

- [7] K. Härtig, Über einen Quantifikator mit zwei Wirkungsbereichen, Colloque sur les Fondements des Mathématiques et leurs Applications, Tihany 1962, Paris 1965, pp. 31-36.
- [8] W. Hanf, Model theoretic methods in the study of elementary logic, in: The theory of Models. Amsterdam 1965, pp. 132-145.
- [9] K. Hauschild, Über zwei Spiele und ihre Anwendungen in der Modelltheorie, Wiss. Z. Humboldt-Univ. Berlin, Math.-Nath. R. 24 (1975), pp. 783-788.
- [10] L. Henkin, Some remarks on infinitely long formulas, in: Infinitistic Methods, London 1961. pp. 167-183.
- [11] C. Karp, Finite quantifier equivalence, in: The Theory of Models. Amsterdam 1965. pp. 407-412.
- [12] A. Krawczyk, and M. Krynicki, Ehrenfeucht games and generalized quantifiers, in: Set Theory and Hierarchy Theory, A Memorial Tribute to Andrzei Mostowski, Bierutowice 1975. Springer Lecture Notes 537 (1976), pp. 145-152.
- [13] M. Krynicki, Henkin quantifier and decidability, to appear in: Proceedings of the Symposium in Helsinki 1975.
- [14] H. Läuchli, and J. Leonard, On the elementary theory of linear order, Fund. Math. 49 (1966), pp. 109-116.
- [15] J. Le Tourneau, Decision problems related to the concept of operation, Ph. D. Thesis, Berkelev 1968.
- [16] P. Lindström, First order logic and generalized quantifiers, Theoria 32 (1966), pp. 186-195.
- On extensions of elementary logic, Theoria 35 (1969), pp. 1-11.
- [18] L. Lipner, Some aspects of generalized quantifiers, Ph. D. Thesis, Berkeley, 1970.
- [19] M. Magidor, and I. Malitz, Compact extensions of L(Q), to appear in: Ann. Math. Logic.
- [20] J. Makowsky, preprint, 1977.
- [21] and S. Shelah. The theorems of Beth and Craig in abstract model theory, preprint 1976.
- [22] and J. Stavi, A-logics and generalized quantifiers, to appear in Ann. Math. Logic.
- [23] and S. Tulipani. Some model theory for monotone quantifiers, preprint 1976.
- [24] N. Rescher, Plurality quantification, J. Symb. Logic 27 (1962), pp. 373-374.
- [25] I. Schiemann, Untersuchungen an Logiken mit Lindström-Ouantoren, Dissertation, Berlin 1977.
- [26] S. Shelah, Generalized quantifiers and compact logic, Trans. Amer. Math. Soc. 204 (1975), pp. 342-364.
- [27] A. Slomson, Generalized quantifiers and well orderings, Arch. Math. Logic 15 (1972), pp. 57-73.
- [28] R. Tenney, Second-order Ehrenfeucht games and the decidability of the second-order theory of an equivalence relation, J. Austral. Math. Soc. 20 (1975), pp. 323-331.
- [29] S. Vinner, A generalization of Ehrenfeucht's game and some applications. Israel J. Math. 12 (1972), pp. 279-298.
- [30] M. Weese, Entscheidbarkeit in speziellen uniformen Structuren bezüglich Sprachen mit Mächtigkeitsquantoren, Z. Math. Logik Grundl, Math. 22 (1976), pp. 215-230,
- [31] M. Ziegler, A language for topological structures which satisfies a Lindström theorem, Bull. Amer. Math. Soc. 82 (1976), pp. 568-570.

Accepté par la Rédaction le 13, 3, 1978

Dimension of non-normal spaces

Keiô Nagami (Matsuvama)

Abstract. Let X be a general topological space and dim X the covering dimension of X due to Katetov defined by means of finite cozero covers. If V is a cozero set of X, then dim $V \leq \dim X$. If $\{V_i\}$ is a countable cozero cover of X, then $\dim X = \sup \dim V_i$. Several applications of the subset and sum theorems thus stated are also given.

0. Introduction. Let X be a topological space. Then $\dim X \leq n$ if each finite cozero cover of X is refined by a finite cozero cover of order $\leq n+1$. This definition of covering dimension for general topological spaces stems from Katetov [4] and coincides with the usual definition of covering dimension for normal spaces. There has been a great amount of studies for the dimension of normal spaces in many aspects. On the contrary we have only a few for non-normal case. Especially, concerning subset and sum theorems we have had nothing with the exception of those due to Katetov [4]. Sections 1 and 2 below constitute the body of the paper where subset and sum theorems for non-normal spaces will respectively be given. In Sections 3 and 4 we give product and inverse limiting theorems for non-normal or normal spaces which will refine known results. In this paper all spaces are non-empty topological spaces and maps are continuous.

1. Subset theorem.

3*

1.1. THEOREM. Let V be a cozero set of a space X. Then $\dim V \leq \dim X$.

Proof. When dim X is infinite the inequality is clear. Consider the case when $\dim X = n$. Let $\mathscr{U} = \{U_{\alpha}: \alpha \in A\}$ be an arbitrary finite cozero cover of V. It is to be noted that each U_{α} is cozero in X since V is cozero in X. Let f be an element of C(X, I) with $V = \{x \in X: f(x) > 0\}$. Set

$$V_i = \{x \in X: f(x) > 1/i\}, \quad F_i = \{x \in X: f(x) \ge 1/i\}$$

 $V_i=\{x\in X\colon f(x)\!>\!1/i\},\quad F_i=\{x\in X\colon f(x)\!\geqslant\!1/i\}\;.$ Then $V=\bigcup\limits_{i=1}^\infty V_i$ and $V_i\!\subset\! F_i\!\subset\! V_{i+1}$ for each i. Set

$$\mathcal{W}_1 = \left\{ W_{1\alpha} = U_\alpha \cup (X - F_2) \colon \alpha \in A \right\}.$$

Then \mathcal{W}_1 is a finite cozero cover of X. Let $\mathcal{U}_1 = \{U_{1\alpha}: \alpha \in A\}$ be a cozero cover of X such that $U_{1\alpha} \subset W_{1\alpha}$ for each $\alpha \in A$ and order $\mathcal{U}_1 \leqslant n+1$. Set

$$\mathcal{W}_2 = \{W_{2\alpha} = (U_{1\alpha} \cap V_2) \cup (U_{\alpha} - F_1) \cup (X - F_3): \alpha \in A\}.$$

Then \mathcal{W}_2 is a finite cozero cover of X. Let $\mathcal{U}_2 = \{U_{2\alpha} \colon \alpha \in A\}$ be a cozero cover of X such that $U_{2\alpha} \subset W_{2\alpha}$ for each $\alpha \in A$ and order $\mathcal{U}_2 \leq n+1$. Continuing in this fashion, we get sequences $\mathcal{W}_i = \{W_{i\alpha} \colon \alpha \in A\}$ and $\mathcal{U}_i = \{U_{i\alpha} \colon \alpha \in A\}$ of cozero covers of X satisfying the following three conditions:

K. Nagami

- (1) $U_{i\alpha} \subset W_{i\alpha}, \quad \alpha \in A.$
- (2) $W_{i\alpha} = (U_{i-1,\alpha} \cap V_i) \cup (U_{\alpha} F_{i-1}) \cup (X F_{i+1}), \quad \alpha \in A.$
- (3) order $\mathcal{U}_i \leq n+1$.

Set

$$\mathscr{D} = \{ D_{\alpha} = \bigcup_{i=1}^{\infty} (U_{i\alpha} \cap V_i) : \alpha \in A \}.$$

Then each D_{α} is cozero in X. Let x be an arbitrary point of V. Pick k with $x \in V_k$. Since \mathscr{U}_k covers X, there exists $\beta \in A$ with $x \in U_{k\beta}$. Then $x \in U_{k\beta} \cap V_k \subset D_{\beta}$. Thus \mathscr{D} covers V.

Let us prove that $U_{i\alpha} \cap V_{i+1} \subset U_{\alpha}$ by induction on i. Since

$$U_{1\alpha} \cap V_2 \subset W_{1\alpha} \cap V_2 = (U_{\alpha} \cup (X - F_2)) \cap V_2 = U_{\alpha} \cap V_2 \subset U_{\alpha}$$

the assertion is true for i = 1. Assume that the assertion is true for $i \le m$. Then by (1) and (2),

$$\begin{array}{l} U_{m+1,\alpha} \cap V_{m+2} \subset W_{m+1,\alpha} \cap V_{m+2} \\ &= \big((U_{m\alpha} \cap V_{m+1}) \cup (U_{\alpha} - F_m) \cup (X - F_{m+2}) \big) \cap V_{m+2} \\ &= \big((U_{m\alpha} \cap V_{m+1}) \cap V_{m+2} \big) \cup \big((U_{\alpha} - F_m) \cap V_{m+2} \big) \\ &\subset (U_{\alpha} \cap V_{m+2}) \cup U_{\alpha} \subset U_{\alpha} \,. \end{array}$$

Thus the induction is completed. Hence

$$D_{\alpha} = \bigcup_{i=1}^{\infty} (U_{i\alpha} \cap V_i) \subset \bigcup_{i=1}^{\infty} (U_{i\alpha} \cap V_{i+1}) \subset U_{\alpha}.$$

To prove order $\mathcal{D} \leq n+1$ let x be an arbitrary point of V and j the minimum with $x \in V_j$. Let j < i. Then

$$U_{i\alpha} \cap V_j \subset W_{i\alpha} \cap V_j$$

$$= ((U_{i-1,\alpha} \cap V_i) \cup (U_{\alpha} - F_{i-1}) \cup (X - F_{i+1})) \cap V_j$$

$$= U_{i-1,\alpha} \cap V_j.$$

Hence $U_{ix} \cap V_j \subset U_{jx} \cap V_j$, which implies that the order of \mathscr{D} at x is the order of \mathscr{U}_i at x. Thus the order of \mathscr{D} at x is at most n+1. That completes the proof.

- 1.2. DEFINITION. Let X be a space and S a subset of X. S is said to be cozero-embedded in X if for each cozero subset U of S there exists a cozero set V of X with $V \cap S = U$.
- 1.3. Theorem. Let X be a space and S a cozero-embedded subset of X. Then $\dim S \leq \dim X$.

Proof. Let $\mathscr{U}=\{U_{\alpha}\colon \alpha\in A\}$ be a finite cozero cover of S. Let $V_{\alpha}, \alpha\in A$, be cozero sets of X with $U_{\alpha}=V_{\alpha}\cap S$. Set $V=\bigcup V_{\alpha}$. Then by Theorem 1.1 there exist cozero sets W_{α} of X such that $W_{\alpha}\subset V_{\alpha}$ for each $\alpha\in A, \ V=\bigcup W_{\alpha}$, and the order of $\{W_{\alpha}\colon \alpha\in A\}$ is at most $\dim X+1$. Then $\mathscr{W}=\{W_{\alpha}\cap S\colon \alpha\in A\}$ is a cozero cover of S such that $W_{\alpha}\cap S\subset U_{\alpha}$ for each $\alpha\in A$ and order $\mathscr{W}\leqslant \dim X+1$. That completes the proof.

This is a generalization of Katetov's subset theorem [4] where S is assumed to be C^* -embedded in X.

1.4. Remark. If S is C^* -embedded in X, then S is clearly cozero-embedded in X. However the converse is not true in general. Let Q be the rationals in the reals R. Then Q is clearly cozero-embedded in R. Choose $f \in C(Q, I)$ such that f(x) = 1 for $x < \sqrt{2}$ and f(x) = 0 for $x > \sqrt{2}$. This f cannot be extended over R.

It can easily be seen that a subset S of a space X is cozero-embedded in X if and only if for each finite cozero cover $\mathscr U$ of S there exists a finite cozero collection $\mathscr V$ of X such that $\mathscr V|S<\mathscr U$ and $S=\mathscr V^{\#}(=\bigcup\{V:V\in\mathscr V\})$.

If each subset of a space X is cozero-embedded in X, then X is hereditarily normal. However the converse of this assertion is not true as follows. Let $X = [0, \omega_1)$ be the space of countable ordinals. Then X is hereditarily normal. Let G be the subset of isolated ordinals in X. Let U be the subset of elements of G whose predecessors are limit ordinals. Then U is a cozero set of G. If V is a cozero set of X with $Y \supset U$, then $Y \supset [\alpha, \omega_1)$ for some $\alpha < \omega_1$ and hence $\alpha + 2 \in V \cap G$. Thus $Y \cap G \neq U$, which proves that G is not cozero-embedded in X.

2. Sum theorem.

- 2.1. DEFINITION. Let U, V be subsets of a space X. U is said to be an *exact* subset of V if for some zero set F of X, $U \subset F \subset V$. A sequence U_i , $i \in N$, of subsets of X is said to be *exactly decreasing* if U_{i+1} is an exact subset of U_i for each i.
- 2.2. Lemma. Let X be a space, $\mathscr{U} = \{U_{\alpha}: \alpha \in A\}$ a finite cozero cover of X, V a cozero set of X with $\dim V \leq n$, W a cozero set of X having a cozero cover $\{W_{\alpha}: \alpha \in A\}$ of order $\leq n+1$ with $W_{\alpha} \subset U_{\alpha}$, $\alpha \in A$, and W' an exact cozero subset of W. Then there exists a cozero cover $\mathscr{V} = \{V_{\alpha}: \alpha \in A\}$ of $V \cup W'$ such that $V_{\alpha} \subset U_{\alpha}$ and $V_{\alpha} \cap W' = W_{\alpha} \cap W'$ for each $\alpha \in A$, and order $\mathscr{V} \leq n+1$.

Proof. Let F be a zero set of X with $W' \subset F \subset W$. Set

$$U'_{\alpha} = ((U_{\alpha} - F) \cup W_{\alpha}) \cap V, \quad \alpha \in A.$$

Then $\{U_{\alpha}': \alpha \in A\}$ is a cozero cover of V. Let $\{V_{\alpha}': \alpha \in A\}$ be a cozero cover of V of order $\leq n+1$ such that $V_{\alpha}' \subset U_{\alpha}'$ for each $\alpha \in A$. Set $V_{\alpha} = V_{\alpha}' \cup (W_{\alpha} \cap W')$. Then $\mathscr{V} = \{V_{\alpha}: \alpha \in A\}$ satisfies the desired condition. That completes the proof.

Let us say in the sequel that a collection $\mathscr{V}=\{V_\alpha\colon \alpha\in A\}$ is special (with respect to $\mathscr{U}=\{U_\alpha\colon \alpha\in A\}$) if $V_\alpha\subset U_\alpha$ for each $\alpha\in A$, order $\mathscr{V}\leqslant n+1$, and each V_α is cozero in X. \mathscr{V} as in Lemma 2.2 is said an extension of $\{W_\alpha\colon \alpha\in A\}|W'$.

2.3. Lemma. Let X be a space, $\mathscr{U} = \{U_{\alpha}: \alpha \in A\}$ a finite cozero cover of X, V_i ,

 $i \in \mathbb{N}$, a sequence of cozero sets of X with $\dim V_i \leq n$ for each i, W a cozero set of X, and $\mathscr{W} = \{W_\alpha \colon \alpha \in A\}$ a special (with respect to \mathscr{U}) cover of W. Let W' be an exact cozero subset of W, and V'_i an exact cozero subset of V_i for each i. Then there exists a special cover $\mathscr{Q} = \{D_\alpha \colon \alpha \in A\}$ of $W' \cup \bigcup_{i=1}^\infty V'_i$) which is an extension of W|W'.

Proof. Let V_{ij} , $j \in N$, be an exactly decreasing sequence of cozero sets of X such that $V_{i1} = V_i$ and $V_i' \subset \bigcap_{j=1}^{\infty} V_{ij}$. Let $W_j, j \in N$, be an exactly decreasing sequence of cozero sets of X such that $W_1 = W$ and $W' \subset \bigcap_{j=1}^{\infty} W_j$. By Lemma 2.2 there exists a special cover $\mathcal{W}_1 = \{W_{1\alpha}: \alpha \in A\}$ of $W_2 \cup V_{11}$ which is an extension of $\mathcal{W}|W_2$. By repeated application of Lemma 2.2 there exists for each i a special cover $\mathcal{W}_i = \{W_{i\alpha}: \alpha \in A\}$ of $W_{i+1} \cup (\bigcup \{V_{jk}: j+k=i+1\})$ which is an extension of the restriction of \mathcal{W}_{i-1} to $W_i \cup (\bigcup \{V_{jk}: j+k=i\})$. Set

$$\mathscr{D} = \{ D_{\alpha} = (W_{1\alpha} \cap W') \cup (\bigcup_{i=1}^{\infty} (W_{i\alpha} \cap V_i')) : \alpha \in A \}.$$

Then \mathcal{D} is the desired. That completes the proof.

Let us say that \mathcal{D} thus constructed is a special cover generated by the system;

$$\{\{\mathcal{W}, (W, W')\}, (V_1, V_1'), (V_2, V_2'), ...\}$$
.

2.4. THEOREM. Let X be a space and V_i , $i \in N$, a sequence of cozero sets of X with $X = \bigcup V_i$ and $\dim V_i \leq n$ for each i. Then $\dim X \leq n$.

Proof. Since each countable cozero cover can be refined by a locally finite countable cozero cover, we assume without loss of generality that $\{V_i\}$ itself is locally finite by virtue of Theorem 1.1. Let $\mathscr{U} = \{U_\alpha : \alpha \in A\}$ be an arbitrary finite cozero cover of X. Let f_i be an element of C(X, I) with $V_i = \{x \in X : f_i(x) > 0\}$. Set

$$\begin{split} V_{ij} &= \big\{x \in X \colon f_i(x) > 1/j\big\}, \quad j \in N\,, \\ D_j &= \bigcup_{i=1}^{\infty} V_{ij}, \quad j \in N\,. \end{split}$$

Let $\mathcal{W}_1 = \{W_{1\alpha} : \alpha \in A\}$ be a special cover (with respect to \mathcal{U}) of V_{13} . First consider the system:

$$\{\{\mathcal{W}_1, (V_{13}, V_{12})\}, (V_{i3}, V_{i2}): i = 2, 3, ...\}.$$

By Lemma 2.3 the system generates a special cover $\mathcal{D}_1=\{D_{1\alpha}\colon \alpha\in A\}$ of D_2 . Next consider the system:

$$\left\{ \left\{ \mathcal{D}_{1},\left(D_{2},\,D_{1}\right)\right\} ,\left(V_{i4},\,V_{i3}\right) \colon\, i=1,\,2,\,\ldots\right\} .$$

Again by Lemma 2.3 the system generates a special cover $\mathscr{D}_2 = \{D_{2\alpha} \colon \alpha \in A\}$ of D_3 which is an extension of $\mathscr{D}_1 | D_1$.

Continuing in this fashion, we get for each i with $i\geqslant 2$ a special cover $\mathscr{D}_i=\{D_{i\alpha}\colon \alpha\in A\}$ of D_{i+1} which is an extension of $\mathscr{D}_{i-1}|D_{i-1}$ for i=2,3,...

$$\mathscr{E} = \left\{ E_{\alpha} = \bigcup_{i=1}^{\infty} (D_{i\alpha} \cap D_i) \colon \alpha \in A \right\}.$$

Then as can easily be seen $\mathscr E$ is a cozero cover of X of order $\leq n+1$ which refines $\mathscr U$. That completes the proof.

It is to be noted that Pol [13], Example 1, constructed a Tychonoff space X with $\dim X > 0$ which is the sum of two zero sets F and H with $\dim F = \dim H = 0$.

2.5. THEOREM. Let X be a space which admits a locally finite cozero cover $\mathscr{U} = \{U_{\alpha}\}$ with $\dim U_{\alpha} \leq n$ for each α . Then $\dim X \leq n$.

Proof. Since $\mathscr U$ is normal, $\mathscr U$ can be refined by a σ -discrete cozero cover $\bigcup \mathscr V_i$, with each $\mathscr V_i$ discrete. Set $\mathscr V_i = \{V_{i\lambda} : \lambda \in \Lambda_i\}$. Then for each $\lambda \in \Lambda_i$, $\dim V_{i\lambda} \leq n$ by Theorem 1.1. Therefore $\dim \mathscr V_i^{\pm} \leq n$ by the discreteness of $\mathscr V_i$. Since each $\mathscr V_i^{\pm}$ is cozero and $X = \bigcup \mathscr V_i^{\pm}$, $\dim X \leq n$ by Theorem 2.4. That completes the proof.

2.6. COROLLARY. Let X be a space with $\dim X \leq n$ and U a D-open set of X, i.e U admits a locally finite (in U) cover $\mathscr V$ each element of which is cozero in X. Then $\dim U \leq n$.

This is a direct consequence of Theorems 1.1 and 2.5. The concept of *D*-open sets stems from Dowker [1] and recently considered by Nishiura [9].

- 3. Product theorem. According to Ishiwata [3], a map $f: X \to Y$ is said to be a Z-map if the image of each zero set of X under f is closed in Y. This notion is a generalization of closed maps. When a space X is a Tychonoff space, βX denotes the Stone-Čech compactification of X.
- 3.1. Lemma. Let X be a Tychonoff space, Y a space, and $\pi\colon X\times Y\to Y$ the projection. If π is a Z-map, then $X\times Y$ is C^* -embedded in $\beta X\times Y$.

Proof. Let f be an element of $C(X \times Y, I)$. Set for $y, y' \in Y$,

$$d(y, y') = \sup\{|f(x, y) - f(x, y')| : x \in X\}.$$

To see d is a pseudo-metric on Y, choose an arbitrary point y_0 of Y and an arbitrary positive number a. Set

$$\begin{split} g(x,y) &= |f(x,y) - f(x,y_0)|, \quad (x,y) \in X \times Y, \\ F &= \left\{ (x,y) \in X \times Y \colon g(x,y) \geqslant a \right\}. \end{split}$$

Then $g \in C(X \times Y, I)$ and hence F is a zero set of $X \times Y$. Since $g(x, y_0) = 0$, $(X \times \{y_0\}) \cap F = \emptyset$ and hence $\{y_0\} \cap \pi(F) = \emptyset$. Since $\pi(F)$ is closed, $Y - \pi(F)$ is an open neighborhood of y_0 . Since $(X \times (Y - \pi(F))) \cap F = \emptyset$, $g(x, y) = |f(x, y) - f(x, y_0)| < a$ for each $x \in X$ and each $y \in Y - \pi(F)$ and hence $d(y, y_0) \le a$ whenever $y \in Y - \pi(F)$. Thus d is a pseudo-metric on Y.

For each $y \in Y$ let h_y : $\beta X \times \{y\} \to I$ be an extension of $f \mid X \times \{y\}$. Define a transformation h: $\beta X \times Y \to I$ by:

$$h|\beta X \times \{y\} = h_y, \quad y \in Y.$$

Then $h|X\times Y=f$. To prove the continuity of h let (p,q) be an arbitrary point of $\beta X\times Y$ and ε an arbitrary positive number. By the continuity of $h|\beta X\times \{q\}$ there exists an open neighborhood V of p in βX such that $|h(p,q)-h(x,q)|<\frac{1}{3}\varepsilon$ for each $x\in V$. Set $W=\{y\in Y\colon d(q,y)<\frac{1}{3}\varepsilon\}$. Then W is an open neighborhood of q. Let (x,y) be an arbitrary point of $V\times W$. By the continuity of $h|\beta X\times \{y\}$ there exists a point $x'\in V\cap X$ such that $|h(x,y)-h(x',y)|<\frac{1}{3}\varepsilon$. Then

$$|h(x, y) - h(p, q)| \le |h(x, y) - h(x', y)| + |h(x', y) - h(x', q)| + |h(x', q) - h(p, q)|$$

$$< \frac{1}{3}\varepsilon + d(y, q) + \frac{1}{3}\varepsilon = \varepsilon.$$

Thus h is continuous and the proof is completed.

3.2. THEOREM. Let X be a Tychonoff space, Y a space, and $\pi \colon X \times Y \to Y$ the projection. If π is a Z-map, $\dim(X \times Y) \leq \dim X + \dim Y$.

Proof. Since $X \times Y$ is C^* -embedded in $\beta X \times Y$ by Lemma 3.1, $\dim(X \times Y) \le \dim(\beta X \times Y)$ by Theorem 1.3. Since $\dim(\beta X \times Y) \le \dim\beta X + \dim Y$ by Morita [7], Theorem 5.5, $\dim(X \times Y) \le \dim\beta X + \dim Y = \dim X + \dim Y$. That completes the proof.

This generalizes Filippov [2], Theorem 1.

3.3. COROLLARY. Let X be a paracompact Hausdorff space, Y a space, and $\pi\colon X\times Y\to Y$ the projection. If each point $x\in X$ has a closed neighborhood U_x such that $\pi|U_x\times Y$ is a Z-map, then $\dim(X\times Y)\leqslant \dim X+\dim Y$.

Proof. Let V_x be the interior of U_x . Let $\{W_\alpha \neq \varnothing \colon \alpha \in A\}$ be a locally finite cozero cover of X refining $\{V_x \colon x \in X\}$. For each W_α choose $V_{x(\alpha)}$ with $W_\alpha \subset V_{x(\alpha)}$. By Theorem 3.2, $\dim(U_{x(\alpha)} \times Y) \leqslant \dim U_{x(\alpha)} + \dim Y$. Since X is normal and $U_{x(\alpha)}$ is closed, $\dim U_{x(\alpha)} \leqslant \dim X$. Since $W_\alpha \times Y$ is cozero in $U_{x(\alpha)} \times Y$, $\dim(W_\alpha \times Y) \leqslant \dim U_{x(\alpha)} + \dim Y$ by Theorem 1.1. Thus $\dim(W_\alpha \times Y) \leqslant \dim X + \dim Y$. Since $\{W_\alpha \times Y \colon \alpha \in A\}$ is a locally finite cozero cover of $X \times Y$,

$$\dim(X \times Y) \leq \sup \{\dim(W_{\alpha} \times Y) : \alpha \in A\}$$

by Theorem 2.5 and hence $\dim(X \times Y) \leq \dim X + \dim Y$. That completes the proof.

- 3.4. LEMMA (Katetov [4]). Let X be a space and F_i , $i \in \mathbb{N}$, a sequence of C^* -embedded subsets of X with $X = \bigcup F_i$. Then $\dim X = \sup \dim F_i$.
- 3.5. LEMMA. Let Z be a normal P-space due to Morita [6], X a closed subset of Z, Y a space, and $\pi\colon X\times Y\to Y$ the projection. If π is a Z-map, then $X\times Y$ is C^* -embedded in $Z\times Y$.

Proof. Let f be an element of $C(X \times Y, I)$ and d the pseudometric on Y defined in the proof of Lemma 3.1. Let Y^* be the metric space Y/d and $\phi: Y \to Y^*$ the natural map. For $y \in Y$ denote f(y) by y^* . Let f^* : $X \times Y^* \to I$ be a transform-

ation defined by: $f^*(x, y^*) = f(x, y)$. Then f^* is continuous. Since $X \times Y^*$ is a closed subset of a normal space $Z \times Y^*$, f^* has an extension $g^* \in C(Z \times Y^*, I)$. Define $g: Z \times Y \to I$ by:

$$g(z, y) = g^*(z, y^*), \quad (z, y) \in Z \times Y.$$

Then g is an extension of f over $Z \times Y$. That completes the proof.

3.6. THEOREM. Let X be a normal P-space, X_i , $i \in N$, a sequence of closed subsets of X with $X = \bigcup X_i$, Y a space, and $\pi \colon X \times Y \to Y$ the projection. If $\pi | X_i \times Y$ is a Z-map for each i, then $\dim(X \times Y) \leq \dim X + \dim Y$.

Proof. Since each $X_i \times Y$ is C^* -embedded in $X \times Y$ by Lemma 3.5, $\dim(X \times Y) = \sup \dim(X_i \times Y)$ by Lemma 3.4. On the other hand $\dim(X_i \times Y) \leqslant \dim X_i + \dim Y$ by Theorem 3.2. Thus $\dim(X \times Y) \leqslant \sup \dim X_i + \dim Y = \dim X + \dim Y$. That completes the proof.

As for the case when the inequality $\dim(X \times Y) \leq \dim X + \dim Y$ is no longer true, we have now beautiful examples due to Wage [15] and to Przymusiński [14].

4. Inverse limits.

- 4.1. THEOREM. Let $\{X_i, \pi_j^i\}$ be an inverse system of a sequence of normal spaces X_i with dim $X_i \leq n$ with the onto bonding maps $\pi_j^i \colon X_i \longrightarrow X_j$ $(i \geqslant j)$. Let its inverse limit X satisfy the condition:
- (*) An arbitrary countable cover of X consisting of monotonically increasing open sets can be refined by a countable cover consisting of cylindrical closed sets.

Then dim $X \le n$. (A set of type $\pi_i^{-1}(S)$ is said to be a cylindrical closed set if S is a closed set of X_i , where $\pi_i \colon X \to X_i$ is the projection.)

Proof. By Nagami [8], Theorems 1.2 and 1.3, X is countably paracompact normal. Let $\mathcal{U} = \{U_{\alpha}: \alpha \in A\}$ be an arbitrary finite open cover of X. Let $U_{i\alpha}$ be the maximal open set of X_i with $\pi_i^{-1}(U_{i\alpha}) \subset U_{\alpha}$. Set

$$U_i = \bigcup \{U_{i\alpha} : \alpha \in A\},$$

$$\mathscr{V} = \{\pi_i^{-1}(U_i) : i \in N\}.$$

Then $\mathscr V$ is a cover of X consisting of monotonically increasing open sets. Let S_i be a closed set of X_i with $S_i \subset U_i$ such that $\{\pi_i^{-1}(S_i): i \in N\}$ covers X and $\pi_i^{-1}(S_i) \subset \pi_{i+1}^{-1}(S_{i+1})$ for each i. Let V_i and W_i be cozero sets of X_i such that

$$\begin{split} S_i \! \subset \! W_i \! \subset \! \overline{W}_i \! \subset \! V_i \! \subset \! \overline{V}_i \! \subset \! U_i \;, \\ (\pi_i^{i+1})^{-1} (\, \overline{V}_i) \! \subset \! W_{i+1} \;. \end{split}$$

Let $\mathscr{V}_1 = \{V_{1\alpha}: \alpha \in A\}$ be an open cover of V_1 of order $\leq n+1$ such that $V_{1\alpha} \subset U_{1\alpha}$, $\alpha \in A$. Let $\mathscr{V}_2 = \{V_{2\alpha}: \alpha \in A\}$ be an open cover of V_2 of order $\leq n+1$ such that

$$V_{2\alpha} \subset (\pi_1^2)^{-1}(V_{1\alpha}) \cup (U_{2\alpha} - (\pi_1^2)^{-1}(\overline{W}_1)), \quad \alpha \in A.$$

Continuing in this fashion, we get, for each $i \ge 2$, an open cover $\mathscr{V}_i = \{V_{i\alpha} : \alpha \in A\}$ of V_i of order $\le n+1$ such that

$$(**) \hspace{1cm} V_{i\alpha} \subset (\pi_{i-1}^i)^{-1} (V_{i-1,\alpha}) \cup \left(U_{i\alpha} - (\pi_{i-1}^i)^{-1} (\,\overline{W}_{i-1}) \right), \quad \alpha \in A \; .$$

Set

$$\mathscr{D} = \{D_{\alpha} = \bigcup_{i=1}^{\infty} \pi_i^{-1}(V_{i\alpha} \cap W_i) : \alpha \in A\}.$$

Then D_{α} is open and $D_{\alpha} \subset U_{\alpha}$.

To see that \mathscr{D} is a cover of X of order $\leq n+1$ let $x=(x_i)$ be an arbitrary point of X. Since $\{\pi_i^{-1}(W_i): i \in N\}$ covers X, there exists the minimal j with $x \in \pi_j^{-1}(W_j)$ and hence with $x_j \in W_j$. Since $W_j \subset V_j$, $x_j \in V_{j\beta}$ for some β . Thus $x_j \in V_{j\beta} \cap W_j$, $x \in \pi_j^{-1}(V_{j\beta} \cap W_j) \subset D_{\beta}$, and hence \mathscr{D} covers X. From the inequality (**) it can easily be seen that, for each $i \in N$,

$$D_{\pi} \cap (\pi_{i}^{-1}(W_{i}) - \pi_{i-1}^{-1}(W_{i-1})) = \pi_{i}^{-1}(V_{i\alpha}) \cap (\pi_{i}^{-1}(W_{i}) - \pi_{i-1}^{-1}(W_{i-1})), \quad \alpha \in A,$$

where we set $W_{-1} = \emptyset$. Thus the order of \mathscr{D} at x is the order of \mathscr{V}_j at x_j which is at most n+1. \mathscr{U} is now refined by a finite open cover \mathscr{D} of order at most n+1. That proves $\dim X \leq n$ and the proof is completed.

- 4.2. Remark. If one of the following conditions is satisfied, then X satisfies the condition (*).
 - (1) Each open set of each X_i is F_{σ} .
 - (2) X is countably paracompact and each π_i is open.
 - (3) X is countably paracompact and each π_i^i is perfect.

Thus Theorem 4.1 generalizes Nagami [8], Theorem 1.7, and Pasynkov [11] Theorem 3, at the same time, where they considered the case when X is countably paracompact and each π_i^l is open or perfect.

References

- C. H. Dowker, Inductive dimension of completely normal spaces, Quart. J. Math. Oxford 4 (2) (1953), pp. 267-281.
- [2] V. V. Filippov, On the dimension of normal spaces, Dokl. Akad. Nauk SSSR 209 (1973), pp. 805-807; Soviet Math. Dokl. 14 (1973), pp. 547-550.
- [3] T. Ishiwata, Z-mappings and C*-embeddings, Proc. Japan Acad. 45 (1969), pp. 889-893.
- [4] M. Katëtov, A theorem on the Lebesgue dimension, Časopis Pest. Mat. Fys. 75 (1950), pp. 79-87.
- [5] K. Morita, On the dimension of product spaces, Amer. J. Math. 75 (1953), pp. 205-223.
- [6] Products of normal spaces with metric spaces, Math. Ann. 154 (1964), pp. 365-382.
- [7] Čech cohomology and covering dimension for topological spaces, Fund. Math. 87 (1975), pp. 31-52.
- [8] K. Nagami, Countable paracompactness of inverse limits and products, Fund. Math. 73 (1972), pp. 261-270.
- [9] T. Nishiura, A subset theorem in dimension theory, Fund. Math. 95 (1977), pp. 105-109.

- [10] B. A. Pasynkov, On the spectral decomposition of topological spaces, Amer. Math. Soc. Transl. 73 (2) (1968), pp. 87-134.
- [11] On the dimension of products of normal spaces, Dokl. Akad. Nauk SSSR 209 (1973), pp. 792-794; Soviet Math. Dokl. 14 (1973), pp. 530-533.
- [12] On the dimension of rectangular products, Dokl. Akad. Nauk SSSR 221 (1975), pp. 291-294; Soviet Math. Dokl. 16 (1975), pp. 344-347.
- [13] E. Pol, Some examples in the dimension theory of Tychonoff spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), pp. 893-897.
- [14] T. C. Przymusiński, On the dimension of product spaces and an example of M. Wage, Inst. Math. Polish Acad. Sci., Preprint 110 (1977).
- [15] M. Wage, The dimension of product spaces, forthcoming.

Accepté par la Rédaction le 20. 3. 1978