Dimension of non-normal spaces

by

Keiō Nagami (Matsuyama)

Abstract. Let X be a general topological space and $\dim X$ the covering dimension of X due to Katetov defined by means of finite cozero covers. If V is a cozero set of X, then $\dim V \leq \dim X$. If (V_1) is a countable cozero cover of X, then $\dim X = \sup \dim V_1$. Several applications of the subset and sum theorems thus stated are also given.

0. Introduction. Let X be a topological space. Then $\dim X < n$ if each finite cozero cover of X is refined by a finite cozero cover of order $\leq n+1$. This definition of covering dimension for general topological spaces stems from Katetov [4] and coincides with the usual definition of covering dimension for normal spaces. There has been a great amount of studies for the dimension of normal spaces in many aspects. On the contrary we have only a few for non-normal case. Especially, concerning subset and sum theorems we have had nothing with the exception of those due to Katetov [4]. Sections 1 and 2 below constitute the body of the paper where subset and sum theorems for non-normal spaces will respectively be given. In Sections 3 and 4 we give product and inverse limiting theorems for non-normal or normal spaces which will refine known results. In this paper all spaces are non-empty topological spaces and maps are continuous.

1. Subset theorem.

1.1. Theorem. Let V be a cozero set of a space X. Then $\dim V \leq \dim X$.

Proof. When $\dim X = n$. Let $\mathcal{F} = \{U_\alpha : \alpha \in A\}$ be an arbitrary finite cozero cover of V. It is to be noted that each U_α is cozero in X since V is cozero in X. Let f be an element of $C(X, I)$ with $V = \{x \in X : f(x) > 0\}$. Set

$$V_1 = \{x \in X : f(x) > 1/\ell\}, \quad F_1 = \{x \in X : f(x) > 1/\ell\}.$$

Then $V = \bigcup_{\ell=1}^{\infty} V_\ell$ and $V_\ell \subseteq F_{\ell+1}$. Then for each i, set

$$\mathcal{W}_i = \{W_\alpha = U_\alpha \cup (X - F_{\ell}) : \alpha \in A\}.$$

Then \mathcal{W}_i is a finite cozero cover of X. Let $\mathcal{W}_1 = \{U_\alpha : \alpha \in A\}$ be a cozero cover of X such that $U_i \subseteq \mathcal{W}_i$ for each $\alpha \in A$ and order $\mathcal{W}_i \leq \mathcal{W}_{i+1}$. Set

$$\mathcal{W}_2 = \{U_\alpha \cap V_2 \cup (U_\alpha - F_1) \cup (X - F_1) : \alpha \in A\}.$$
Then \mathcal{W}_2 is a finite cozero cover of X. Let $\mathcal{W}_2 = \{U_x; x \in A\}$ be a cozero cover of X such that $U_x \subseteq W_x$ for each $x \in A$ and order $\mathcal{W}_2 \leq n+1$. Continuing in this fashion, we get sequences $\mathcal{W}_i = \{W_x; x \in A\}$ and $\mathcal{W}_i = \{U_x; x \in A\}$ of cozero covers of X satisfying the following three conditions:

1. $U_x \subseteq W_x, x \in A$.
2. $W_x = (U_{x,i} \cap V_j) \cup (U_{x,i} - F_{i,j-1}) \cup (X - F_{i,j})$, $x \in A$.
3. order $\mathcal{W}_i \leq i+1$.

Set $\mathcal{D} = \bigcup_{i=1}^m \{U_x \cap V_j; x \in A\}.

Then each U_x is cozero in X. Let x be an arbitrary point of V. Pick k with $x \in U_k$. Since \mathcal{W}_k covers X, there exists $y \in A$ with $x \in U_y$. Then $x \in U_k \cap V_j \subseteq D_x$. Thus \mathcal{D} covers V.

Let us prove that $U_x \cap V_{i+1} \subseteq U_x$ by induction on i. Since $U_x \cap V_{i+1} \subseteq W_x \cap V_{i+1}$, the assertion is true for $i = 1$. Assume that the assertion is true for $i \leq m$. Then by (1) and (2),

$\begin{align*}
U_{n+1} &\cap V_{m} = W_{n+1} \cap V_{m} \\
&= (U_{n+1} \cap V_{m+1}) \cup (U_{n+1} - F_{n+1}) \cup (X - F_{n+1}) \\
&= (U_{n+1} \cap V_{m+1}) \cup (U_{n+1} - F_{n+1}) \cup (U_{n+1} - F_{n+1}) \cup (X - F_{n+1}) \\
&= (U_{n+1} \cap V_{m+1}) \cup U_{n+1} \subseteq U_{n+1}.
\end{align*}$

Thus the induction is completed. Hence

$\mathcal{D} = \bigcup_{i=1}^m \{U_x \cap V_j; x \in A\} \subseteq U_x$.

To prove order $\mathcal{D} \leq n+1$ let x be an arbitrary point of V and j the minimum with $x \in U_j$. Let $j < l$. Then

$U_x \cap V_j \subseteq W_x \cap V_j$,

$= ((U_x - F_j) \cup (U_x - F_{j-1}) \cup (X - F_{j+1})) \cap V_j$

$= U_{x,1} \cap V_j$.

Hence $U_x \cap V_j \subseteq U_x \cap V_j$, which implies that the order of \mathcal{D} at x is the order of \mathcal{F} at x. Thus the order of \mathcal{D} at x is at most $n+1$. That completes the proof.

1.2. Definition. Let X be a space and S a subset of X. S is said to be cozero-embedded in X if for each cozero subset U of S there exists a cozero set V of X with $V \cap S = U$.

1.3. Theorem. Let X be a space and S a cozero-embedded subset of X. Then dim $S \leq$ dim X.

Proof. Let $\mathcal{W} = \{U_x; x \in A\}$ be a finite cozero cover of S. Let $V_x, x \in A$, be cozero sets of X with $U_x = V_x \cap S$. Set $V = \bigcup V_x$. Then by Theorem 1.1 there exist cozero sets W_x of X such that $W_x \subseteq V_x$ for each $x \in A$, $V = \bigcup W_x$, and the order of $\{W_x; x \in A\}$ is at most dim $X + 1$. Then $\mathcal{W} = \{W_x \cap S; x \in A\}$ is a cozero cover of S such that $W_x \cap S \subseteq U_x$ for each $x \in A$ and order $\mathcal{W} \leq \text{dim} X + 1$. That completes the proof.

This is a generalization of Kakutani's subset theorem [4] where S is assumed to be C^κ-embedded in X.

1.4. Remark. If S is C^κ-embedded in X, then S is clearly cozero-embedded in X. However the converse is not true in general. Let \mathcal{Q} be the rationals in the reals R. Then \mathcal{Q} is clearly cozero-embedded in R. Choose $f_\epsilon \in C(R, R)$ such that $f(\epsilon) = 1$ for $\epsilon < \sqrt{2}$ and $f(\epsilon) = 0$ for $\epsilon \geq \sqrt{2}$. This f cannot be extended over R.

It can easily be seen that a subset S of a space X is cozero-embedded in X if and only if for each finite cozero collection \mathcal{C} of S there exists a finite cozero collection \mathcal{D} of X such that $\mathcal{D}|S \subseteq \mathcal{C}$ and $S \subseteq \mathcal{D}|S = \bigcup \{V; V \in \mathcal{D}\}$.

If each subset of a space X is cozero-embedded in X, then X is hereditarily normal.

However the converse of this assertion is not true as follows. Let $X = [0, a_x]$ be the space of countable ordinals. Then X is hereditarily normal. Let G be the subset of isolated ordinals in X. Let U be the subset of elements of G whose predecessors are limit ordinals. Then U is a cozero set of G. If V is a cozero set of X with $V \cap G = U$, then $V = [a_x, a_y]$ for some $a_x < a_y$ and hence $a_x < 0$ in $V \cap G$. Thus $V \cap G \neq U$, which proves that G is not cozero-embedded in X.

2. Sum theorem.

2.1. Definition. Let U, V be subsets of a space X. U is said to be a exact subset of V if for some zero set F of X, $U \cap F = \emptyset$. For sequence U_i, $i \in N$, of subsets of X is said to be exactly decreasing if U_{i+1} is an exact subset of U_i for each i.

2.2. Lemma. Let X be a space, $\mathcal{W} = \{U_x; x \in A\}$ a finite cozero cover of X, V a cozero set of X with dim $V \leq n$, W a cozero set of X having a cozero cover $\{W_x; x \in A\}$ of order $\leq n+1$ with $W_x \subseteq U_x$, $x \in A$, and W' an exact cozero subset of W. Then there exists a cozero cover $\mathcal{V} = \{V_x; x \in A\}$ of $V \cup W'$ such that $V_x \subseteq U_x$ and $V_x \cap W = W_x \cap W'$ for each $x \in A$, and order $\mathcal{V} \leq n+1$.

Proof. Let F be a zero set of X with $W' \cap F = \emptyset$. Set

$U_x = (U_x - F_x) \cup W_x, x \in A$.

Then $\{U_x; x \in A\}$ is a cozero cover of V. Let $V'_x = \{V_x; x \in A\}$ be a cozero cover of V of order $\leq n+1$ such that $V'_x \subseteq U'_x$ for each $x \in A$. Set $V_x = V'_x \cup (W_x \cap W')$. Then $\mathcal{V} = \{V_x; x \in A\}$ satisfies the desired condition. That completes the proof.

Let us say in the sequel that a collection $\mathcal{V} = \{V'_x; x \in A\}$ is special (with respect to $\mathcal{W} = \{U_x; x \in A\}$) if $V'_x \subseteq U_x$ for each $x \in A$, order $\mathcal{V} \leq n+1$, and each V_x is cozero in X. \mathcal{V} as in Lemma 2.2 is said an extension of $\{W_x; x \in A\}$.

2.3. Lemma. Let X be a space, $\mathcal{W} = \{U_x; x \in A\}$ a finite cozero cover of X, V_x
to be a γ-cozero cover of X of order $\leq \alpha + 1$ which refines \mathfrak{G}. That completes the proof.

It is to be noted that Pol [13], Example 1, constructed a Tychonoff space X with $\dim X > 0$ which is the union of two zero sets F and H with $\dim F = \dim H = 0$.

2.5. Theorem. Let X be a space which admits a locally finite cozero cover $\mathfrak{G} = \{U_\alpha\}$ with $\dim U_\alpha \leq \alpha$ for each α. Then $\dim X \leq \alpha$.

Proof. Since \mathfrak{G} is normal, \mathfrak{G} can be refined by a σ-discrete cozero cover $\{\mathcal{V}_\alpha\}$, with each \mathcal{V}_α discrete. Set $\mathfrak{F}_1 = \{V_\alpha : \alpha \in A\}$, where each \mathcal{V}_α is α-discrete, so $\dim \mathfrak{F}_1 \leq \alpha$. Then $\dim X \leq \alpha$ by Theorem 1.1. Therefore $\dim \mathfrak{F}_1 \leq \alpha$ by the discreteness of \mathfrak{F}_1, since each \mathfrak{F}_1 is cozero and $X = \bigcup \mathfrak{F}_1$, $\dim X \leq \alpha$ by Theorem 2.4. That completes the proof.

2.6. Corollary. Let X be a space with $\dim X \leq \alpha$ and U a D-open set of X, i.e., U admits a locally finite (in U) cover $\{\mathcal{V}_\alpha\}$ of each element of which is cozero in X. Then $\dim U \leq \alpha$.

This is a direct consequence of Theorems 1.1 and 2.5. The concept of D-open sets stems from Dowker [1] and recently considered by Nishimura [9].

3. Product theorem. According to Ishiwata [3], a map $f : X \to Y$ is said to be a Z-map if the image of each zero set of X under f is closed in Y. This notion is a generalization of closed maps. When a space X is a Tychonoff space, βX denotes the Stone–Čech compactification of X.

3.1. Lemma. Let X be a Tychonoff space, X and Y be spaces, and $\pi : X \times Y \to Y$ the projection. If π is a Z-map, then $X \times Y$ is C^*-embedded in $\beta X \times Y$.

Proof. Let f be an element of $C(X \times Y)$. Set for $x, y \in X$,

$$
\Delta(y, y') = \sup \{|f(x, y) - f(x, y')| : x \in X\}.
$$

To see if Δ is a pseudo-metric on Y, choose an arbitrary point y_0 of Y and an arbitrary positive number α. Set

$$
g(x, y) = |f(x, y) - f(x, y_0)|, \quad (x, y) \in X \times Y,
F = \{(x, y) \in X \times Y : g(x, y) \geq \alpha\}.
$$

Then $g \in C(X \times Y)$ and hence F is a zero set of $X \times Y$. Since $g(x, y_0) = 0$, $(X \times \{y_0\}) \cap F = \emptyset$ and hence $\pi(x_0) \cap \pi(F) = \emptyset$. Since π is a Z-map, $Y - \pi(F)$ is an open neighborhood of y_0. Since $(X \times (Y - \pi(F))) \cap F = \emptyset$, $g(x, y) = |f(x, y) - f(x, y_0)| < \alpha$ for each $x \in X$ and each $y \in Y - \pi(F)$ and hence $d(y, y_0) < \alpha$ whenever $y \in Y - \pi(F)$. Thus d is a pseudo-metric on Y.

For each \(y \in Y \) let \(h_y: \beta X \times \{y\} \to I \) be an extension of \(f|\{x \times \{y\}| \). Define a transformation \(h: \beta X \times Y \to I \) by:

\[
h(h_x \times \{y\}) = h_y, \quad y \in Y.
\]

Then \(h: \beta X \times Y = f \). To prove the continuity of \(h \) let \(p, q \in \beta X \times Y \) be an arbitrary point of \(\beta X \times Y \) and \(e \) an arbitrary positive number. By the continuity of \(h|\beta X \times \{y\} \) there exists an open neighborhood \(V \) of \(p \) in \(\beta X \times Y \) such that \(h(p, q) = h(x, y) < e \) for each \(x \in V \). Set \(W = \{ y \in Y : d(q, y) < e \} \). Then \(W \) is an open neighborhood of \(q \).

Let \((x, y) \) be an arbitrary point of \(V \times W \). By the continuity of \(h|\beta X \times \{y\} \) there exists a point \(x' \in V \cap X \) such that \(h(x, y) = h(x', y') < e \). Then

\[
|h(x, y) - h(p, q)| = |h(x', y') - h(x', y)| + |h(x', y) - h(x', y')| + |h(x', y') - h(p, q)| < \frac{e}{3} + \frac{e}{3} + \frac{e}{3} = e.
\]

Thus \(h \) is continuous and the proof is completed.

3.2. Theorem. Let \(X \) be a Tychonoff space, \(Y \) a space, and \(\pi: X \times Y \to Y \) the projection. If \(\pi \) is a \(Z \)-map, then \(\dim(X \times Y) \leq \dim X + \dim Y \).

Proof. Since \(X \times Y \) is \(C^* \)-embedded in \(\beta X \times Y \) by Lemma 3.1, \(\dim(X \times Y) \leq \dim(\beta X \times Y) \) by Theorem 1.3. Since \(\dim(\beta X \times Y) \leq \dim(\beta X) + \dim Y \) by Morita [7], Theorem 5.5, \(\dim(X \times Y) \leq \dim X + \dim Y = \dim X + \dim Y \). That completes the proof.

This generalizes Filippov [2], Theorem 1.

3.3. Corollary. Let \(X \) be a paracompact Hausdorff space, \(Y \) a space, and \(\pi: X \times Y \to Y \) the projection. If each point \(x \in X \) has a closed neighborhood \(U_x \) such that \(\pi(U_x \times Y) \) is a \(Z \)-map, then \(\dim(X \times Y) \leq \dim X + \dim Y \).

Proof. Let \(V_x \) be the interior of \(U_x \). Let \((W_{x} \neq \emptyset : \pi \in A) \) be a locally finite cozero cover of \(X \) refining \((V_x : x \in X) \). For each \(W_x \), choose \(V_{x, x} \subseteq V_{x, x} \). By Theorem 3.2, \(\dim(U_{x, x} \times Y) \leq \dim U_{x, x} + \dim Y \). Since \(X \) is normal and \(U_{x, x} \subseteq X \) is closed, \(\dim U_{x, x} \subseteq X \). Since \(W_x \subseteq Y \) is cozero in \(U_{x, x} \times Y \), \(\dim(W_x \times Y) \leq \dim(W_x \times Y) \) by Theorem 1.1. Thus \(\dim(W_x \times Y) \leq \dim X + \dim Y \). Since \((W_x \times Y : x \in A) \) is a locally finite cozero cover of \(X \times Y \),

\[
\dim(X \times Y) \leq \sup \{ \dim(W_x \times Y) : x \in A \}
\]

by Theorem 2.5 and hence \(\dim(X \times Y) \leq \dim X + \dim Y \). That completes the proof.

3.4. Lemma (Katelhov [4]). Let \(X \) be a space and \(F_1, F_2 \subseteq X \), \(i \in N \), a sequence of \(C^* \)-embedded subsets of \(X \) with \(X = \bigcup_{i \in N} F_i \), then \(\dim(X \times Y) \leq \dim X + \dim Y \).

3.5. Lemma. Let \(Z \) be a normal \(P \)-space due to Morita [6], \(X \) a closed subset of \(Z \), \(Y \) a space, and \(\pi: X \times Y \to Y \) the projection. If \(\pi \) is a \(Z \)-map, then \(X \times Y \) is \(C^* \)-embedded in \(Z \times Y \).

Proof. Let \(f \) be an element of \(C(X \times Y, f) \) and \(d \) the pseudometric on \(Y \) defined in the proof of Lemma 3.1. Let \(y^* \) be the metric space \(Y_d \) and \(\varphi: Y \to Y^* \) the natural map. For \(y \in Y \) denote \(f(y) \) by \(y^* \). Let \(f^*: X \times Y^* \to I \) be a transformation defined by:

\[
f^*(x, y^*) = f(x, y).
\]

Then \(f^* \) is continuous. Since \(X \times Y \) is a closed subset of \(Z \times Y^* \), \(f^* \) has an extension \(\varphi^* \in C(Z \times Y^*, I) \). Define

\[
g: Z \times Y \to I \text{ by:}
\]

\[
g(z, y) = \varphi^*(z, y^*) \in Z \times Y.
\]

Then \(g \) is an extension of \(f \) over \(Z \times Y \). That completes the proof.

3.6. Theorem. Let \(X \) be a normal \(P \)-space, \(X_i, i \in N \), a sequence of closed subsets of \(X \) with \(X = \bigcup_{i \in N} X_i \), \(Y \) a space, and \(\pi: X \times Y \to Y \) the projection. If \(\pi|X_i \times Y \) is a \(Z \)-map for each \(i \), then \(\dim(X \times Y) \leq \dim X + \dim Y \).

Proof. Since each \(X_i \times Y \) is \(C^* \)-embedded in \(X \times Y \) by Lemma 3.5, \(\dim(X \times Y) \leq \dim(X_i \times Y) \) by Lemma 3.4. On the other hand \(\dim(X_i \times Y) \leq \dim X_i + \dim Y \) by Theorem 3.2. Thus \(\dim(X \times Y) \leq \dim X_i + \dim Y \leq \dim X + \dim Y \). That completes the proof.

As for the case when the inequality \(\dim(X \times Y) \leq \dim X + \dim Y \) is no longer true, we have now beautiful examples due to Wage [15] and to Przymusinski [14].

4. Inverse limits.

4.1. Theorem. Let \((X_i, \pi_i) \) be an inverse system of a sequence of normal spaces \(X_i \) with \(\pi_i \subseteq n \) with the onto bonding maps \(\pi_i : X_i \to X_{i+1} \) (for \(i \)). Let \(\pi \) be an inverse limit of \(\pi_i \). Let its inverse limit satisfy the condition:

\[
(\ast) \text{ An arbitrary countable cover of } X \text{ consisting of monotonically increasing open sets can be refined by a countable cover consisting of cylindrical closed sets.}
\]

Then \(\dim X \leq n. \) (A set of type \(\pi^{\ast}_i(S) \) is said to be a cylindrical closed set if \(S \) is a closed set of \(X_i \), where \(\pi_i : X_i \to X_{i+1} \) is the projection.)

Proof. By Nagami [8], Theorems 1.2 and 1.3, \(X \) is countably paracompact normal. Let \(\mu = (U_\alpha : \alpha \in A) \) be an arbitrary finite open cover of \(X \). Let \(U_\alpha \) be the maximal open set of \(X_i \) with \(\pi^{\ast}_i(U_\alpha) \subseteq U_\alpha \). Set

\[
U_\alpha = \bigcup (U_\alpha : \alpha \in A),
\]

\[
\varphi = (\pi^{-1}_i(U_\alpha) : \alpha \in A).
\]

Then \(\varphi \) is a cover of \(X \) consisting of monotonically increasing open sets. Let \(S_i \) be a closed set of \(X_i \) with \(S_i \subseteq U_\alpha \) such that \(\{\pi^{\ast}_i(S_i) : i \in N \} \) covers \(X \) and \(\pi^{\ast}_i(S_i) \subseteq U_\alpha^{\ast}_i(X_i) \) for each \(i \). Let \(V_i \) and \(W_i \) be cozero sets of \(X_i \) such that

\[
S_i \subseteq W_i \subseteq U_\alpha \subseteq V_i \subseteq U_\alpha, \quad (\pi^{\ast}_i)^{-1}(V_i) = W_i.
\]

Let \(\varphi = (V_\alpha : \alpha \in A) \) be an open cover of \(V_i \) of order \(\leq \pi_i + 1 \) such that \(V_\alpha \subseteq U_\alpha \), \(\alpha \in A \). Let \(\varphi = (V_\alpha : \alpha \in A) \) be an open cover of \(V_\alpha \) of order \(\leq \pi_n + 1 \) such that

\[
V_\alpha \subseteq (\pi^{\ast}_i)^{-1}(V_i) \cup (U_\alpha - (\pi^{\ast}_i)^{-1}(W_i)), \quad \alpha \in A.
\]
Continuing in this fashion, we get, for each \(j \geq 2 \), an open cover \(\mathcal{V}_j = \{ V_{j, i} : x \in B \} \) of \(X \), of order \(\leq n + 1 \) such that

\[
(\star) \quad V_{j, i} \in (\sigma_{i-1}^{-1}(V_{i-1, 1}) \cup (U_{i-1} \setminus (\sigma_{i-1}^{-1}(W_{i-1, 1}))), \quad x \in B.
\]

Set

\[
\mathcal{B} = \{ D_x = \bigcup_{i=1}^{\infty} \sigma_{i-1}^{-1}(V_{i, x} \cap W_j) : x \in A \}.
\]

Then \(D_x \) is open and \(D_x \subseteq U_x \).

To see that \(\mathcal{B} \) is a cover of \(X \) of order \(\leq n + 1 \) let \(x = (\chi) \) be an arbitrary point of \(X \). Since \(\{ \sigma_{i-1}^{-1}(W_j) : i \in N \} \) covers \(X \), there exists the minimal \(j \) with \(x \in \sigma_{j-1}^{-1}(W_j) \) and hence with \(x_j \in W_j \). Since \(W_j \in \mathcal{V}_j \), \(x_j \in V_{j, j} \) for some \(j \). Thus \(x_j \in V_{j, j} \cap W_j \), \(x \in \sigma_j^{-1}(V_{j, j} \cap W_j) \subseteq D_x \), and hence \(\mathcal{B} \) covers \(X \). From the inequality (\(\star \)) it can easily be seen that, for each \(i \in N \),

\[
D_x \cap (\sigma_{i-1}^{-1}(W_j) - \sigma_{i-1}^{-1}(W_{j-1})) = \sigma_{i-1}^{-1}(V_{i, x} \cap W_j) - \sigma_{i-1}^{-1}(W_{j-1}),(\quad x \in A,
\]

where we set \(W_{-1} = \emptyset \). Thus the order of \(\mathcal{B} \) at \(x \) is the order of \(\mathcal{V}_j \) at \(x_j \) which is at most \(n + 1 \). \(\mathcal{B} \) is now refined by a finite open cover \(\mathcal{B} \) of order at most \(n + 1 \). That proves \(\dim X \leq n \) and the proof is completed.

4.2. Remark. If one of the following conditions is satisfied, then \(X \) satisfies the condition (\(\star \)).

1. Each open set of each \(X \) is \(F_x \).
2. \(X \) is countably paracompact and each \(x_j \) is open.
3. \(X \) is countably paracompact and each \(x_j \) is perfect.

Thus Theorem 4.1 generalizes Nagami [8], Theorem 1.7, and Pasyukov [11] Theorem 3, at the same time, where they considered the case when \(X \) is countably paracompact and each \(x_j \) is open or perfect.

References