subset
of isolated ordinals in X. Let U be the subset of elements of G whose predecessors
are limit ordinals. Then U is a cozero set of G. If V is a cozero set of X with V> U,
then V> [, w,) for some a<w, and hence a+2 e ¥ n G. Thus ¥ n G#U, which
proves that G is not cozero-embedded in X.

2. Sum theorem.

2.1. DErFINITION. Let U, ¥ be subsets of a space X. U is said to be an exact
subset of V if for some zero set F of X, UcFc V. A sequence U, i € N, of subsets
of X is said to be exactly decreasing if Uy, is an exact subset of U; for each i.

2.2. Lemma. Let X be a space, U = {U,: a € A} a finite cozero cover of X, V
a cozero set of X with dim V'<n, W a cozero set of X having a cozero cover {W,: e A}
of order <n-+1 with W,cU,, a.€ 4, and W' an exact cozero subset of W. Then there
exists a cozero cover ¥ = {V,: aed} of VU W' such that V,cU, and V, 0 W'
= W,n W' for each o.€ A, and order ¥ <n+1. :

Proof. Let F be a zero set of X with W'cFcW. Set

U,=(U~F)uW)nV, oed.
Then {U.: «e A} is a cozera cover of V. Let {¥;: « € A} be a cozero cover of ¥
of order <n-1 such that ¥.c U, for each ag A. Set ¥V, = VL (W, n W'). Then
¥ = {V,: a.e 4} satisfies the desired condition. That completes the proof.

Let us say in the sequel that a collection ¥ = {V,: a e 4} is special (with
respect to % = {U,: ae A} if V,<U, for each o€ A, order ¥"<n+1, and each V,
is cozero in X. 7" as in Lemma 2.2 is said an extension of {W,: ae A}W'.

2.3, Lemma. Let X be a space, % = {U,: u € A} afinite cozero cover of X, V7,
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i € N, a sequence of cozero sets of X with dim V;<n for each i, W a cozero set of X,
and W = {W,: ae A} a special (with respect to U) cover of W. Let W' be an exact
cozero subset of W, and V{ an exact cozero subset of V; for each i. Then there exists

a special cover @ = {D,: ae A} of W' v (U V) which is an extension of W|W'.
i=1
Proof. Let ¥y, je N, be an exactly decreasing sequence of cozero sets of X

such that ¥;; = V;and ¥/ = () V;;. Let W}, je N, be an exactly decreasing sequence
=1

@0
of cozero sets of X such that W, = Wand W< () W;. By Lemma 2.2 there exists
j=1
a special cover W, = {Wy,: ae 4} of W, u Vy; which is an extension of #'|W,.
By repeated application of Lemma 2.2 there exists for each i a special cover
W= {Wy: aed} of Wiqu (U {Vy: j+k = i+1}) which is an extension of the
restriction of #;_; to W;u (U (Vi j+k = i}). Set

D ={D, = (Wi 0 W’)U(G(an vD): wed}.
=1

Then @ is the desired. That completes the proof.
Let us say that & thus constructed is a special cover generated by the system:

{{Ws (W, W’)}: (Vls VI’)’ (Vzr VZ’): } .

2.4. TueoreM. Let X be a space and V;, i€ N, a sequence of cozero sets of X
with X = ) V; and dimV;<n for each i. Then dimX<n.

Proof. Since each countable cozero cover can be refined by a locally finite
countable cozero cover, we assume without loss of generality that {¥;} itself is locally
finite by virtue of Theorem 1.1. Let % = {U,: « e A} be an arbitrary finite cozero
cover of X. Let f; be an element of C(X, 1) with ¥; = {xe X fj(x)>0}. Set

Viy={xeX: f(x)>1/j}, jeN,
D= UVy JeN.
i=

Let#'y = {Wy,: ae A} be a special cover (with respect to %) of ¥, ,. First consider
the system:

{W s (Vs Vid)}, (Vias V)i i = 2,3, .

By Lemma 23 the system generates a special cover @, = {Dya: ace'A} of D,.
Next consider the system: )

{{@1’ (-DZ’ Dl)}: (Vi4-! ViB): i=1,2, } .

Again by Lemma 2.3 the system generates a special cover @, = {D,,: ae A} of Dy
which is an extension of 9,|D,.

icm
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Continuing in this fashion, we get for each i with i>2 a special cover
9, = {D;,: o€ A} of D, which is an extension of @;_,;|D,_, for i=2,3,..
Set . .

& ={E,= U(Dun D): ned}.
i=1

Then as can easily be seen & is a cozero cover of X of order <n-1 which refines %.
That completes the proof.

Tt is to be noted that Pol [13], Example 1, constructed a Tychonoff space X with
dim X>0 which is the sum of two zero sets F and H with dimF = dimH = 0.

2.5. TueoreM. Let X be a space which admits a locally finite cozero cover
@ = {U,} with dimU,<n for each o. Then dim X<n.

Proof, Since % is normal, % can be refined by a o-discrete cozero cover 77,
with each ¥, discrete. Set ¥, = {V;;: A€ 4;}. Then for each le 4;, dimV;,<n
by Theorem 1.1. Therefore dim¥” ;¥ <n by the discreteness of ¥7;. Since each ¥~ ¥
is cozero and X = U ¥'¥, dimX<n by Theorem 2.4. That completes the proof.

2.6. COROLLARY. Let X be a space with dim X<n and U a D-open set of X,
i.e U admits a locally finite (in U) cover ¥ each element of which is cozero in X.
Then dimU<n.

This is a direct consequence of Theorems 1.1 and 2.5. The concept of D-open
sets stems from Dowker [1] and recently considered by Nishiura [9].

3. Product theorem. According to Ishiwata [3], a map f: X — Y is said to be
a Z-map if the image of each zero set of X under f is closed in Y. This notion is
a generalization of closed maps. When a space X is a Tychonoff space, X denotes
the Stone-Cech compactification of X.

3.1. LEMMA. Let X be a Tychonoff space, ¥ a space, and m: Xx ¥Y—Y the
projection. If m is a Z-map, then Xx Y is C*-embedded in BXx Y.

Proof. Let f be an element of C(Xx Y, I). Set for y, y' €Y,
d(y, ) = sup{| f(x, ) —f(x, ] xe X}.

To see d is a pseudo-metric on ¥, choose an arbitrary point y, of ¥ and an arbitrary
positive number a. Set

g G, ¥) = | fCx, »)=F @, yols
F={(x,y))eXxY: gix, y)y=a}.

(x,NeXxY,

Then ge C(Xx Y, 1) and hence F is a zero set of Xx Y. Since g(x,¥) =0,
(Xx{yoD) n F =@ and hence {yo} N n(F) = @. Since n(F) is closed, Y—n(F)
is an open neighborhood of y,. Since (x x(Y=n(F))nF =9, g,
= | f(x,¥)—f(x, yo)|<aforeach x e X and each y € Y—n(F) and hence d(y, yo)<a
whenever y e Y—n(F). Thus d is a pseudo-metric on Y.
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For each yeY let J,: fXx {y}-—»l be an extension of f|Xx{y}. Define
a transformation h: fXx Y— I by:

RBXx{y} =h, ye¥.

Then h|Xx ¥ = f. To prove the continuity of  let (p, ¢) be an arbitrary point of
BXx Y and ¢ an arbitrary positive number. By the continuity of 4|fXx {q} there
exists an open neighborhood ¥ of p in f.X such that |#(p, g)—h(x, q)|<}e for each
xeV. Set W= {yeY: d(g,y)<%e}. Then W is an open neighborhood of g¢.
Let (x,y) be an arbitrary point of ¥'x W. By the continuity of 2|fXx {y} there
exists a point x' e ¥ n X such that |h(x, y)—h(x', y)|<4e. Then

(e, 1) —h(p, P<IhCx, )=k, Y|+ |G, p) =0, L+, @ ~h(p, 9
<le+dl(y,)+ie=¢.
Thus & is continuous and the proof is completed.

3.2. THEOREM. Let X be a Tychonoff space, Y a space, and n: Xx ¥Y— Y the
projection. If  is a Z-map, dim(X x ¥Y)<dim X+dim¥.

Proof. Since X'x Y is C*-embedded in fXx ¥ by Lemma 3.1, dim(Xx ¥)
<dim(fX x Y) by Theorem 1.3. Since dim(fX x ¥Y)<dimpBX+dim¥ by Morita [7],
Theorem' 5.5, dim(X'x ¥Y)<dimfX+dimY = dim X+dimY¥. That completes the
proof. ¥

This generalizes Filippov [2], Theorem 1.

- 3.3. COROLLARY. Let X be a paracompact Hausdorff space, Y a space, and
n: XX Y— Y the projection. If each point x € X has a closed neighborhood U, such
that WU, x Y is a Z-map, then dim(Xx Y)<dim X+dimY.

Proof. Let ¥, be the interior of U,. Let {W, # ©: ¢ € 4} be a locally finite
cozero cover of X refining {¥,.: xe X}. For each W, choose Vi, with W, V.
By Theorem 3.2, dim (U x Y)<dim U,y +dimY. Since X is normal and Uswy
is closed, dimU,,<dimX. Since W,x Y is cozero in Uiyx Y, dim(W,x Y)
<dim Uy +dimY by Theorem 1.1. Thus dim(W,x ¥Y)<dim X+dimY. Since
{W,x Y: o€ 4} is a locally finite cozero cover of Xx Y,

dim(Xx Y)<sup {dim(W,x ¥): a4}

by Theorem 2.5 and hence dim(X'x ¥Y)<dim X--dimY. That completes the proof.

3.4. Lemma (Katétov [4]). Let X be a space and F;, ie N, a sequence of C*-
embedded subsets of X with X =) F,. Then dimX = supdim F;.

3.5. LeMMA. Let Z be a normal P-space due to Morita [6], X a closed subset
of Z, Y a space, and n: Xx ¥ — Y the projection. If n is a Z-map, then XX Y is
C*-embedded in Zx Y.

Proof. Let f be an element of C(Xx ¥,I) and d the pseudometric on Y
defined in the proof of Lemma 3.1. Let ¥* be the metric space Y/dand ¢: Y — ¥*
the natural map. For y € ¥ denote f'(y) by y*. Let f*1 Xx Y*— T be a transform-
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ation defined by: f*(x, y*) = f(x, ). Then f* is continuous. Since X x ¥* is a closed
subset of a normal space Zx Y*, f* has an extension g* e C(Zx Y*,I). Define
g: Zx Y— I by:

9(z,) = g*(z,»%), (z,))eZx7Y.

Then g is an extension of f over Zx ¥. That completes the proof.

3.6. THEOREM. Leét X be a normal P-space, X,, i € N, a sequence of closed subsets
of X with X = ) Xy, Y a space, and n: Xx Y~ Y the projection. If n|X,;x ¥ is
a Z-map for each i, then dim(Xx Y)<dim X+dimY,

Proof. Since each X;x Y'is C*-embedded in X'x ¥ by Lemma 3.5, dim(X x ¥)
= supdim (X;x ¥) by Lemma 3.4. On the other hand dim(X;x Y)<dim X, +dim¥
by Theorem 3.2. Thus dim(Xx Y)<supdimX;+dimY = dimX+dimY, That
completes the proof. )

As for the case when the inequality dim(Xx ¥Y)<dim X+dim Y is no longer
true, we have now beautiful examples due to Wage [15] and to Przymusifski [14].

4. Inverse limits.

4.1, TueoreM. Let {X, 7':}} be an inverse system of a sequence of normal spaces X;
with dim X;<n with the onto bonding maps w;: X,— X; (i]). Let its inverse limit X
satisfy the condition:

(") An arbitrary countable cover of X consisting of monotonically increasing open
sets can be refined by a countable cover comsisting of cylindrical closed sets.

Then dim X<n. (A set of type w; *(S) is said to be a cylindrical closed set if S is
a closed set of X, where m;: X — X, is the projection.) )

Proof. By Nagami [8], Theorems 1.2 and 1.3, X is countably paracompact
normal. Let % = {U,: o e 4} be an arbitrary finite open cover of X. Let U, be the
maximal open set of X; with n; '(U;,)< U,. Set

U, = U {Uy,: acd},
¥ = {m Y(U): ieN}.
Then ¥ is a cover of X consisting of monotonically increasing open sets. Let_.Sl',. be
a closed sct of X; with S;c U, such that {r; 1(S): ie N} covers X and =7 *(Sy)
en (S, ) for cach i Let V; and W, be cozero sets of X; such that
S,cWe WeveVel;,
(n§+1)—’1(7i)c Wisy -

Let ¥, = {V,: a e A} be an open cover of Vy of order <n-+1 such that V,,cUy,,

ned Let ¥, = {Vy,: aeAd} be an open cover of ¥ of order <n-+1 such that

VZaC(ni)_—l(Vla) v (UZa'—(nf)—i( Wl))’ aed.
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Continuing in this fashion, we get, for each {32, an open cover ¥"; = (Vi e 4}
of V, of order <n+1 such that

(+%) Viac(ng—l)—l(Vi—l,a) Y (Uia"'”zg—l)—l( W‘—l))’ xed.
Set

8

@ ={D,= Unj (Ve W): acd}.

4

L]

1
Then D, is open and D,=U,.

To see that @ is a cover of X of order <n-+1 let x = (x;) be an arbitrary point
of X. Since {n; (W): i N} covers X, there exists the minimal j with x e n; W)
and hence with x; & W;. Since W;=V;, x;€ Vjg for some f. Thus x;€ Vign W),
xe n,-'l(VH, n Wy e Dy, and hence 9 covers X. From the inequality (i) it can
easily be seen that, for each ie N,

D, (ni—l(Wi)"ni——ll(Wi—l)) = ni—l(Via) n (ni—'l(Wi)—W;—ll(Wi—l)): aed,:

where we set W_, = @. Thus the order of 9 at x is the order of ¥; at x; which is
at most n+ 1. % is now refined by a finite open cover 9 of order at most n--1. That
proves dim X<n and the proof is completed.

4.2. Remark. If one of the following conditions is satisfied, then X satisfies
the condition (x).

(1) Each open set of each X; is F,.

(2) X is countably paracompact and each m; i open.

(3) X is countably paracompact and each nj is perfect.

Thus Theorem 4.1 generalizes Nagami [8], Theorem 1.7, and Pasynkov [11]
Theorem 3, at the same time, where they considered the case when X is countably
paracompact and each n; is open or perfect.
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