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Abstract. Let f: X -~ X be a mapping on a connected ANR. There is a natural projection
p: Iy S* from the mapping torus to the circle which has the property that each point inverse
is a copy of X. The purpose of this note is to show that there is a relationship between the strength
of fas a homotopy equivalence and the strength of p as a fibration. For example, fis a homotopy
equivalence if and only if p is an approximate fibration; and fis a CE mapping if and only if p is
@ Hurewicz fibration.

0. Introduction. If /: X¥— X is a map, then there is a natural projection p: T,—S*,
where T, is the mapping torus of £. The map p has the property that Pz Xx
for all xe X and that p is a locally trivial fibration over the complement of a single
point of S,

Clearly if fis a homeomorphism (topological equivalence), then p is a locally
trivial fibration. The purpose of this note is to show that there is a further relationship
between the strength of f as an equivalence (e.g., homotopy) and the strength of p
as a fibration. We believe this relationship clarifies the differences between some
kinds of fibrations and provides insight into the question of how a fibration can
g0 “bad” at a single point. The following theorems .are our main results. The
terminology is defined in the next section.

"THEOREM A. Let f: X— X be a map on a connected ANR and let p: Tp— 8t
be the natural projection from the mapping torus of f. The following are equivalent;

1) fis a homotopy equivalence, and

2) p is an approximate fibration.

THEoREM B, Let f: X — X be a map on a connected ANR and let p: T,— St
be the natural projection from the mapping torus of f. The following are equivalent:

1) f is a homotopy equivalence and ©(f) € (1—f,) Wh(X),

2) p can be stably approximated by Hurewicz fibrations, and

3) p can be stably approximated by locally trivial fibrations.
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TaEOREM C. Let f: X — X be a map on a connected ANR and let p: T— S*
be a natural projection from the mapping torus. The following are equivalent:

1) f is a CE mapping,

2) p is a Serre fibration, and

3) p is a Hurewicz fibration.

Sections 2, 3, and 4 contain the proofs of these theorems. The last section
contains several examples. Our point of view there is that the above theorems make
it easy to construct certain kinds of fibrations.

The authors would like to thank Steve Ferry, who pointed out several errors.
in an earlier version of this paper and suggested condition 1) of Theorem B.

1. Notation and definitions. Throughout this paper X denotes a connected ANR;
that is, a connected, compact, metric, absolute neighborhood retract; and f: X — X
denotes a map. The mapping torus, T, of fis the quotient space X'x J/~, where ~
is the equivalence relation generated by (x, 1) ~ (f(x), 0). We use the notations
[x, t] for the equivalence class of (x, 1) in T, and n: X'xI— T, for the quotient
map. We let 7= [0, 1], S* = J/o, 43, v: I— S* the quotient map, and [t] = v(z).

_ Define p: Tp— S* by p([x, t]) = v(2). It follows from [B2, Ch. V, Th. 9.1} that T,
is an ANR. Similarly, we denote the mapping cylinder of f by M.
“ A homotopy lifting problem (Z, h, H) for a map g: E— B is a space Z, a map
h: Zx {0} — E, and a homotopy H: ZxI— B such that H|Zx {0} = ¢gh. A map
q: E— B has the homotopy lifting property for a space Z if for every homotopy
lifting problem (Z, %, H) there is 2 homotopy A: Zx1— Esuch that #|Zx {0} =
and ¢ff = H. Also gq: E— B has the approximate homotopy lifting property for
a space Z if for every homotopy lifting problem (Z, #, H) and for every open cover &
of B there is a homotopy H: ZxI— E such that #|Zx {0} = h and ¢H is &-close
to H.

If g: E— B has the homotopy lifting property for all spaces (all polyhedra),
then g is a Hurewicz (Serre) fibration. If q: E— B has the approximate homotopy
lifting property for all spaces, ¢ is an approximate fibration. Next, we say that a map
q: E— Bis a locally trivial fibration with fiber F if for each b € B there is a neigh-
borhood U of & and a homeomorphism h: Ux F-»g~*(U) such that gh ==
where 7 is projection onto the first factor. We say g: E — B can be stably approximated

by locally trivial (Hurewicz) fibrations provided the composition gn: Ex Q — B,

where 7 is projection onto the first factor and Q is the Hilbert cube, can be approxi-
mated by locally trivial (Hurewicz) fibrations. The reader is referred to [CD1],
[CD2], [Du], [S], for properties of approximate, Hurewicz, or Serre fibrations..

We shall use simple homotopy theory for ANR’s as developed by Chapman
in [C2]. A map g: ¥—Z of ANR’s is a CE mapping provided g is surjective and
each point inverse has trivial shape in the sense of Borsuk [B1]. The symbol & is
to be read “is homeomorphic to”.

2. Proof of Theorem A. To show that 1) = 2), note that if fis a homotopy
equivalence, V< S* is any open interval, and ¢ & ¥, then the inclusion p~?(c)—p~ (V).
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is a homotopy equivalence. Then, since every fiber of p is an ANR, it is easy to show
that p is completely movable [CD2], so p is an approximate fibration.

To show 2) = 1), assume p: T,— S* is an approximate fibration. We will
prove that f is a homotopy equivalence.

Let 4 = p~ ([}, 1), B = p~ ([}, 1] U [0, 1]), and J = v([3, 1]). Note that 4
is homeomorphic to the mapping cylinder of f with p~*[3] corresponding to the
domain and p~![l] the range, and that there is a retraction ¥: B— 4. Let
@: JxI-—J be a homotopy such that ¢, = 1;, @(J) = [§], and ¢,[3] = [}] for
all £. Let H: AxI— S* be defined by H, = ¢.p. By the stationary lifting property
of approximate fibrations [CDI, Prop. 1.5], there a homotopy f: A xI— B such
that Hy = 14, YA, (d)cAd—p 1[1], and H,[x,3] = [x,2] for all zel, xe X.
Composing WH with a strong deformation retraction of A—p~*[1] onto p~*[§]
gives a deformation retraction of 4 onto p~*[3], which implies that fis a homotopy
equivalence. ) :

3. Proof of Theorem B. We first show that 2) is equivalent to 3). Clearly 3) = 2)
and we now prove that 2) = 3). Let /1 X — X and p: T;— S* have the meaning
given in Section I, and let n: T,x Q — T, be projection. Assume pr can be
approximated by Hurewicz fibrations. Given s>0, there is a Hurewicz fibration
g: Tpx Q— St such that d(g,pn)<}e. By [Cl] there is a homeomorphism
w: Tyx Q—TyxQxQ so that d(gqo, g)<ie where ¢ is the projection of
T,x O x O onto the first two factors. By [F] the fibers of g are ANR’s, so by [E]
the fibers of gqo are Q-manifolds. Hence gga is locally trivial fibration [CF], and
d(gqe, pr)<e.

Before proving that 1) = 3), we need some notation and a proposition due to
Ferry [Fel]. First when there is more than one mapping we will denote the natural
map p: T;—S* by p;. If k1 Y—Y and I: Y— Y are maps, then T'(k,I) will
denote the quotient space (¥'x[0, $]u ¥Yx[4, 1))/~ where ~ is the equivalence
relation generated by (x, 1) ~ (k(x), %) and (x, 1) ~ (I(x),0). Also p(k,1): T(k, Iy
—» S will denote the natural projection. Finally, if k: ¥— ¥, then

E=kx1: YxQ—YxQ.

Note that if ¥ is an ANR, then Tj is a Q-manifold.

PROPOSITION 3.1 (Ferry). Let k,I: Y—Y be maps on a locally compact
ANR.

a) If k is properly homotopic to I, there is a homeomorphism 0: Tg— T; such that
ppy is homotopic to pym,0, where w: Ti—Ty is the obvious projection.

b) There is a homeomorphism n: Ty—T(k, ) such that pym, is homotopic
10 Py Teents and )

¢) There is a homeomorphism &: T(k, 1) —=T(l, k) such that pa,pmq,y is homo-
topic 10 pg gy i &

Parts a) and b) follow directly from [Fel, 3.2-3.4]. Part ¢) is proved by a 180
rotation. .
1k
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Now to prove that 1) = 3). Suppose that /* X — X is a homotopy equivalence
such that t(f) & (1, —/f4) Wh(X). Then there is a homotopy equivalence ¢: Y— X
with homotopy inverse y: X — Y such that t(f) ='(1*—f*)r((p) = 1(p) —fa ().
Consider Y fp: ¥— Y. Using [C2, §5], we have

tWfp) = cWD V(N +¥afet(@) = bu[—2(@)+ (/) +fet(p)] = 0.

Hence /f¢: ¥ Q — Yx Q is homotopic to a homeomorphism 4 [CI]. Now let
be the following composition of homeomorphisms given by 3.1.
T~ Tyg—T(J5. W) =T W, J§) - Ty5— T, -

Then p, 2 is a locally trivial fibration homotopic to p 7y, It follows from [Hu,
Theorem B] that p,m; can be approximated by locally trivial fibrations.

Finally, to show 3) = 1), suppose that pr: T5— S* can be approximated by
alocally trivial fibration ¢ chosen so that ¢ “"*([{))cz~1p=1 (0, %). Letd: D — TyxQ
be the covering map induced from v: R— S* (here we extend v periodically) by pr,
let r: D — R be a map such that vr = pnd. Let 2 D— D be a covering translation
such that r(tx) = r(x)+1 for x € D. Identify X with r~1(3) and M, with r=((3, 1]).
Now define Z = r™(0), ¥ = d~*¢ " ([4]) ~ r~1[0, 1], K = closure of the compo-
nent of »~*[0, 1]— ¥ which contains Z, and I, = closure of (r~*[0, I]—(Ku M ).
Let Z) = 1(Z), X; = 1(X), Yy = t(¥), and K, = 1(K). Finally, let i: Z— K,
J YKk Y=L . X—>L m X— My, and n: Z,— M be inclusion maps.
Each of these inclusions is 2 homotopy equivalence. For example to see that j: Y— K
is a homotopy equivalence, construct a strong deformation retraction from K to Y
by lifting a contraction of dg(K) to [4].

Since ¢ is a locally trivial fibration with fiber ¥, L U M U K, is homeomorphic
to the product ¥x I with ¥ corresponding to ¥'x {0}, and Yy to ¥x{1}.

Hence 1(L U M, UK,,Y) = 0. Also, KU L is homeomorphic to X x I with Z
«corresponding to X'x {0} and X to X'x {1}. Hence t(K U L, Z) = 0. But we have

LV MU K,LY) = oL, Y)+hi Hw(M,, X) kit lomyg tng (K, Z,) ;

KUL,Z) =k, Zy+ 15 (L, Y),
and

1Ky, Z) = ty2(K, Z) .
Combining these facts, we conclude that
(L, Y)—}-IC,ZII*‘:(MI, X)— kg Mlymy g tyis  ut(L, YY) = 0.
Applying £, I3 k, and rearranging yields
() = (feme matyiz kg U —f) 15 ey e (L, ) .

.But Jamzngtyiy ki 'l = 1, on WhX since sliding down the mapping cylinder
18 the same ‘as performing f. Hence ©(f)e(ly—fy) WhX
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4. Proof of Theorem C. Before proving C, we need some definitions and several
propositions. A map g: E~» B is n-regular if g is open for each be B, ee ¢~ 1(b),
and neighborhood U of e in E there is a neighborhood ¥ of e in U such that every
singular k-spherc (k<n) in ¢7'(c) n ¥, ce g(¥), is null-homotopic in g~ (c) n U
[Ha]. Also ¢: E— B is a UV™-mapping if g is surjective and for each b e B and
peighborhood U of ¢~*(b) in E there is a neighborhood ¥ of ¢~1(b) in U such that
every singular k-sphere (k<n) in ¥V is null-homotopic in U [L]. We say that g is
strongly regular provided that for each be B and £>0 there is §>0 such that if
ce Band d(b, ¢)<d then there aremaps g,,: 4~ (c)— ¢~ *(b) and g,.: ¢~ 1 () — g~ (c)
where g.,g5. and ¢,.9,., are e-homotopic to the identity.

PROPOSITION 4.1. f: X — X is surjective if and only if p: T~ S* is open.

Proof. Suppose f is not surjective. Then if ¥ is any open set in X—f(X),
n(¥'x[0, %)) is open in T, and pn(¥'x [0, $)) = ([0, 1)) is not open in S*. If fis
surjective, T, has a basis consisting of sets of the form # (V' x (r—¢, t+¢)) for 1 € (0, 1)
and ¥ open in X, together with sets of the form #(f~*(®)x (1—¢, 1] U ¥'x[0, 8)).
Clearly the images of these basic elements are open under p.

PROPOSITION 4.2. Jf p: T,— S* is open and satisfies the homotopy lifting
property for cells of dimension <n, then f: X— X is a UV"~*-mapping.

Proof. Let xe X be given and let U be a neighborhood of x in X. We may
assume that U = f~'(U,) for some neighborhood U, of f(x) in X. Let ¥, be
a neighborhood of f(x) in U, such that ¥, is contractible in Uy, let ¥ = (V).
Given k<n—1 and a: S*—V there is a map B: B**1— U, such that B|S* = fu.
Define g: B**!—T, by

() = (G, 22051 if  13[y>4,
I =1 if 130]>0
and G: B**1xJ— S! by
CfR=2Apha-n] i 1Dt
G(y”)_{rl—f] it 1z|y>0.

By hypothesis, there is a G: B**'xT—T, such that G, = g, p6 = G, and G is
stationary on S* Choose s>0 small enough that G(B**!) is contained in
n(U% [0, 1—s]). There is retraction r of n(Ux[0, 1—s]) onto n(Ux {0}), so that
rGo(B**1) is an extension of « into U, and the proof is complete.

ProPoSITION 4.3. If f: X— X is a CE-mapping, then p: Tp— S s strongly
regular.

Proof. We need only check strong regularity at b = [1]. Let £>0 be given.
The check is trivial for ¢ = [t] where 0<{¢t<e. On the other hand, for 1—e<z<1
let f,: p~1[t]— p~*[1] be defined by f{([x, t]) = [x, 1]. Xt is not hard, using the fact
that each f; is CE, to find a 6>0 and a cover « of p~1[1] such that o and the cover
f7 (o) have mesh less than ¢ for 1—d<t<1. Now for b = [1] and ¢ = [f] with
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1—8<t<], the maps g,, and g,. are guaranteed by the fact that each f, is a fine
homotopy equivalence [Hav].

Now for the proof of Theorem C. To show 1) = 3), note that p is strongly
regular by 4.3. Now apply Theorem 1 of [Fe2]. Clearly 3) = 2). To show 2) = 3),
use 4.2 to see that fis a UV” map for all n. Therefore, f'is a homotopy equivalence
over each open set by Theorem 2 of [K]-and it follows that each f~*(x) has property
uve,

5. Examples.

Exampre 1. Let f: [—1,1]—[—1,1] be the folding map f(x) = 2[x|—1.
By 4.1, p: T,— S* is an open map, which is easily seen to be a Dold fibration [Do].
By Theorem C, p is not a Hurewicz fibration. This gives a negative answer to a question
of Addis [A].

ExampLE 2. Let M be a PL manifold, X and Y be ANR’s, and f: XxBdM
— YxBdM. Let E; = (Xx M) U (YxBd M)/~ where ~ is the equivalence rela-
tion generated by (x, m) ~ f(x, m), and define p: E,— M by p[x, m] = m. Then
p is an approximate fibration if and only if f is a homotopy equivalence and p is
a Hurewicz fibration if and only if f is CE. Both of these follow from the arguments
already given and the observation that the image of a collar on BdM in E; is the
mapping cylinder of f.

ExampLE 3. Letf: X — X beasurjection whichis not a homotopy equivalence.
In particular one could take f: S*'— S* to be the double cover. Then p: T,— S*
is an open mapping each of whose point inverses are homeomorphic to X, but p is
not an approximate fibration.
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