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Pinning for pairs of countable ordinals

by

Jean A. Larson (Gainesville, Fla.)

Abstract. The set of all pairs (¢, ) of countable ordinals of which & can be pinned to ¢ is
determined, where a can be pinned to § means there is a function from « into & such that the image
of any subset of a of order type « has order type 8. This relation was introduced by E. Specker to
aid in the study of partition relations.

§ 1. Introduction. Let 4 and D be well-ordered sets.A function fi A— Bis
called a pinning map in case, for every subset X< .4 which is order-isomorphic to 4,
its image f"'X is order-isomorphic to B. If a and f are ordinals, we say « can be
pinned to B, in symbols a ~ f, if there is a pinning map from « into 8. Clearly, if 4
and B have order-type « and f§ respectively, then o — B if and only if there is a pinning
map from 4 into B.

E. Specker introduced this notion in [8], where he studies partition relations of
the form a — («, n)* where « is an ordinal and n a cardinal. (See [2] for a definition
of this partition relation.) To rule out trivial cases, we may assume that o> 1 and n>3.
Positive partition relations of this sort have been proved for only three infinite count-
able ordinals. Ramsey’s Theorem [6] says that @ — (@, w)?. Specker [8] showed
that w* — (w?, n)* for every n<w. Chang [1] showed that &®— (0, 3)*> and
E. C. Milner (unpublished) generalized Chang’s result by showing that o® — (w®, n)>
for every n<w. (See [4] for a proof of this result.)

Specker [8] observed that if « — § and o — («, %)%, then § — (B, n)*. He proved
that w® — (@® 3)* and that o™ — @® for 3<m<w, thus proving that w™ — (w™, 3)?
for 3<m<w. F. Galvin and the author [3] characterized the set of countable
ordinals o which can be pinned to w?® as those of the form o = w® where 3<a<w,
and a is additively decomposable. So far all the countably infinite additively indecom-
posable ordinals known to satisfy « — (a, 3)? also satisfy o — w?.

B. Rotman [7] has also worked on pinning countable ordinals, showing that if
o< f<w,, then o +> B. The question is still open for uncountable ordinals, namely
are there o and f with o< and «— B? The notation « — f is due to Rotman.

The following lemma, which is easy to prove, reduces the problem of charac-
terizing pinning to the problem of characterizing it for additively indecompos-
able (AI) ordinals. (An ordinal o is Al if whenever o = f+y, then a<f of a<y.
In fact, a<y if y # 0. Even more is true of Al ordinals. See [5].)
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LemMma 1. Let o = ag+a;+...+da, - and § = dy+dy+...+d,_, be the unique
decompositions of o and 8 into Al factors with ayza;>..24d,-;>1 and
dy>d,>...>d,_=1. Theno — ¢ if and only if there is a one-to-one function j: n—m
so that for all i<n, ajz— d;. .

The next lemma shows every Al ordinal can be expressed as a product of multi-
plicatively indecomposable (MI) ordinals. (An ordinal « is MI if whenever o = -y,
then a<f or a<y. In fact, a<y if y # 1.)

LemMA 2. If a>1 is AL then o can be expressed uniquely o = o0ty ... "0, as
the product of MI factors where ag=oy 2. 20,>1.

Proof. It is well-known that the AI ordinals are those of the form o = .
Now a = ay+a; +...+a, can be uniquely expressed as the sum of Al factors where
agza;>...za,=1. For i<m, let o; = 0" Then o = 0" = ay-oy ... "o, and
Oy Z... =, 2w>1. Suppose o« = fo-f- ... B, where B, f, ..., B, are MI
and Bo>fy>...26,. Let b; be such that B, = ™. Since fo=f,=..28,>0 it
follows that by =5, >...2b,21. Since By, ..., B, are ML, it follows that by, by, ..., b,
are Al. So a = by+...+b, = ay+... +a,. Since a = a,+...+a,, is unique, it follows
that o = oty 0oy * ... -0, s uUnique.

The above lemma allows us to make the next definitions.

DEerNITION. Assume o, f are Al If o>1, then express it uniquely
O = 00y - ... +0t, a8 the product of MI factors where apzoy ... 2q,>1. If B>1,
express it similarly as f = By By ... - B,. Then « does not mix with p if and only if
either o= 1 or f =1 or o, f,.

DermvimioN. For MI a<ay, let P(x) = {1} U {0': o = o™ where s, ¢ are Al
and s does not mix with t}. Let O(1) = {1}, Q(w) = {1, w}, and for MI o with
w<a<og, let Q@) = {0*} U P().

Now we can state the main theorem.

THEOREM 4(2). If a<w,; is MI, then «— & if and only if § € Q(a).

(b) If 1<a<owy is AL, & ='ay*ay - ... *a,, is expressed uniquely as the product
of MI factors where ay>a, 2 ...2a,_ 4, thenow— § if and only if 6 = dy-dy+ ... *d,_4
is the product of ordinals where dy e Q(ay) and for all i with 0<i<m, d,e P(a).

For convenience extend the definition of Q(x) to Al « so that the above theorem
becomes o — § if and only if § & Q(x). The proof of this theorem consists of
Theorems 9 and 17 below. ‘

One consequence of the theorem is that the set of ordinals to which a given
ordinal can be pinned is finite. Every Al ordinal «>®? can be pinned to 1, w, w?
and o. The collection of AX ordinals o> a?* which can be pinned to no other ordinals
is the collection of such ordinals which are exponentially indecomposable (EI), that
is, ordinals which cannot be expressed non-trivially as « = ¢®. These ordinals are
of the form " where @ is ML Thus the theorem shows that for EI ordinals o3> 02,
pinning sheds no light on the question of whether or not the partition relation
o — (o, 3)* holds.
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In Section 2, we show the desired pinning maps. exist. In Section 3, we show that
the relation holds only where stated,

Our set theoretic notation is standard. We define an ordinal to be the set of its
predecessors.

If 4, B are subsets of an ordered set X, we write A<B if every element of 4
precedes every element of B in the ordering of X.

We write tp X for the order-isomorphism type of X. Since we shall only be
considering order types of well-ordered sets, we shall write tp X = o, rather than
tp X = tpa, where « is an ordinal.

We write f}A4 for f restricted to 4, f"'A for the image of the set 4 under the
function f. We write ) a, for the sum of a sequence of ordinals, and lima, for the
limit. Note that for an increasing sequence of countable Al ordinals, these two
notions coincide.

If o is & successor ordinal, . = f+1, then @ = 1 = B, while if « is a limit ordinal
o= 1=a.

Notice that if /1 X — Y is any function between sets X and ¥ with tpX =«
and tp ¥ = §, then, since the ordinals are well-founded, there is a set ZS X of
type o so that f}Z is a pinning map onto its image. Of course, all one can say
immediately about tp f”Z is that tp f/Z<é.

Since all the ordinals under consideration in this paper are countable, we will
not always explicitly state that they-are countable,

I wish to thank J. Baumgartner and F. Galvin for their suggestions on how to
write this paper.

§ 2. The pinning maps. The problem of proving that the required maps exist
falls into two parts, namely proving that the required maps exist for MI ordinals,
and proving that such maps can be put together to define functions for products
of MI ordinals. For the latter we introduce the notion of strong pinning.

DerpmviTioN. For Al o, we say a can be strongly pinned to § and write o« = &
if there is a function /% a — d so that whenever (X,,: n<w) is a sequence of subsets
of o with lim tp X, = «, then also lim tp /"X, = 6. We call such a function a strong
pinning map.

LeMMA 5. Assume B, y>1 are Al and B does not mix with y. Express
B = fo-fy .. Bu-y uniquely as the product of MI ordinals with Bo=B1>...2 B, -

(@) If B—n, then B-y=n.

(b) If B—n and B,—, =y, then there is a function h: B+y—n so that for every
XS pey, if tpX>f, then tph’X = n.

Proof. Let n: 8-y — Bxy be an isomorphism where fxy is ordered anti-
lexicographically. Let f: By — B be defined by f(x) = u where n(x) = (u, v).
Letg: f— nbeapinning map. Let ~: f+y — n be defined by 2(x) = g(f(x)) = g(u)
where 7(x) = (v, v).

Express y = yg 9 ... *Yw— uniquely as the product of MI ordinals  with
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PoZ Y1 Z 2V -1 Since B does not mix with y, it follows that fo=f,>..28,—,
ZY0 212 e ZPp—q. I y>P,_y, then yo = f,_; and m>0.

The proof of the lemma divides on whether py>f,-; or y<f,-;. If y<fb,_4,
then we must show that every subset X of type >f, has image /"' X of type . If
9> B,—1, then it suffices to show that every subset X of type >S9 V1 - *Vu—2
has image 4" X of type #. So if y<f,-4, let X be a set of type >f, and if y>f,_4,
let X be a set of type >B+9g" ... *Vmey. If tpf"'X = B, then since g is a pinning map,
tpg” f"X = tph”X =1, and we are done. Thus it is enough to show tp f'X = .
Assume by way of contradiction, that tp /X = £<f. Then X= ¥ = {x: f(x) e f"X},
and Y = n71(f"”Xxy) has type &-y. Now E< o By .. *fy-z-e for some e<ff,;.
Thus if y<f,-, we get the desired contradiction from this string of inequalities:

ﬁ<th<tp Y= f'?<(ﬁoﬂ1 . 'ﬁlr—z'a)'(ﬁll—l)
= fBoBr e Bu-2Pr-1=B.

On the other hand, if y>f,_;, we get the contradiction from the following in-
equalities: '

Bvoryit Pz <tpX<tpY
=Cy<Bor By Bu-2 V0 VL e w1t
= Bor B B2 VoVt o Vit
< BoBr e Bum2Bu-1Vo" v Vw2
=B Yo vit e Pumz -

Here we used the fact that f,_ 4 >92 912 ... 2Ypu-2>Vm-1- S0 in either case the
lemma follows. '

Lemma 6. Assume B, y are Al and P does not mix with y. If f—7n, then
By—1a. .

Proof. Express B = f5-f; .. By—y and 9= p5-1° o Py uniquely as
the products of MI ordinals where By > f;>...2 8, and 70?7;1 2.2 V-1 Since B
does not mix with v, it follows that Bo>...28,-1 2702 ...2Vm-1. In view of the
previous lemma, it is enough to show that B-y,—#-®. So let § = y,.

Let x: nxw-—>n-w be an isomorphism where 1 xw is ordered anti-lexico-
graphically. If ' = w, then express f-w = | B, as the disjoint union of sets of type f
with By<B;<... Using the hypothesis f— 7, let g: f-w —#nxw be a function
with the property that for each k<, g restricted to B, is a pinning map into 5 x {k}.
Let h: f-w—~n-w be defined by h(x) = x(g(x)). If X< o, and tpX = f-o,
then since f is Al, for infinitely many k, X N B, has type B, so tph"' X = 5w, and
the lemma follows.

If 9>, let {6,: k<w) be an increasing sequence of Al ordinals whose limit
is 8, and express B-6 = (J By as the disjoint union of sets where tpB, = f-0, and
By<B;<.. Since B, =y, it follows that B,_,>6,. For each k<eo, let
© gt By~ nx{k} be a pinning map as described in part (b) of Lemma 5, so that for
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every X< By, if tpX>p, then tpg, 'K = 5. Let g = U g,, and let h: B-0—~n-o
be defined by h(x) = x(g(x)). Suppose X<p-8 and tp X = f-6. Then for infinitely
many k, we have tpX n B,>f, since otherwise for some r<w, we have
B0 =1tpX<P-0o+...4+f-6,+p - w<B-0. So using the choice of the g,, we see
that tph''X = 5-w and the lemma follows.

Lemma 7. If ¢>1 is ML, d>0 is Al then ¢’ = o’. In fact, there is a function
J: ' — " so that for all e with O<e<d, for all X<c? of type =c° f'X has type
>

Proof. Let ¢ be any given countable MI ordinal, Define by recursion a sequence
of functions {f,: a<w,)> where f;: ¢*— ” for all a<w,. Now if ¢ = w, then
choosing all of these functions to be the identity proves the lemma. So assume

¢>w, and decompose ¢ = ) C, as the disjoint union of countably many sets where
n<wo

Co<Cy<... and tpCy<tpCi<... Define r: ¢c—w by r(x) =n where xe C,.
Notice that r is a strong pinning map of ¢ to w.
If a =0, then ¢® = 1 = ° and we set f; equal to the identity.
Ifa=>b+1,thenlet n: ¢*—c’xcand y: 0’ xw— 0 be isomorphisms where
the cartesian products are ordered anti-lexicographically. Define f,: ¢ — w® by
Sox) = x (AW, r(v)) where n(x) = (u, v).

If ¢ is a limit ordinal, @ = lim a(n), then ¢* = lim ¢
n<e n<am

where Dy < Dy <... and for all n<, tp D, = ¢"™. We assume without loss of gener-
ality that <{a(n): n<w) is an increasing sequence. We can also write o* = | E,
where Ey< E; <... and for all n<w, tpE, = 0. For each n<w, let 7,: C,— C"™
and ¥,: @™ — E, be isomorphisms. Define f,: ¢®— & by fy(x) = xul fuem(mn(2)))
where x € C,.

Having defined the maps by recursion, we prove by induction that f,: ¢"— «°
is a strong pinning map for a AT by showing that for all a<w, for all e<a, if X=¢*
has type >c°, then f,'X has type zo°

For a = 0, the induction hypothesis is clearly true.

Suppose a = b+ 1, e<a and X=c” has type >¢°. Let U, = {u: vy, v)en"’X
and r(v) = n} for n<w. If for some n<w, tpU,>c’, then tpf; U, o’ by the in-
duction hypothesis, so from the definition of £, it follows that tp £, " X > w®. So we may
assume that tp U,<c¢® for n<w. If e is a limit ordinal, then ¢® =Y ¢*™ where
{e(n): n<w) is an increasing sequence. If for each n<w, there is an m<o with
tp U, > ¢*™, then arguing as above, we see thattp £, ' X ¥ ¢*™ = ¢* If for some n,
there is no m<w with tp U, >¢*™, then we have the contradiction that

M sowe can write ¢ = J D,

X = U {uwen'X: w=1}
vEC
has type <c®™ ¢ = ¢®™*1.<® Thus if e is a limit ordinal, the induction statement
holds. If e is a successor ordinal, ¢ = s-+1, then ¢ = ! = ¢*-c>c’ . If there
are infinitely many # with tp U, >¢’, then by the induction hypothesis, fi' X has type
o' @ = @t = ¢“. We have already assumed that tp U,<c° for n<w. Suppose -
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for all n>k,y, that tpU,<c’. Let Y, = {(u,v)en”X: r(v) = n}. For n>k,,
tp¥, <tp U, - tpC,<c’. So U Y, hastype K<’ Son"X=Y,u Y;u..u ¥, U

ko<n
U | 7, has type <c, since ¢ is indecomposable. But that contradicts the facts that
ko<n
X has type >c® and = is an isomorphism. So there arc infinitely many » with

tpU,=c%, and the induction statement follows. .

Finally, suppose 4 is a limit ordinal, e<a and X< c® has type >c¢°. If X n D,
has type >c¢° for some n<w, then the induction hypothesis insures /"X has type
>o°. Otherwise as in the previous case, either e = lime(n), and for every n<ow,
there is an m<w with tpX N D,,>c*® guaranteeing that tpf, ' X= ¥ ™ = w°,
or e=s+1, and for infinitely many n<w, tpX n D,>c', guaranteeing that
X2 Y o =o't = 0.

LeMMA 8. Assume B and d>1 are AL, y = ¢ and ¢ are M1, and B does not mix
with y. If B=n, then By = y-o™.

Proof. Let 0 = o®. Let n: By — fxy and ¥: #x0— 50 be isomorphisms
where the cartesian products are ordered anti-lexicographically. Let f: f-— 7 be
a strong pinning map. Let g: y — 0 be the strong pinning map of Lemma 1, and
recall that we proved in that lemma that if X<y and tpX=c¢® for e<d, then
tpg”" Xz’ Define i By —n-0 by A(x) = y(f @), g(v)), where n(x) = (u, v).

Suppose {X,: n<w) is a sequence of subsets of f-y with limtp X, = f-y.
Now d is Al and d>1, so 4 i$ the limit of an increasing sequence, d = limd(n).
It is enough to show that if tp X;> B-¢?™, then tph' X, >n-0"™ "1, So fix k, nand
assume tp X, = f+¢*™, Let 5 = d(n), and let ¥ = ' Xp.

Suppose J = {v: tp ¥ n fx {v} = B} has type =c*". Let

Z={J {xe Xy Jun(x) = (u,v)}.
J

Then tpZ 3 f-¢*™, and given the facts that 7, g are strong pinning maps, it follows
that A"Z and thus 2”X have type 2n-0"™. So we may assume J has type <c'®,
Then tpZ<f-c'™, so tp(X,—Z) = f+c*™, and we may assume without loss of
.generality, that J is empty, that is, for all v, ¥ 1 fx {v} has type <p.
Since tp ¥ = f-¢*™, we can express ¥ = {J Y(&) as thedisjoint union of sets
E<os

of type f where if £ <¢’, then Y(&)< Y(&). Let {f(n): n<w) be a strictly increasing
sequence of AI ordinals whose limit is S.

CLAM. For all £<¢, for all k<w, there is v<c® so that {(u, wye Y(£): w = v}
has type =B (k).

Proof of Claim. Suppose for some & and some n the statement fails to hold,
ie., tp{, W e Y(&): w = v}<p(k) for all v<c® = y. Since Y (&)< Y(¢+1) and
we have ordered f§ x y anti-lexicographically, there is some & € y so that if (u, w) & Y(£),
then w<d. So Y(&) = U {(,w)e Y(&: w = v} has type <f(k)-5. To prove

vEV

the claim, it suffices to show that Bk) &< p, since then we have the contradiction
B=1tpY(O<B(k)v<p. ‘
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Now f does not mix with y and y is MI, so By = o® where g = gy +g;+...+0,,
Q0Z Q12+ Z0ys Q0> Q15 8 Al and for ¢ = Qo+01+...+0,-1, T = 0,, we have
B = o’ andy = 0" Since f(k)< B, we have (k) < w” where ' = Gotoit ot s+e
and &<@,-q. Since T<vy, we have & = @° where 6'<@,_;. Since g,_; is Al
e+0' <Qy-1, 80 T 40 <o+ + .+ 0y-q, and fk) T 0T 07 = 0"t <.

Enumerate the ordinals less than ¢* = ¢*™ in order type w so that each ordinal
appears infinitely often, as {¢(j): j<w). For each j<a, let Z(Hs Y(E()) be a set
of type B(j), with the properties that for some », Z (Nephx{v}, and if I<j and
Z(I=px{w}, then v 5 w. Such a sequence must exist by the above claim and the
assumption that tp ¥ n fx {x} <p for all x. Let Z = {J Z(j). Let

i<w

W= {o: 3j<0Z()<px (v} -

Since for each é<¢® = c"(”f, we have & = £(;) for infinitely many j, and &< &' implies

Y@< Y({), we know that tpWzc™™. So tpg” Wz ™™, Notice that if NS is

infinite, then tp U 2™'Z()=tp U Z()=f and tp U K'nZ(j)=n  So
j JjeN

j-EN JjeN
tph'n™ 2 200" 1. Thus tph”X,>1-0* 1, and the lemma follows.

THEOREM 9. (a) If a<w, is MI and 8 Q(a), then o — 6.

(®) If o = Bo-Bi ... “Paey is expressed uniquely as the product of MI ordinals
with Bo=zf12..2P,—1, and & = dy-d,- ... .d,_, is the product of ordinals where
dy€ Q(Bo) and for i with 0<i<n, d,e P(B), then o — 8.

Proof. (a) It is easy to see that 1—I, @ — 1 and @ — w. So assume W<t<w,.
It is not hard to show o — w®. See [3] or [8]. If & O(x) and & # w? then by
Lemma 7, o — 6.

(b) If u<wv, then p-v =7 so we may rewrite & = Ho*Hy " . "H,—y wWhere
Uo € @(Bo), p; € P(B;) for i with 0<i<n so that w; = 1 if there is a k with j<k<n
and di>p;. If g = w?, then for all i with 0<i<n, we have ue {1, }, so using
the result that 8, — w” for f,>w and Lemmas 5 and 6, we see that «— 5. Otherwise,
o € P(Bg). Thus by using induction, and Lemmas 5, 6, 7 and 8, we can show that for
all i<n, Bo By . fi — o ty- ... 4y, thus completing the proof of the theorem.

§ 3. Otherwise, no pinning maps. In this section, we show that pinning maps
exist only in the cases given in the previous section. The first lemma shows some
bounds on the pinning maps that exist for MI ordinals.

LeMmA 10. If a<cw, is MI and o — &, then either 6 = w? or § ML

Proof. By Lemma 1, we know that § is AL If § = 1 or § = o, then & is MIL.
If 6 = w?, then the lemma is satisfied. So assume by way of contradiction, that
§>w? and § is not MI. Then § = »® where d is decomposable, so by a theorem
of [3], 5 — w?. Since pinning is transitive, it follows that @ — °. But by a theorem
of [3], o +> 3. This contradiction gives the lemma.

The next lemma addresses the problem of pinning and products of ordinals.

/
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LemMA 11. Assume f and y are AL,y is ML, f>1, y>1 and B does not mix with y.
Further assume the inductive hypothesis that for all Al o' <o = By, if ' — &', then
5eQ@). If 8 =n-0 where B—n and 0 € P(y), then 6 & oB).

Proof. Write By = @y ay- ... *@y_, where ag, dy, ..., @~ are all MI and
ayza,>...2a,_;>1. Since f>1, y>1, y is MI and B does not mix with y, we
must have B = agay .. *y_p and y = a,_y. So nz2. If n =2, then a5 = f,
a, =7, dy =1, d, =80 show § =n-0e Q(B-y). So suppose n>2. Since a> -7y,
by the inductive hypothesis, if § — &', then &’ & Q(f). Thus the set of &’ to which f
can be pinned is finite. So we can find dj, dy , ..., d,-, such thaty = dody e by,
dy € O(ap) and for all i with O<i<n—1, d; & P(a;). Setd,., = 0. Then ag, @y, .., @y,
and dy, dy, ..., d,—; show 6e Q(B-7).

Since our proof proceeds by induction, we look at increasing sequences of
ordinals and derived sequences of ordinals to which the first ones can be pinned.
The next two lemmas show that the later sequences must be fairly nice if the former
sequences are chosen with care.

LEMMA 12. Assume y is ML, y>o and y # »* for any ordinal x. Then there is
an increasing sequence {c;: k<o) of M1 ordinals whose limit is y so that for every
infinite increasing sequence {u,: k € N of ordinals with the property that uy€ Q(cy)
for ke N, the limit p = limu, e P(p).

Proof. Since y is MI, we have y = »® where « is AL Since y>w, we know
that a> 1. Express @ = s-¢ uniquely as the product of two Al ordinals, where >1
is MI and s does not.mix with . Then y = o = o' = (»°)". Since y # x® for any
ordinal %, it follows that #>c. Since ¢ is MI, we have ¢ = w* where A is AL So
A = o' Since #>w, we have />0. Either [ is a successor ordinal and ¢ = ¢ for
some MI ordinal z, or /is a limit ordinal, and ¢ is the limit of an increasing sequence
of MI ordinals, {t(n): n<w). If t = 1%, set t(k) = 7%, Then {t(k): k<) is an
increasing sequence whose limit is 7. For k<o, set ¢; = @*'®, Then {¢;: k<w)
is an increasing sequence of MI ordinals whose limit is y. Suppose {u;: ke N) is
an infinite increasing sequence of ordinals with u, e Q(c) for ke N. Let u be the
limit of the sequence. Since the sequence is increasing and the only elements of
0(cy) less than o® are 1 and ©, we may assume without loss of generality that
u,>w? for ke N. So each u, € P(¢,) for ke N. Now ¢, = »™®. So either 7 = ¢*
and u, = @ for some I<k, or there are o(k), o(k) so that s = g(k)-o(k), o(k)
does not mix with o (k) and u, = 0®*®, Since (u: k € N is increasing, we have
one of the following two cases. Either ¢ = 1% and for all k € N, there is /<k so that
u, = 0'®, Or there is k, so that for all ke N with k>k, there are g(k), o(k) as
above with u, = o"®*®,

If ¢t = 7° and for all k e N, there is I<k so that u, = «"?, then since (u,: ke N
is increasing, it follows that g = '€ P(y).

So we may assume we are in the other case. Fix k. Since there are only finitely
many possibilities for g(k), ¢(k) and <uw,: k<w) is increasing, there are k; zko,
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¢ and ¢ so that for all ke N with k>k,, both ¢ = g(k) and o = a(k). Then
g = limo™® = o™ e P(y). So in either case the lemma follows. -

LemMA 13. dssume % is M1, NSo infinite and let {b: ke N) be an infinite
increasing sequence with the property that for all ke N, 8, € O(x"). Let 0 be the limit
of {6;: ke N).

(@) If 0 is MI, then 0 e P(x").

(b) Otherwise, there are ordinals p, v, an infinite set K<N and a sequence
i ke Ky so that 0 = p-v, ve P(x®), v is the limit of (v: ke K> and Jor all
keKk, 0, = uv,.

Proof. Enumerate P(x)~{1} in decreasing order as ry,ry, s, ..., ¥ = .
Since 0 is the product of elements of P(x), using the properties of ordinal multiplica~
tion, we can write 0, = riOR. L. U8 where for each i< j, we have
0<1(i, k)<w. If for each i</, there were a bound u(i) for the sequence
t(i, k): ke N), then there would only be a finite set of ordinals that 8, could be
chosen from, contradicting the fact that (6,: ke N is an increasing sequence. So
at least onme sequence must be unbounded. Let I be the least i< j so that
{t(i,k): ke N) is unbounded. Choose u(0),u(l), ..., u(f—1) in turn so that
K= {k: Vi<l t(i, k) = u(i)} is infinite. Let p = rg®-74®- -y D, Then for
ke K, set v, = rjOP 4100 0B 5o that 6, = p-v,. Since (B,: ke N} is
an increasing sequence, we have

0 =lim 0, = lim 6, = lim v, = p-limv, = pry .
keN keK kekK keK
We leave it to the reader to check that since ;e P(x), also v = rf e P(%%).

Next we define what it means for a function to be plodding, a concept used se-
veral times in this section.

DEFINITION. Assume <o, is MI, B<a« has type f and f: B— y is a function.
Then fis plodding on B if and only if there is a decomposition of B = | B, satisfying

n<wo
all of the following conditions:

(a) tpBy, tp By, tpB,, ... are all Al,

(b) By<B;<By<...,

(©) f"Bo<f"By<f'By<...,

dy if y = o, then | f"By| =1 for all i<w.

Note that if § = y = (o, then plodding and one-to-one coincide.

LEMMA 14, If B<w, is MI, A<o has type B and f: A— o is a function, then
there is a set BE A of type B so that either f}B is constant, one-to-one, or plodding.

Proof. If f = 1 or f = w, then it is easy to see that the lemma is true. So
assume B> w. Since B is MI, we can find (f;: k<w), an increasing sequence of Al
ordinals less than B, and decompose A =k9m A into a countable disjoint union
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of sets where dg<a,<A,<..., and for all k<o, tp4, = pr. Since for each k<,

we have tpd; = 7, we may express 4, = | Ay) as the disjoint union of f; sets
7<py

each of type B; so.that if y<d<f;, then A;(y)<4(6).

Case 1. There is an infinite set J= o, so that for all /e I, there is y;<f; with
fAfy;) finite.

First, for each i€ I, let C;= A,(y;) be a set of type f; so that frestricted to C; is
constant. Such a set must exist since f; is AT Next, define g: T— w by g(i) = f(9)
for 6 € C;. Let J=I be infinite so that either g }J is constant or one-to-one. Finally,
let B= | C;. If g}J is constant, then f |B is constant. If gtJ is one-to-one,

eJ
then f MJ? is plodding on B.
Case 2. There is an iy so that for all i>i,, for all y<fi, /" 4,(y) is. infinite.
Enumerate the set of all 4;(y) for i>i, and y<p; as {R,: k<w). By recursion
define C = {C;: k<w} so that C.e R, and f(Cp)>f(Cy-,) for k>0. Then C
has type f§ and f } C is one-to-one.
The following notion is needed for the next lemma.

DEFINITION. Assume o, f are countable Al ordinals, tp4 = «, tpB = f
and f: 4 — B is a function. We say f is essentially cofinal on A if for every subset
C<4 of type o, the image f"/C is unbounded in B.

LemMMA 15. Let B, y, § be countable Al ordinals. Assume y is MI, y>w, f does
not mix with y and for all Al o/ < f-v, if o' — &', then §'e Q). If B-y— 3 and
f: By— & attests to it, then either

(a) 6 Q(B-y) or

() p>1, vy = %%, & # d-o for any d, and there is a set X< B-y of type -y
so that f }X is a plodding map.

Proof. Express f-y = U B(c) as the disjoint union of y sets each of type

with the property that if c<c then B(c)<B(c'). Express = |J D, as the disjoint

HE®
union of a collection of sets whose order types are Al so that Dy<D;<D,<

and either tp Dy = tp Dy = tp D, = ... or tpDy<tpD; <tp D,<... Enumerate y as
{c,: n<w) in type w. For each ¢c<y, with ¢ = ¢,, let B'(c)=B(c) be a set of type § so
that f restricted to B'(c) is a pinning map onto its image, and either f restricted to
B'(c) is essentially cofinal in & and f"B'(c)n U D, =@, or for some m<w,
ksn

f"B(&)s D,,. For each c¢<y, let g(c) = tp f""B'(c). Find g and C<y, a set of type y so
that for all c € C, g(c) = ¢ and either for all c e C, f restricted to B'(c) is essentially
cofinal, or for all ce C, f restricted to B’(c) is bounded in 4.

Case 1. For all ce C, f restricted to B'(c) is essentially cofinal.
Let X = {J B'(c). Then tp X == B-y. Since for ce C, we have tp f/'B'(c) = g,

ceC
it follows that tpf”X>q. We shall show tpf'X=gq If ¢c=¢,eC, then
fYB()n D, =@ for k<n and tp f"'B'(c) n D,<q for k>n, since f restricted
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to B'(c) is essentially cofinal: So for k<w, we have tp f*X n D,<gq: So tpfX<q.
So 8 =ge QA<= Q(By).

Now we may assume that for all ce C, f restricted to B'(c) is bounded, and
in fact that f"B(c)= D, for some k. This defines a function p: C — w. Using
Lemma 14, find a set C'=C of type y so that p restricted to C’ is either constant,
one-to-one, or plodding. Let X = {J B'(c). Then tpX = f-7.

ceC’

Case 2, p restricted to C’ is constant.

Here " X< Dy, where k is the constant value of p on C'. So tpf""X <34, con-
tradicting the fact that / is a pinning map. Thus this case cannot occur.

Case 3. p restricted to C’ is one-to-one.

In this case, tpf"’'X = q 0 = §, where ge Q(f). Thus g-we Q(8-7), and
the lemma follows.

Case 4. p restricted to C’ is plodding and 6 # d-w.

Since plodding and one-to-one coincide in the case y = « and the lemma has
been proved if p is one-to-one, we may assume y>w. Express C' = |J G(n) as in

new

the definition of plodding. Since y>w, we must have tpG0)<tpG(1)<tpG(2)<...
For cach n<w, let X(n) = |J B'(n). Then tpX(n) = B-tpG(n) is AL Also

ceG(n)
tp X(0)<tp X(1)<... So f restricted to X is plodding. Thus if f>1 and y = »® for
some %, and & # d-w then part (b) of the lemma follows. Otherwise we can find
Y= U Y(m<X of type By, so that f restricted to ¥ is plodding, ¥ = U Y(n)

new new
is a decomposition which shows it, and for all n e , f restricted to ¥(n) is a pinning
map onto its image and for all new, tp Y(n) = f-x" if y = x«° and otherwise
tp Y(n) = B-v, where y, is as prescribed in Lemma 12. If = 1,y = x” and 6 # d-w,
then by Lemmas 1 and 13, it follows that tpf”Y = § € P(y) = P(B-y). If p # »°
and § # d-w, then from the induction hypothesis and Lemmas 11 and 12, it follows
that tp /'Y = § e P(B>y). Thus the only remaining case is § = d-w.

For each k<w, D, has type d. If d=d'w where d' is Al, then set
d(0) = d’' = d(1) = d(2) = ... Otherwise, let (d(i): i<w) be an increasing sequence
of Al ordinals with limit . For each k<, express D, = {J Dy(/) where for /<w,

lew

tpDy(l) = d(/) and D (0)< D(N<...

Use the decomposition €’ = {J G(n) and the function p: C'— o to define
ri w—w by r(n) = p(c) for ceG(n).

For cach n<w, we repeat what we did with -y, & and f: 8-y — 4, this time
with X(n), D,y and f: X(n) — D,. So for each ce G(n) with ¢ = ¢, we find
B"(c)= B'(c) of type B so that either f restricted to B'(c) is essentially cofinalin Dy
and f"B"(c) A U D,uy(k) = @, or for some k<w, f"'B"(e)S Dym(k). For each

k<m

n<o, let G'(n)<= G(n) be a set with tpG'(n) = tpG(n) so that either for all c € G'(m),
frestricted to B'(c) is esseniially cofinal, or Mc e G'(n), fis bounded on B"(c).
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Let N<o be infinite so that either for all m e N, for all ¢ e G'(n), f restricted to B”(c)
is essentially cofinal, or for all ¢ € G'(n), fis bounded on B"(c). Note that from earlier
considerations, we know that f restricted to B'(c) is a pinning map onto a set of
type ¢.

Subcase a. For all ne N for all ce G'(n) f restricted to B(c) is essentially
cofinal in Digy;.

LetZ =) U B'(c) Then tpZ = B-7. As we saw in Case I, for each ne N,
neN CeG'(n)

tpf'Z(n) = g, where Z(n) = U B"(c). It follows that tpf"'Z = qg-we Q(f-y),
ceG’(n)
and the lemma is proved.

Thus we may assume that for all ne N, s, = 5: G'(n) — w is defined with
FIB(O)Z Dyuyis(c)) for ce G'(n). For each ne N, let G"(<=G'(n) be a set with
tpG"'(n) = tpG'(n) so that s restricted to G"(n) is either constant, one-to-one or
plodding. Let M <N be infinite so that either for all ne M, s restricted to G''(n) is
constant or for all'n e M, s restricted to G”'(n) is one-to-one, or for all ne M, s re-
stricted to G''(n) is plodding.

Subcase b. For all ne M, s restricted to G''(n) is constant.

LetZ= | U B'(c)andletZ(n)= ) B'(c)forne M. ThentpZ= -y,

neM CeGr(n) CeG(n)
and for nem, tpf"Z(#)<d = tp Dy, s0 tp f'Z<d<d . In other words fisnot
a pinning map, so this case cannot occur,
Subcase c. For all ne M, s restricted to G'(n) is plodding.
For each ne M, express G’'(n) = |J G'(n, k) as in the definition of plodding.

Since y>wm, we known tpG(0)<tpG”'(1)<... Without loss of generality we may
assume w<tpG(0). So for ne M, tpG"(n, 0)<tpG'(n)<... Thus we can find
a function 7: M — o so that tpG”(n, t(n))>tpG"(n—1). (Assume O ¢ M.) Thus
tp U G"(n 1) =y. For neM, let Z(n) = {B"(c): ceG: (n,t(m)}. Let

Z U Z(n). Then tpZ = B-y. Since for all ne M, we have f"'Z (1)< D,u(s(c)) for

ce G”(n t(n)), it follows that tp f"Z(m)<d. So tp f"Z<d<d-w. Tn other words f
is not a pinning map, so this case cannot happen.

Subcase d. For all ne M, s restricted to G''(n) is one-to-one.
For each neM, let Z(n) = {B'(c): ceG"(n)}. Let Z =) Z(n). Then

new

tpZ = B+y. For ne M, since r restricted to G''(n) is one-to-one, it follows that
tpf"Z(n) = g w. Therefore, tpf'Z = q-w-w = g-w? If f =1, then ¢ =1, so
0 =qw® =w>eP(y) = P(f 7). So we may assume f>1. To prove the lemma,
we must show that f— g-w.

Suppose that for every b<pf, every ne M and every c € G''(n), there is a set
U=B"(c) of type =b so that tpf”’U<g. Enumerate U G'(n) = {gk): k<w)

neM

and let {B,: k<w) be.an increasing sequence of ordinals cofinal in f. For each
k<o, let W,=B"(g(k)) be a set of type = B, so that tp f“ W, <q. Let W = |) W,.

kew
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Since the limit of any infinite subsequence of (f,: k<w) is §, and w-y =y, we
have tpW = f-7. For any ne M, since r restricted to G"(n) is one-to-one, and for
all ce G"(n) with ¢ = g(k), we have f""W,<d it follows that

F U g e G'()) = U {f" Wiz g(k) e G ()}
has type <g¢. Thus
'z =f”(nUMU {We: g(k) e G"(w)})

has type <q-w<g-w*. So we have reached a contradiction to the fact that f is
a pinning map.

Therefore, for some b<p, for some ne M, and some c e G''(a), for every set
U= B"(c) of type =b, we have tp f"Uzq. Partition B”(c) = {J 4, into countably

k<o

many sets so that 4,<d4,;<...; either tpd, = tp4; = ...<f or tpd,<tpd;<..;
tpdy, tpAy, ... are all Al and tpA4,=>b. Then if S=B"(c) is a set of type f, we must
have tpS v A;>b for infinitely many i. Define o: B"(c) —f"B'(c)xw by
o(x) = (f(x), i) where x € 4;. Since f"B"(c) has type g, the set f"B"(c)x @ has
type ¢+ when ordered antilexicographically. Thus g is a pinning map of a set of
type B into a set of type g-w. Thus 6 = q-@-w e P(B-y), and the lemma follows.

LEMMA 16. Assume for all a<p, if «— 8, then 6 Q(w). Further, assume P,
A Al, B does not mix with A, f—n, U is a set of type B-A%, V a set of typen-p-v
and fr U— V. Then there is a set X< U of type B-2 so that either

(a) tpf'X<a-u<n-p-v where §—a or,

(b) a<tpf’X<av where f— a.

Proof. Since U has type 4%, we can express U = {J U(l, m) as the disjoint

mil<i
union of a family of sets each of type § indexed by pairs of ordinals less than 1 where
if (I, m)<(',m’) in the antilexicographic ordering, then U(l, m)<U(l’,m’). We
can write ¥ = {V(u,v): u<p&v<v} analogously. For each pair (I, m) of
ordinals less than A, let A(/, m)< U(l, m) be a set of type f so that f restricted to
A(l, m) is a pinning map onto its image and either there is some v(J, m) so that
FrAd,mys U V(u, v(l, m)), or for all vev, the set A(l,m) NFU Vi, )
u<p

u<p
has type less than f3. Suppose there is a set P<Ax 4 of type 2 and a e P(B) so that
for all peP, tpf 'A(p) = a and A(p) nfY U V(u,v)) has type <p for vev.
u<p

Enumerate P = {p,: n<w) and v = {v,: n<w). Let B(p,)=A(p,) be a set
of type f so that f"B(p,)S U U V(u,v). Let X = | B(p,). ThentpX = f-4,

nSk<ou<p n<o

since tpP = A. Clearly tp X>a. Since for each k<w, ["B(p,) n U V(u, v # %]
u<p
for only finitely many n, it follows that tp /"X n U V(u, v)<a- o, so tpfX<av.
u<p

And in this case, the lemma follows.
2%
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So suppose there is no such set P. Let Q=Ax 1 be the set of pairs ([, m) with
f74d,mys U V{(u,v(l, m)). Suppose there are [ye 1, voev and a set RS of

u<p

type A so that for all re R, f"A(r,lp)s U ¥(u,vy). Then
u<p

X=U{4(,1): reR and (r,])) e O}

satisfies condition (a) of the lemma. So we may assume for each /e 4, that the set
{v(r,D): (r,])e Q} is empty or infinite. By the inductive hypothesis, we know
that f§ can be pinning to only finitely many different ordinals. So we can find an « so
that f— a, and a set L&) of type A so that for all Ie L, the set {v(r,): (r,)e Q@
and tpf"A(r,I) = a} is infinite. Enumerate L = (/,: n<w). Define by recursion
{ry: n<wy so that {r,,l)eQ and if m #n, then v(r,,1,) # v(r,1). Let
X = U A4(ry, 1,). Then tpX = B-1, and a<tpf”X<a-v. So condition (b) of the

n<o
lemma holds.

THEOREM 17. If a<w, is Al and o — 5, then e Q (o).

Proof. The proof is by induction on the countable AI ordinals. If & = 1, then
" clearly « can only be pinned to 1. If & = w, then il is easy to see that « can only be
pinned to 1 and to w. So assume a>w. If o is MI, then o = fi-y where f = 1 and
y = &, so from Lemma 15 it follows that if « — §, then § € Q(). So assume « is
not MI Then « = 8-y where §is AL, y is MI, 8> 1, >1 and f does not mix with ¥.
Suppose « — d. Again from Lemma 15 it follows that 6 € O («) except for the case
y =x°and § # d-w for any d. Let f: «— & be a pinning map. Using Lemma 15,
we may assume we have a set X<o of type a so that f restricted to X is plodding.
Let X = X, be the decomposition which shows fis plodding on X. Now {tp X, n<w)
is an increasing sequence. Without loss of generality, we may assume tp X, = f-2%*",
since if these equations fail to hold, we can construct a subset of X of type o which
has a decomposition showing fis plodding in which these equations hold. For each
n<w, let ¥, X, be a set of type f-»>" so that f restricted to Y, is a pinning map
onto its image. By the induction hypothesis, not only is the set of ordinals to which B
can be pinned finite, but also tp 'Y, = b,-6, where f — b, and 0, is the product
of 2n elements of P(x). Using 1he fact that the set of ordinals to which f can be
pinned is finite, find 5<w and an infinite set NS so that for all 1 e N, b, =b,
and so that the function ¢ defined by ¢ () = 6, is either constant or increasing. Let
Y= UN Y,. Then tpY = o. If ¢ is constantly ¢ on N, then
he

Y=Y tpf'Y, =Y bt=btw =6
neN

neN

contrary to our assumption that § # d-w for any J. So ¢ is increasing on N. Let
0= lime),,. Then tpf”Y = b-0 = 4. If 6 is MI, then by Lemma 13, 0eP(x"),

so by Lemma 11, we have b-Oe Q(a). So assume 9 is not MI. Let K<N, u, v,
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{vi: ke K> be as in Lemma 13. For each ke K, use Lemma 16 to find a(k) and
Z, s Y, a sel of type f-x" so that B—s a(k) and either

(@) tpf"Zy<alk) - p<b-pow, or

®) all)<tp " Ze<a(k)-v,.

Let a<w; and M &K, an infinite set, be such that for all k e M, a(k) = a and
either for all ke M, tpf'Z,<a-u<b-pu-v, or for all ke M, astpfZ,<a v,.

Let Z =k£jMZk. Then tpZ = «. If for all ke M, tpf' X <a u<<b v, then

tpf'X<a p-w<d. Since 6 # d-w for any d and § is Al by Lemma 1, it follows
that a-p-w<4, so fis not a pinning map. This contradiction shows that we must
assume that for all ke M, a<tpf“Z,<av,. Thus a-o<tpf’Z<a-v. Since fis
a pinning map, tpf"Z =6 =b-pu-v. So a-o<b-p-v<a-y. Since veP(x®), it
follows that v is MI. So 8 = b-u'v = a'v, and by Lemma 11, § = a-ve Q(8-).
So the theorem follows.
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