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Uniform quotients of metric spaces
by

Donald Marxen (Dubuque, IA.)

Abstract. Uniform quotients . of (pseudo-) metric spaces are investigated and several con-
ditions implying the pseudometrizability of such quotients are given. Most important, however,
it is shown that pseudometrizability is not preserved under uniform quotient maps, thus answering
in the negative a question of Himmelberg.

1. Introduction. The question of when a given class of maps preserves metriz-
ability of a topological space has long been of interest in general topology. Recently,
questions relating to the preservation of (pseudo-) metrizability have arisen in con-
nection with various types of maps between proximity and uniform spaces (see, for
example, [1], [4] and [8]). In [4] Himmelberg investigates uniform quotient maps and
provides necessary and sufficient conditions for such maps to preserve pseudo-
metrizability. Left open in [4], however, is the question of whether uniform guotient
maps, in general, preserve this property.

In Section 3 of this paper we construct a metric space having a non-
metrizable (T,) uniform quotient and, in doing so, answer Himmelberg’s question
in the negative. In section 4 we provide several conditions sufficient for a uniform
quotient map to preserve pseudometrizability.

2. Preliminaries. Let o be a pseudometric on a set X. For a positive real ¢ set
B(d, &) = {(x, y): d(x,y)<e}. Let %(d) denote the uniformity determined 4,
i.e. the uniformity with base {B(d,¢): ¢>0}. :

For a uniformity % on X, (%) will denote the gage of % [5, p. 189].

Let [X, %] be a uniform space, ¥ a set and g: X — Y a surjection. The quotient
uniformity, determined by [X, %] and g, is defined to be the largest uniformity ¥~
on Y such that g: [X, %}~ [Y, ¥ is uniformly continuous. This uniformity will
be indicated by %, and, when Y is endowed with %,, ¢ will be called a uniform
quotient map.

The formulation in [6] of the quotient uniformity is essential to the definitions
of the spaces in § 3. This formulation, with minor modifications, is outlined below.
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Let @ be the set of diadic rationals in [0, 1] and let » denote the family of all
maps a: £ — [0, 1] satisfying:

(ri) o(r) = 0 if and only if » = 0,

(til) g<r implies a(g)<a(r), and

(riil) r+s<1 implies a(r)+o(s)<o(r+s).

Given a pseudometric d on X, ne N and o e &, let d[n, o] be the set of all
(u, v) € Y x Y such that for some m e N there exist 7y, ..., r, e Zand ay, ..., dp1 6 X
satisfying the following conditions:

QD Z¥r=<2t7

(Q2) o(ay) = u, 0(ay+1) = v, and

@3 d([ai], la D <alry), i=1,..,m, where [x] = ¢7'(0(¥)), xe X.

Ifry, . rme? and ay, ..., a,.q € X satisfy (Q1)~(Q3), we say that (ry, ..., 1,,)
and ([a,], ..., [a,41]) are d[n, o]-related to (u, v).

2.1. TueoreM [7, 2.10]. For each base & for % () the collection

B:(&) = {d[n,a]: de&,neN,ne st}
is a base for U,.
For the purpose of simplifying the arguments of § 3, an alternate base for U,
will now be associated with each base for #(%) (2.3).
22. Let a: 9 — [0, 1] be monotone increasing with «(r) = 0 if and only if r = 0.
Then B: r—ra(r), red, is a member of .
2.3, THEOREM. Let o' = {ae of: a(r)<r? reB}. For each base & for (),
the collection ,(6) = {d[1,a]: de &, oc o'} is a base for U,
Proof. Let dn, o] € %,(#) and define f: 9 — [0, 1] by r—r oc(r21“"). According
1022, fe o', hence d[1, f] € #,(8). Furthermore, if vy, ..., 7,,) and (7279 R 1 2 )
are d[1, f]-related to (u,v) then (ry2'7", ..., 7,2'"") and (Lay]y vons [Apar]) are
din, o]-related to (u,v).
‘We conclude this section with several properties of the collection ' defined
in 2.3.
2.4. Let {B,} be a sequence in o' such that B,,,("Y<B(r) for all r e D and all
ne N. Then there exists ye o' such that
@ 2()<2718,27 <27 for all <277, and
() y(r)<2= for r # 0.
Proof. The right-hand inequality in (i) holds since 8, & &#". Set I =[2"41]
and, for nz2, set I, = [27", 27"*Y), Define f: 2 — [0, 1] as follows

0 if
o = {Z"Qﬁna” )i

r=20,
rel,.
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Since f8 is a decreasing function, it follows from 2.2 that y: r—s r? B(r) is in o',
Furthermore, if r<27",

Y<YRT) = 272 p27n)
<271,

Thus 7y satisfies (i). Finally, r<2™! implies y(-)<2!r and rel, implies
y(NSPA) = 27242727 <27

25 Ifa, e then anfest'.

3. Main example. Provided in this section is an example of a metric space which
has a non-pseudometrizable uniform quotient. Although the existence of such
a space is not unexpected, the difficulties associated with its construction might be.
Some indication of the inherent nontrivial nature of such an example is given in
Section 4; in particular, see 4.8 and 4.9.

For each fe o/’ and ne N let X(8, n) denote the unit interval [0, 1] and Tet
P(B,n) be a fixed set of points a; = 0<a,<...<azn:1 = 1 satisfying

(ci) |appr—a = 271 B(27") for each odd integer i, 1<i<2"*, and

(cii) lag4q—a;l>2"" for each even integer i, 1<ig2"*?,

The existence of such a set P(B, n) follows from the assumption that S(r)<r?
for all re®. Let By = {0}, Bynyy = {1} and for k = 2,3, ..., 2", let

By = [asg—2, ay-1] -

Define the equivalence relation R(f, n) on X(8, n) according to (x, y) € R(B, n)
if and only if x = y or {x, y} € B,, 1 €k<2"+1, and let Y(B, ) denote the resulting
quotient set.

Now let X denote the disjoint union of the collection {X(B,n): Best',ne N}
and let d be the metric on X defined by d(x, y) = [x—y| if x and y are in the same
X(B,n), d(x, y) = 1 otherwise. Finally, let ¥ denote the disjoint union of the quotient
sets Y(B,n) and let ¢ be the natural map of X onto Y.

It will soon be proved that the (Hausdorff) uniform space [Y, % (d)g] is not metr-
izable. First, however, we wish to note several facts concerning each of the sets
X(B, n).

3.1, For the Subvatv By, oy Boniy of X(B, 1) defined above, the following hold

(a) !/(Bk, Biyy) = 271 pR7H<27HY,

(b) Z d(By, By )27,

© fw k=2,..,2" dam{B}>2"", and

(d) (Z(Blu BIL-I J)> (/_ 1)2_”

3.2, For each fe o/’ and ne N, (Q(O) o) edll, ﬂ]
endpoints of X (B, n).

where 0 and 1 are the
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Proof. If 1, =27" for i =1,..,2" then (ry,..,rm) and (By, .., Byy()
are d[l1, B]-related to (0(0), o(1)) (3.1 (a)).

3.3, For 0,1e X(B,n) and yest’, (0(0), o) €d[l, v if and only if there

exist 1y, ..., 1€ 9 and a subset {i; = 1<iy<..<ijpq =2"+1} of {1,2,..,2"+1}
such that (ry, ...,r;) and (By, ..., B;,, ) are d[1,vy]-related to ((0), o(1)).
Proof. Necessity. Let (g, .., g and (Cy, ..., Cpuq) be d(1, y]-related to

(2(0), (1)), where each C; is of the form [¢,]. A procedure will now be given by
which (gy, ..., ¢) and (Cy, ..., Cy1) can be “reduced” to sets having the required
properties.

) If C; = C;, j>i, then gy, ..., ;-1 and Cyyq, ..., C; can be dropped from
@15 rq) and (Cy, ..., Cpyy), respectively, and the resulting sets will be
d[1, y]-related to ((0), o(1)).

(2) If C; is a singleton for some je {2, 3, ..., k}, then
d(C-1, Cj41)<d(Cyy, CY+d(Cy, Cray)
<v(g-1+9)

Thus if g;-, is replaced by ¢;_, +¢; and g; and C; are deleted from (g4, ..., g,) and
(Cys s Cryq), respectively, the newly defined sets will again be d[1, y]-related to
(e(0), o(1)).

Using the procedures described in (1) and (2) above, we can select a subset
@5 5 q1) of (g4 ..., q) and a pairwise disjoint subcollection (Ciys v C) of

(Cys s Ciyy) where the newly chosen sets are d[1, y]-related to (20, o(1)) and
Ci,€{By, ., Banyq} for j=1, .., 5 ’

34, Let y,Be st satisfy y(r)<2™'r for all r # 0 and y(r)<2"*BQ2"") for
r<27" Then (g(0), (1)) ¢ d[1, ] where O and 1 are the endpoints of X(B,n).
Proof. Assuming the contrary, select (y, ..., r;) and (B, ..., By,,,) as in 3.3,

For j=1,..,s set ky = (4, ~i)~1 and let m = Y ko Let K = {ky, ..., k},
Ky ={k;eK: k; 0} and K, = K\K;. j=1

A. m<2"1—1: By 3.1(d),

k;-27"<d(By,, B, )<y(rp<27'r;,
hence r;>k;-27"** for each j. Therefore,
1> i > 2 kp 2wt gt
=1 i=1
B. 2"-2m<|K,[<2™: Let H = {1, ..., 2"} and for each k;>1 let
Hy, = {k: j<k<ij+k} .

Now. observe that |H,l<2k; and K, = H\|) Hy,.
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C.Y {r ke K} <1—m27""*: Suppose k; € K;. Then d(By,, By, y=kp 2"
(3.1(d)) and, since y(r)<27', it follows that r;»k;-27"*L, Thus

S ke K}z Y k27" ke Ky} = ome 270

D. For some j, 1</j<s, % =0 and r;<27*: According to B above,
|Ko| 22" —2m. If r;>27" for all j such that k; e K, then

o {ryr ke Ky} >27 2" —2m) = L—m- 27"

contradicting C.
Selecting je {1, ..., 5} such that &, = 0 and r;<2™", we note that
d(Byy, By = 27127 (3.1(a)
> .-))(2"'")
=z 7( j)‘ )
whence (74, .-, 79 and (B, ., Bi,,,) are not d[1, y]-related to (0(0), g(1)). This
completes the proof of 3.4. -
3.5. The uniform quotient [Y; U (d),]} is not pseudometrizable.
Proof. Let & = {d} and let & = {d[l, B,]: n & N} be a countable subcollec-

tion of By(&) (2.3) where B4, <, for all n. If y e o7" satisfies (i) and (ii) of 2.4 then,
by 3.2 and 3.4, d[l,y] is not & member of the filter generated by &.

4. Preservation of psendometrizability. In §2 the quotient uniformity was
described in terms of a fundamental system of entourages. For the purpose of
investigating the pseudometrizability of this uniformity, a formulation in terms of
pseudometrics on the quotient set will prove most useful.

Throughout this section, [X, %] will represent an arbitrary uniform space, R an
equivalence relation on X and ¢ the natural map of X onto X/R.

Tor each de @ (%) define a pseudometric dy on X/R by setting

dR(Q(“): Q(b)) = i“f{lzl d([a), lae4]): @ = ayg, ., @yeq = b},

a,be X (recall that [x] = ¢"0(x)), and let By = {dp: de 4 (W)}.

4.1, Toeorem. The collection By is a base for the gage of U,.

Proof. Since g: [X, %]~ [X]R, dg] is uniformly continuous for each d e G(%),
%y is a subcollection of % (#%,). Now let ¢ be any member of ¢(%,) and select
de 9 @) such that ¢: [X, d]— [X/R, ¢] is uniformly continuous. Defining. the
pseudometric p on X according to

pGx, ) = dGx, Y)+e(e®), o),

it can casily be shown that p and 4 are uniformly equivalent, hence p e @(02{) and
pr € @y, Furthermore, pp(0(@), e(h))=e(a (), o)) for all a, be X; for if & is any
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positive real,
prle@@, o(B))+e> -‘=21 p(lai], [ﬂz+1])

"

> 21 e(e(@), e(a41)

>e(e(@), 0(8)
for some a; = a, a,, ..., @y, = b in X.
As a corollary to the above we have the equivalence of (i) and (iv) of 4.2. The
equivalence of (i), (i) and (iii) is proved in [4, Thm. 7].

4.2. TueoREM. For a Dpseudometrizable uniformity U on X the Jollowing are
equivalent :

@) %, is pseudometrizable.

(i) There exist a pseudometric p on X and a collection Q of pseudometrics on X/R
such that U = % (p), Q generates %, and g is distance decreasing relative to p and e for
all ee Q.

(i) There exist a pseudometric p on X and a collection Q of pseudometrics

on X[R such that U = % (p), Q generates Uy, and for each e € Q and £>0 there exists
>0 such that

;1 P([ai]s [f’i+1])<‘S Implies 'Z:l C‘(Q("I)a Q(ﬂz-m,))<a

Sfor all a, ..., ‘,,H in X.

(V) There exists a pseudometric p on X such that U = U(p) and U, = U(py).

4.3. Remark. Using (iii’) below, the equivalence of (i) and (iii) is easily establi-
shed without constructing the space [Z, %] in [4]. Observe that (i) — (i) —(v).

(iii") There exists a pseudometric p on X and a collection Q of pseudometrics
on X/R such that % = % (p), Q generates %, and for each ee Q and e>0 there
exists >0 such that B(py, §)<Ble, ¢).

Suppose now that both % and %, are pseudometrizable, in which case
%, = %(py) for some p that generates % (4.2). 1t is natural to ask if Uy = U(pR)
for each p that generates 4. The answer to this (no) is provided in 4.5. Here we make
use of a pseudometrizability condition given in [3].

A function f of a uniform space [X, %] onto a set Y is said to preserve the uni-
formity if the image filter {(FxHIUY: Ve U} is a uniformity on Y. Clearly, if
a surjection preserves %, the image filter coincides with the quotient uniformity and
each base for % is carried to a base for the quotient, The next result now follows from
Theorem 1 of [3].

4.4. THEOREM. Let % be q pseudometrizable uniformity on X, Then U, is pseudo-
metrizable if either of the Jollowing equivalent conditions holds:

(@) e: X— X/R preserves 9.
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(b) For each pseudometric d on X satisfying U = U(d) and each &>0, there
exists §>0 such that B(d, 8)o Ro B(d,8)<R < B(d, &)« R.

4.5, ExamrLeE. For ne N let X, = {0} U [1/(n+1)%, 1/n?]. Let X denote the
disjoint union of {X,: ne N} and define metrics d and ¢ on X according to

lx—y|, x,vekX,,
1
=d(y, % =43 1
d(x,y) = d(y, x) L xex, yex.,
n+j
J=1
and
]x”z”y”zl i X, V€ ‘Xn 3
e(x, ) =
d(xvy): xeXn, yEXH+i'

Observe that d and e are uniformly equivalent metrics on X, i.e. % (d) = %(e).
Let O, denote the point 0 in X,. Set A; = X,\{0;} and for n>1 set
4, = {0,_;} v X,\{0,}. Now let R be the equivalence relation defined by tl}e
decomposition {4,: ne N} and let ¢ denote the natural map of X onto XJR. It will
be shown that g preserves % (d), hence that %, is pseudometrizable, and that dy does
not generate %,. :
Given &€ (0, 1) select m e N such that

1 1 1
— <-g
m m+1 3
and set
1
T (mED)?

Now suppose (@, b) € B(d, 6) o R « B(d, 6). Then for some (x, y) € R, d(a, x)<?
and d(y, b)<d. If (a, x) € R then

(a,bye RoB(d,5)sReB(d, &) R.
On the other hand, if (a, x)¢ R and x, y € 4,, then

e = ((dy, XNA) <8 =
(n-+-1)
hence n>m, 1t follows that

d(x, y)<diam{4,}<}e.

Since §<ts, d(a, by<d(a, x)+d(x, »)+d(y, b)<e, i.e. (a, b)e B(d, ). From 4.4
we conclude that o preserves % (d). :
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Finally, it will be proved that dg and ey are not uniformly equivalent. It is not
difficult to show that for n, g€ N,

g1
1
dz(0(0,), 0(0,+p) = Z ni?
=7
qt+1

1
ex(2(0), 2(0,.) = Z L

la2

and

Thus, given 0<e<1 and §>0 there exist n, g€ N such that
(Q (On) H Q(Olﬂ-q)) € B(dRs 5)\B(8R! C) .

For the remainder of this section we assume that % is generated by a pseudo-
metric d. Provided now are several conditions sufficient for dy to generated U,

4.6. THEOREM. The uniformity U o I8 generated by dy if the following property (%) is
satisfied:

() There exists §>0 and je N such that Jor every <8,
. .
dr(e(@), Q(b))<5 implies iZl d([ai]a [ﬂi+1])<'3

Jor some a =ag, .., a.,, =b where k<j.
Proof. It must be shown that for each a & o and n € N there exists >0 such
that dr(e(a), o(b))<e implies (0@, e®) e din, a]. Select me N such that 2" =j
and (2" """ <d. Set £ = ¢(21"""™) and let (e(@), 0 (B)) & B(dy, ¢). According
to (%), Z& d([a;), [a,41])<e for some choice of g = gy ey Grg = b, k<. Setling
T TN T see that d([aj], [a,4,])<a(r) and
k K
Z ry = Z 2—m(21-n)<21-u'
=1 =1

It follows that (¢(a), 0(8)) & d[n, ).

4.1. For distinct ¢(a) and o(8) in AR, dp(e(@), o)) <e if and only if there
XISt Gy = Gy Gy, ey Gpyy = b in X such that

(D) [a,] % [a] for i % j,
(si) [[a]) 22 for 1<i<m+1, and
(siii) ;1 d(la;], [a;. J<e.

Proof. Use the procedures (1) and (2) in the proof 3.3.

Recall that a family {T2: 2e 4} of subsets of [X, d] is said to be d-djscrete if
for some §>0, d(T),, T;,)>6 whenever Ay # Ay [2, 15.15%
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4.8. Tueorem. If & = {[d}: |[a]l2} is d-discrete then dy generates %€,.

Proof. Select 0<d<1 such that the d-distance between distinct members
of 7 is at least 8. If e<d and ay, ..., d,,41 satisfy (si)~(siii) of 4.7, then m<2. We
conclude that (x) (4.6) holds for j = 2.

4.9. TaeoreM. If I = {[a]: |[al|=2} is finite then dy generates 4,.

Proof. If ay, ..., @y satisly (si) and (sif) of 4.7, then m <|Z7|+1 hence (x) holds
for j = |7|+1.
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