icm[©]

References

- F. Adams, A variant of E. H. Brown's representability theorem, Topology 10 (1971), pp. 185-198.
- [2] E. Brown, Jr., Abstract homotopy theory, Trans. Amer. Math. Soc. 119 (1965), pp. 79-85.
- [3] A. Calder and J. Siegel, Homotopy and Kan Extensions, Categorical Topology Mannheim 1975, Springer Lecture Notes (54), pp. 152-163.
- [4] Homotopy and uniform homotopy, Trans. Amer. Math. Soc. 235 (1978), pp. 245-270.
- [5] Kan extensions of homotopy functors, J. Pure Appl. Algebra 12 (1978), pp. 253-269.
- [6] A. Deleanu, The Brown-Adams representability theorem, J. London Math. Soc. 6 (1973), pp. 561-562.
- [7] P. J. Hilton, On Kan extensions of cohomology theories and Serre classes of groups, Fund. Math. 73 (1971), pp. 113-165.
- [8] Localization homology and a construction of Adams, Trans. Amer. Math. Soc. 179 (1973), pp. 349-362.
- [9] A. Dold, Lectures in Algebraic Topology, Springer, Berlin-Heidelberg 1972.
- [10] C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), pp. 200-242.
- [11] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press 1952.
- [12] S. T. Hu, Homotopy Theory, Academic Press, 1959.
- [13] S. MacLane, Categories for the Working Mathematician, Springer, New York 1971.

UNIVERSITY OF MISSOURI-ST.LOUIS

Accepté par la Rédaction le 2, 1, 1978

The number of countable models of a theory of one unary function

by

Leo Marcus (Marina del Rey, Ca.)

Abstract. If T is a theory in the language of one unary function symbol then T has 1, \aleph_0 , or 2^{\aleph_0} countable models.

§ 1. Introduction. Let L^0 denote the language containing equality and one mary function symbol. We prove:

THEOREM 1. If T is a complete first order theory in L^0 , then T has 1, s_0 , or 2^{s_0} countable models.

The part of the theorem claiming that if T has $> \aleph_0$ countable models then T has 2^{\aleph_0} countable models is the first-order Vaught conjecture for L^0 . The $L^0_{\omega, \omega}$ Vaught conjecture was claimed by Burris in [1] but an error was found by Arnold Miller. After writing the first draft of this paper I learned that Miller [5] had already proven Theorem 1 by a different method in a more general setting, and some information about the $L^0_{\omega, \omega}$ case.

The following theorem of Shelah gives information about the number of uncountable models of a theory in L^0 .

THEOREM (Shelah). If T is a complete first-order theory in L^0 then either T has 2^{λ} models of power λ for all $\lambda \geqslant \aleph_1$ or T has $\leqslant \exists_n(|\alpha|)$ models of power \aleph_α for some $n < \omega$ and all $\alpha \geqslant \omega$.

There is a similar theorem for $L^0_{\omega_1\omega}$.

The proof uses general considerations of stability. The problem of the number of countable models of a first-order theory of linear order was solved in Rubin [6].

I am indebted to Mati Rubin for calling my attention to the error in [1], and to him and to Miller for detecting errors in earlier versions of the present paper.

§ 2. Preliminaries. We preserve the notation and definitions of [4]. Here is a brief review. (For model-theoretic notation and definitions see [3].) The language contains one unary function symbol f, and equality.

The distance between a and b relative to a set A is $d_A(a, b) = \min\{r\}$: there are k, l such that k+l=r and there are $x_0, ..., x_k, y_0, ..., y_l \in A$ such that $a=x_0, b=y_0, f(x_l)=x_{l+1}$ for $i < k, f(y_l)=y_{j+1}$ for j < l, and $x_k=y_l\}$. A path from a to b is such a sequence $\langle x_0, ..., y_l \rangle$. We say a is above b if there is a path from a to b which contains f(b). The set A is below b if b is above every element of A. Notice

that there could be a and b such that a is both above and below b. A is directly below b if A is the union of sets of the form $A_k = \bigcup_{n < \omega} f^{-n}(a_k)$, where $f(a_k) = b$. (Note $f^0(a) = a$.)

Any model breaks up into the disjoint union of components, a component being the set of points of finite distance from a given point. When we count occurrences of components in a model, we count α disjoint copies of the same component as α occurrences.

If $a \in B$ let Nbd'_Ba, the r-neighborhood of a in B, be the set of points in B of distance $\leq r$ from a. If A is a set let Nbd'_BA = $\bigcup_{a \in A}$ Nbd'_Ba. $A \cup B$ indicates disjoint union, i.e., if necessary taking an isomorphic copy of A which is disjoint from B.

Let A be a set, $a_i \in A$, i = 1, ..., n; $q < \omega$. The q-type of $\langle a_1, ..., a_n \rangle$ over A is $\{\psi(x_1, ..., x_n) : \psi \text{ has } \leq q \text{ quantifiers and } A \models \psi(a_1, ..., a_n) \}$. We write $\text{Nbd}_A^r \overline{a} \equiv_q \text{Nbd}_B^r \overline{b}$ if the q-type of \overline{a} over $\text{Nbd}_A^r \overline{a}$ is the same as the q-type of \overline{b} over $\text{Nbd}_B^r \overline{b}$.

We use \equiv for elementary equivalence, \prec for elementary submodel, \cong for isomorphism.

The following two results are from [4].

LEMMA 1.1. For any m and n there are numbers r = r(m, n) and q = q(m, n) such that for any $\psi(\bar{x})$ with n free variables and m quantifiers, and for any model M and every \bar{a} , \bar{b} from M of length n, if $Nbd_M^*\bar{a} \equiv_q Nbd_M^*\bar{b}$ then $M \models \psi(\bar{a}) \equiv \psi(\bar{b})$.

1.2. If f(a) = b and a is not algebraic over b in M (i.e., a does not satisfy any formula $\varphi(x, b)$ which is satisfied by only finitely many members of M) then $M - \bigcup_{i} f^{-n}(a) \prec M$.

In addition we need the following facts.

LEMMA 2. Let $C_1 \equiv C_2$ be components. Then:

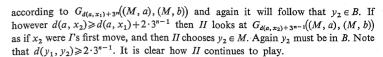
- (i) For any M, $M
 ightharpoonup C_1 \equiv M
 ightharpoonup C_2$.
- (ii) Let $b_1 \in C_1$ and $b_2 \in C_2$ realize the same type, F_1 is the set of predecessors of $f(b_l)$ which are above b_1 , l=1,2. Let C_1' be the component whose set of elements is $(C_1-F_1) \cup F_2$, and f is defined as in C_1-F_1 and F_2 except that $f(a)=b_1$ if $a \in F_2$ and $f(a) \notin F_2$. Then $C_1' \equiv C_1$.

Proof. Follows from Lemma 1.

LEMMA 3. Let A, B be components, $a \in A$, $b \in B$, $M = A \cup B$. Then $(M, a) \equiv (M, b)$ iff $(A, a) \equiv (B, b)$.

Proof. We use the Ehrenfeucht game criterion. See [2]. We shall give informal descriptions of the winning strategies.

⇒: We must show that player II has a winning strategy in $G_n((A, a), (B, b))$ for $n < \omega$. We know that II wins in every $G_n((M, a), (M, b))$; we just have to show that he can choose elements in the appropriate components. So assume I chooses $x_1 \in A$. II consults his strategy for $G_{d(a,x_1)+3^n}((M, a), (M, b))$ and finds a suitable $y_1 \in M$. Obviously $d(x_1, a) = d(y_1, b)$ so $y_1 \in B$. Now let I chooses $x_2 \in A$ (if I chooses $y_2 \in B$ the proof is the same). If $d(a, x_2) < d(a, x_1) + 2 \cdot 3^{n-1} II$ can choose $y_2 \in M$



 \Leftarrow : Now assume II has a winning strategy in all $G_n((A, a), (B, b))$, and assume I chooses x_1 as a first move in $G_n((M, a), (M, b))$. Assume $x_1 \in (M, a)$. If $x_1 \in A$, II plays according to $G_n((A, a), (B, b))$. If $x_1 \in B$, let $y_1' = x_1$ and play $G_n((A, a), (B, b))$ getting $x_1' \in A$. Let $y_1 = x_1'$. Now $\langle (a, x_1'), (b, y_1') \rangle$ is a winning position for II in $G_n((A, a), (B, b))$ so $\langle (a, x_1), (b, y_1) \rangle$ is a winning position for II in $G_n((M, a), (M, b))$. The continuation is clear.

LEMMA 4. Let A and B be components $a \in A$, $b \in B$.

- (i) If for every r, q, $Nbd_A^r a \equiv_q Nbd_B^r b$, then $A \equiv B$.
- (ii) If there is $n < \omega$ such that for all r, q there is $a' \in A$, d(a, a') < n such that $\operatorname{Nbd}_A'a' \equiv_a \operatorname{Nbd}_B'b$, then $A \equiv B$.

Proof. (i): Let $M = A \cup B$. Since $\operatorname{Nbd}_A^r a \equiv_q \operatorname{Nbd}_B^r b$, and $\operatorname{Nbd}_A^r a = \operatorname{Nbd}_M^r a$, $\operatorname{Nbd}_B^r b = \operatorname{Nbd}_M^r b$, we have by Lemma 1. (i) $(M, a) \equiv (M, b)$. Thus by Lemma 3, $(A, a) \equiv (B, b)$, and $A \equiv B$. (ii): We shall show that there are $a^* \in A$, $b^* \in B$ such for all r, $q \operatorname{Nbd}_A^r a^* \equiv_q \operatorname{Nbd}_B^r b^*$, and thus the result follows from (i). From the hypothesis of (ii) we can find $a^* \in A$, $d(a, a^*) < n$ and $m \le n$ such that for all r, q there is $a' \in A$, $f^m(a') = a^*$, and $\operatorname{Nbd}_A^r a' \equiv_q \operatorname{Nbd}_B^r b$. Now take $b^* = f^m(b)$.

Lemma 5. The following conditions satisfy (iv) \rightarrow (i) \equiv (ii) \equiv (iii). Let M be a model and C a component.

- (i) $M \prec M \stackrel{.}{\cup} C$.
- (ii) There is $N \equiv M$ in which κ_0 copies of C occur.
- (iii) There is $N \equiv M$ with κ_0 occurrences of components $\equiv C$.
- (iv) There is $N \equiv M$ such that a different number (including zero) of components $\equiv C$ occur in M and N.

Proof. (ii) \equiv (iii) is clear by Lemma 2, so we shall prove (i) \equiv (ii) and then (iv) \rightarrow (i).

- (i) \rightarrow (ii): It is sufficient to show that if $M \prec M \stackrel{.}{\cup} C$, then $M \stackrel{.}{\cup} C \prec M \stackrel{.}{\cup} C \stackrel{.}{\cup} C$. Let C_0 , C_1 be two copies of C disjoint from M and from each other. Assume $M \cup C_0 \cup C_1 \models \varphi(c, \overline{a}, \overline{b})$ where $\overline{a} \in M$, $\overline{b} \in C_0$, $c \in C_1$. By the Tarski-Vaught test (see [3]) and Lemma 4 it is sufficient to find $d \in M \cup C_0$ "equivalent enough" to c and "far enough" away from $\overline{a} \cup \overline{b}$. But $M \prec M \cup C_0$, so we can even find $d \in M$ which will work.
- (ii) \rightarrow (i): Let $M \stackrel{.}{\circ} C \models \varphi(b, \overline{a})$, $\overline{a} \in M$, $b \in C$. As above it is sufficient to find $c \in M$ equivalent enough to b and far enough away from \overline{a} . But since C occurs κ_0 times in a model $\equiv M$ there are elements $c \in M$ equivalent to b, and arbitrarily far from each other. So some will be far enough away from \overline{a} .

(iv) \rightarrow (i): First assume that more components $\equiv C$ occur in N than in M. Let $M \cup C_0 \models \varphi(a, \bar{b}, \bar{c})$, (\bar{b} or \bar{c} possibly empty) where C_0 is a copy of C disjoint from M, $a \in C_0$, $\bar{b} \in M$ but the members of \bar{b} do not occur in components $\equiv C$, $\bar{c} \in M$ and the members of \bar{c} do occur in components $\equiv C$. We must find $d \in M$ far from \bar{b} and \bar{c} and equivalent to a. Since there are more components $\equiv C$ in N we can find a' and \bar{c}' in N which are equivalent enough to a and \bar{c} respectively, and a' is not in any component which contains a member of \bar{c}' . Thus in M we can find d which is equivalent enough to a and arbitrarily far from \bar{c} . Now if all these d were close to an element $b \in \bar{b}$ then by Lemma 4(ii) $C \equiv$ the component of b, contradiction.

Now assume that M contains more occurrences of components $\equiv C$ than does N. So by the above proof $N \prec N \stackrel{.}{\cup} C$. Thus by (i) \rightarrow (ii) there is a model $\equiv N$ in which \aleph_0 copies of C occur. Thus there is such a model $\equiv M$ (since $M \equiv N$). Thus by (ii) \rightarrow (i) $M \prec M \stackrel{.}{\cup} C$.

§ 3. From one to κ_0 countable models. We use a result of Shishmarev [7]. He defines T as *limited* if there is $n < \omega$ such that

$$T \vdash \forall x (\bigvee_{l,m=1}^{n} f^{l}(x) = f^{l+m}(x)),$$

i.e., every component is of diameter $\leq n$.

THEOREM 3 (Shishmarev [7]). T is \$0-categorical iff

- (i) T is limited, and
- (ii) If $M \models T$ then there are only a finite number of non-isomorphic sets of the form $\bigcup f^{-n}(a)$ in M.

Theorem 4. If T has $\geqslant 2$ non-isomorphic countable models, then T has infinitely many non-isomorphic countable models.

Proof: Assume T has only finitely many countable models, and let M_0 be the prime model of T. Since T is not κ_0 -categorical at least one of (i), (ii) from Theorem 3 does not hold. Thus it is easily seen: (iii) The components of M_0 are not of bounded diameter, or (iv) There are infinitely many non-isomorphic sets of the form $\bigcup f^{-n}(a)$ in M_0 .

Case 1. First assume (iii). Consider the following type

 $p = p(x) = \{x \text{ is part of a component } C \text{ (of infinite diameter) disjoint from } M_0 \text{ such that no element of } C \text{ is algebraic in } C \}.$

It is easy to see how to write p as a set of first-order sentences with parameters from M_0 . (Algebraicity in a component can be expressed by a formula referring to the whole model by using Lemma 1; see Corollary 2.2 of [4].) Also p is consistent, so such a component C exists in some model $\equiv M_0$.

CLAIM 1. M_0 contains <2 copies of C.

Proof. It is sufficient to prove $C < C \dot{\cup} C \dot{\cup} \dots$, since if $M_0 = A \cup C \dot{\cup} C \dot{\cup} \dots$,

where A does not intersect any copy of C, then $A \cup C \prec M_0$, and the two can be isomorphic only if M_0 contained only one copy of C, or $M_0 = A$, with no copies of C.

The proof of $C \prec C \cup C \cup ...$ is similar to the analogous parts of Lemma 5.

CLAIM 2. $M_0 \prec M_0 \stackrel{.}{\cup} C$.

Proof. Follows from Lemma 5, (iv) -> (i)

Now we can similarly add any finite number of copies of C to M_0 , getting \aleph_0 non-isomorphic elementary extensions. This proves Theorem 4 in Case 1.

Case 2. (iv) holds. In this case the elements $a \in M_0$ for which the sets $\bigcup_{n < \omega} f^{-n}(a)$ are non-isomorphic all realize different atomic types. So there is a non-atomic 1-type in T. Let b realize this type, and let $D = (\bigcup_{n < \omega} f^{-n}(b)) \cap N$, where N is some countable model of T containing b. Since $b \notin M_0$, $D \cap M_0 = \emptyset$.

Case 2.1. If there is $m < \omega$ such that $f^m(b) \in M_0$, let m be the minimal one and consider $c = f^{m-1}(b)$. Then c is not algebraic over f(c), simply because $c \notin M_0$. So we may adjoin the set $\bigcup_{n < \omega} f^{-n}(c) \cap N$ onto f(c) any finite number of times and thus get κ_0 non-isomorphic elementary extensions of M_0 . See Lemma 1.2.

Case 2.2. There is no such m. Then no component containing b intersects M_0 . Let C be any countable component containing b. Now by Lemma 5, (iv \rightarrow i) $M_0 < M_0$ $\dot{}$ C and we again get κ_0 elementary extensions of M_0 .

This completes the proof of Theorem 4.

§ 4. From s_0 to 2^{s_0} countable models.

THEOREM 5. If T has $> \aleph_0$ countable models, then T has 2^{\aleph_0} countable models. Proof. Let M_i , $i < \omega_1$, be countable elementarily equivalent models.

Case 1. There are only κ_0 non-isomorphic components C_j , $j < \omega$, which occur as components in some M_i 's.

CLAIM. At least one of the following four alternatives holds:

- (A) There is $i < \omega_1$ and $j_n < \omega$ for $n < \omega$ such that
 - (i) $C_{lm} \equiv C_{ln}$ for $m, n < \omega$.
 - (ii) M_i has \aleph_0 occurrences of components $\equiv C_{j_0}$.
- (B) There is $i < \omega_1$ and $j_n < \omega$ for $n < \omega$ such that
 - (i) $C_{j_m} \not\equiv C_{j_n}$ for $m \neq n$.
 - (ii) M_i has only a finite (or zero) number of occurrences of components $\equiv C_{j_n}$,
 - (iii) For all $n < \omega$ there is $i_n < \omega_1$ such that M_{i_n} has a different number (zero, finite, or infinite) of occurrences of components $\equiv C_{j_n}$ than does M_i .

- (C) There is $i < \omega_1$ and $k_n < \omega$ for $n < \omega$ such that
 - (i) $C_{k_m} \not\equiv C_{k_n}$, $m \neq n$.
 - (ii) M_i has a finite (or zero) number of occurrences of components $\cong C_{k_n}$, $n < \omega$.
 - (iii) For all $n < \omega$ there is $i_n < \omega_1$ such that M_{i_n} has an infinite number of occurrences of components $\equiv C_{k_n}$.
- (D) There is $i < \omega_1$ and $l_n < \omega$ for $n < \omega$ such that
 - (i) $C_{l_m} \not\equiv C_{l_n}$, $m \neq n$.
 - (ii) M_i has a (positive) occurrence of C_{ln} , $n < \omega$.
 - (iii) For all $n < \omega$ there are infinitely many $j < \omega$ such that $C_i \equiv C_{l_n}$.

Proof of Claim. Assume (A) does not hold. Then: (*) if for any $j < \omega$ and $i < \omega_1$ M_i has κ_0 occurrences of components $\equiv C_j$, then there are only finitely many $k < \omega$ with $C_k \equiv C_i$.

Assume also (B) does not hold. Then: (**) If C_{j_n} , $n < \omega$, are pairwise $\not\equiv$ and there is i_0 such that M_{i_0} has only a finite (or zero) number of occurrences of components $\equiv C_{j_n}$ for all $n < \omega$, then for all but finitely many $n < \omega$, every M_i contains the same number of occurrences of components $\equiv C_{j_n}$. Divide the C_{j_n} , $j < \omega$, into elementary equivalence classes E_n , $n < \alpha \le \omega$, where $E_n = \{C_j^n: j < \alpha_n \le \omega\}$. For all $i < \omega_1$ consider the set $\{\langle n; \beta_0^{n_i}, \ldots, \beta_k^{n_i}, \ldots \rangle_{k < \alpha_n}: n < \alpha\}$ where $\beta_k^{n_i}$ is the number of copies of C_k^n occurring in M_i .

The following properties hold:

- 1) (From (*).) If $\alpha_n = \omega$ then for all $i < \omega_1$, $\sum_{k < \alpha_n} \beta_k^{n,i} < \aleph_0$.
- 2) (From (**).) If there is $i_0 < \omega_1$ such that for infinitely many $n < \omega$, $\sum_{k < \alpha_n} \beta_k^{n,i_0} = \gamma_n < \omega$, then for all but finitely many of the above n and for all $i < \omega_1$ $\sum_{k < \alpha_n} \beta_k^{n,i} = \gamma_n$.

Now since there are \mathbf{s}_1 non-isomorphic M_i there are \mathbf{s}_1 sets $\{\langle n; \beta_k^{n,i} \rangle_{k < \alpha_n} : n < \alpha \}$ satisfying 1) and 2).

Case 1.1. There is only a finite number of $n < \omega$ such that $\alpha_n = \omega$. Then by 1) it follows that there are \aleph_1 sets

$$\{\langle n; \beta_k^{n,l} \rangle_{k < \alpha_n} : n < \alpha \text{ and } \alpha_n < \omega\}$$
.

By 2) it follows that there are \aleph_1 sets

$$\left\{\left\langle n;\beta_k^{n,\,i}\right\rangle_{k<\sigma_n}:\,n<\alpha\text{ and }\alpha_n<\omega\text{ and }\sum_{k<\alpha_n}\beta_k^{n,\,i}=\,\aleph_0\right\}.$$

This set is just

$$\{\langle n; \beta_k^{n,i} \rangle_{k < \alpha_n} : n < \alpha \text{ and } \alpha_n < \omega \text{ and } (\exists k < \alpha_n)(\beta_k^{n,i} = \beta_0) \}$$
.

Thus there are \$1 sets

 $\left\{\left\langle n;\;\beta_k^{n,i}\right\rangle_{k<\alpha_n}:\;n<\alpha\;\;\mathrm{and}\;\;\alpha_n<\omega\;\;\mathrm{and}\;\;(\exists k<\alpha_n)(\beta_k^{n,i}=\aleph_0)\;\;\mathrm{and}\;\;(\exists l<\alpha_n)(\beta_k^{n,i}<\aleph_0)\right\}.$ Thus (C) holds.

Case 1.2. For infinitely many $n < \omega$, $\alpha_n = \omega$; and there are $\leq \kappa_0$ sets $\{\langle n; \beta_k^{n, i} \rangle_{\kappa < \alpha_n} : n < \alpha \text{ and } \alpha_n < \omega \}$ satisfying 1) and 2).

Thus there must be \aleph_1 sets $\{\langle n; \beta_k^{n,i} \rangle_{k < \alpha_n} : n < \alpha \text{ and } \alpha_n = \omega \}$. By 1), for each $i < \omega_1$, $\sum_{k \le \alpha_n} \beta_k^{n,i} < \aleph_0$. So there are \aleph_1 infinite sets

 $\{\langle n; \beta_k^{n,i} \rangle_{k < \alpha_n} : n < \alpha, \alpha_n = \omega, \sum_{k < \alpha_n} \beta_k^{n,i} \neq 0 \}.$

This satisfies (D). The claim is proved. Now whether (A), (B), (C) or (D) holds we can construct 2^{80} non-isomorphic models $\equiv M_i$ as follows: If (A) holds use Lemma 2.

- If (B) holds use (iv) \rightarrow (i) of Lemma 5.
- If (C) holds use (iii) \rightarrow (i) of Lemma 5.
- If (D) holds use Lemma 2.

Case 2. There are \aleph_1 non-isomorphic components appearing as components in some M_1 's.

Case 2.1. Among those \aleph_1 components, there are \aleph_1 which are pairwise not elementarily equivalent. Thus there are infinitely many not elementarily equivalent to any component of M_0 , say. So, by (iv) \rightarrow (i) of Lemma 5, we can construct 2^{\aleph_0} non-isomorphic elementary extensions of M_0 .

Case 2.2. There is a component C such that there are \aleph_1 non-isomorphic components $\equiv C$ which appear as components in some M_i 's. Thus it is sufficient to prove the following.

Lemma 6. If there are \aleph_1 non-isomorphic components $C_i \equiv C$, $i < \omega_1$, then there are 2^{\aleph_0} non-isomorphic components $\equiv C$.

Proof. If there are not 2^{\aleph_0} , then only \aleph_0 complete types are realized in the C_i ; thus we may assume that there is a complete type p which is realized in each C_i , by b_i , say.

Claim 1. (i) or (ii) holds:

(i) \aleph_1 of the C_1 are pairwise non-isomorphic from b_1 down (i.e., the isomorphism $b_1 \mapsto b$; cannot be extended to the set of predecessors of b_1).

(ii) \aleph_1 of the C_i are pairwise non-isomorphic from b_i up (i.e., the isomorphism $b_i \mapsto b$; cannot be extended to $C_i - \bigcup_{i=0}^{\infty} f^{-n}(b_i)$).

Now we prove Lemma 6 in the case that (i) holds; when (ii) holds the proof is similar.

There exists n_1 , $1 \le n_1 < \omega$, such that for κ_1 of the $i < \omega_1$ there is $1 \le k_1(i) \le \omega$ such that for all $j < k_1(i)$, $f^{n_1}(a_{i,j}^1) = b_i$, $a_{i,j}^1$ is not algebraic over $f(a_{i,j}^1)$, $\{a_{i,j}^1: j < k(i)\} = \{x: f^{n_1}(x) = b_i, x \text{ is not algebraic over } f(x)\}$, and n_1 is minimal. Thus the sets $\bigcup_{0 \le n < n_1} f^{-n}(b_i)$ are elementarily isomorphic for all the above i.

3 - Fundamenta Mathematicae CVIII/3

Case 1. There are \mathbf{x}_1 i such that the sets $\bigcup_{\substack{0 \le n \le n_1+1}} f^{-n}(b_i) \cup \bigcup_{\substack{n \le \infty \\ j \le k_1(i)}} f^{-n}(a_{i,j}^1)$ are

pairwise nonisomorphic.

Claim 2. Then (iii) or (iv) holds:

(iii) There are \aleph_1 i such that there exists j(i) such that all the $f(a^1_{i,j(i)})$ realize the same type and the sets $\bigcup f^{-n}(f(a^1_{i,j(i)}))$ are pairwise nonisomorphic.

(iv) There are \mathbf{x}_0 i such that there exists j(i) such that all the $f(a^1_{i,j(i)})$ realize different types.

Proof of Claim 2. Assume not (iv). Then there is I, $|I| = \aleph_1$, such that the number of types realized in $\{f(a^1_{i,j}): j < k_1(i)\}$ is finite for each $i \in I$. In addition we may assume that the number of types realized in $\{f(a^1_{i,j}): j < k_1(i), i \in I\}$ is finite. Furthermore we may assume that the number of times each type is realized in $\{f(a^1_{i,j}): j < k_1(i)\}$ is constant for all $i \in I$. So we may assume that there is a certain type q such that the sets $\bigcup \{\bigcup_{n < \infty} f^{-n}(f(a^1_{i,j})): f(a^1_{i,j}) \text{ realizes } q\}$ are pairwise non-isomorphic for all $i \in I$. Thus (iii) follows.

Now we return to the main proof.

Assume (iii) holds. There are then κ_0 nonisomorphic sets of the form $\bigcup_{n<\omega} f^{-n}(a^1_{i,f(l)})$. Furthermore there is i such that for κ_0 of the above sets, call them A_I , $I<\omega$, the set $\{j< k(i): \bigcup_{n<\omega} f^{-n}(a^1_{i,f})\cong A_I\}$ is finite or empty. For every $I\subseteq\omega$ construct the model C_I as follows: Start with C_I and form C_I by attaching exactly one (additional) copy of A_I beneath $f(a^1_{i,f(l)})$ iff $l\in I$.

By Lemma 1.2 $C_I \equiv C_i$, and there are 2^{\aleph_0} of them which are pairwise non-isomorphic.

Now assume (iv) but not (iii). Notice that all the types realized by the $f(a_{i,j(i)}^1)$ in the statement of (iv) are realized in every C_i in $f^{-(n_i-1)}(b_i)$, say by d_m^i , $m < \omega$. Furthermore there is an i such that for κ_0 of the d_m^i , $m < \omega$, call them d_i^i , the set $\{j < k(i): f(a_{i,j}^1) = d_i^i\}$ is finite or empty.

For every $I \subseteq \omega$ we construct the model C_I as follows: Start with C_i and form C_I by attaching behind d_i^i exactly one (additional) set of the form $\bigcup_{\substack{n < \omega \\ n < \omega}} f^{-n}(a_{i_0,j}^1)$ where i_0 and j are such that $f(a_{i_0,j}^1)$ realizes in C_{i_0} the same type as d_i^i in C_i . (If $\{j < k(i): f(a_{i_0,j}^1) = d_i^1\} \neq 0$ then of course we may take $i_0 = i$).

Again by Lemma 1.2 $C_I \equiv C_i$, and there are $2^{\aleph o}$ of them which are pairwise nonisomorphic.

This concludes the proof for Case 1.

Case 2. No \aleph_1 of the sets $\bigcup_{0 \le n < n_1 + 1} f^{-n}(b_i) \cup \bigcup_{\substack{n < 0 \ j < k_1(l)}} f^{-n}(a_{i,j}^1)$ are pairwise

nonisomorphic.

Thus, there are \mathbf{s}_1 which are isomorphic. The isomorphism has to break down at some later stage, so there is $n_2 > n_1$ such that for \mathbf{s}_1 i there are $a_{1,i}^2 \in C_1$,

 $j < k_2(i) \le \omega, \ f^{n_2}(a_{i,j}^2) = b_i, \ a_{i,j}^2 \ \text{not algebraic over} \ f(a_{i,j}^2), \ a_{i,j}^2 \notin \bigcup_{\substack{n < \omega \\ j < k_1(i)}} f^{-n}(a_{i,j}^1),$

and n_2 is minimal (after n_1).

The proof now breaks up into two cases analogous to Case 1 and Case 2, with n_2 in place of n_1 .

Continuing in this fashion we either get κ_1 pairwise nonisomorphic components at some finite level beneath the b_i 's, or:

Case ω . There are numbers $0 = n_0 < n_1 < n_2 < ... < \omega$ and components C_k , $k < \omega$, such that for all $k < \omega$ there are elements $a_0^k, ..., a_k^k \in C_k$ satisfying

(i)
$$f^{n_0}(a_0^k) = f^{n_1}(a_1^k) = \dots = f^{n_k}(a_k^k) = b_k$$
 (so $a_0^k = b_k$).

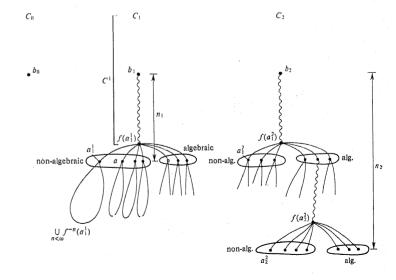
(ii) a_j^k is not algebraic over $f(a_j^k)$, for all $1 \le j \le k$.

(iii)
$$a_{j_1}^k \notin \bigcup_{n \le m} f^{-n}(a_{j_2}^k)$$
 for all $j_1 > j_2 > 0$.

(iv) The part of C_k above and including $f(a_k^k)$ is elementarily isomorphic to the part of C_l above and including $f(a_k^l)$, for all k < l.

(v)
$$|\{x \in C_k: \operatorname{tp}(x, f(a_k^k)) = \operatorname{tp}(a_k^k, f(a_k^k))\}| \neq |\{x \in C_{k+1}: \operatorname{tp}(x, f(a_k^{k+1})) = \operatorname{tp}(a_k^k, f(a_k^k))\}|$$
.

See the figure.



Now we define a component $C = \bigcup_{m < \omega} C^m$, $C \equiv C_k$ for all k; $C^m \subset C^{m+1}$. Because of (v) there is $\sigma(k) \in \{k, k+1\}$ such that

$$\{x \in C_{\sigma(k)} \colon \operatorname{tp}(x, f(a_k^{\sigma(k)})) = \operatorname{tp}(a_k^k, f(a_k^k))\}$$

is finite. Let $C^0 = C_1 - \bigcup_{1 \le n < \omega} f^{-n}(f(a_1^1))$. Thus $C^0 \cong C_2 - \bigcup_{1 \le n < \omega} f^{-n}(f(a_1^2))$. Consider C^0 as being $C_{\sigma(1)} - \bigcup_{1 \le n < \omega} f^{-n}(f(a_1^{\sigma(1)}))$. Now we describe what to attach to the bottom of C^0 (i.e., to $f(a_1^{\sigma(1)})$) in order to obtain C^1 :

- a) For every $x \in C_{\sigma(1)}$ such that $f(x) = f(_1^{\sigma(1)})$, x is not algebraic over $f(a_1^{\sigma(1)})$, and $\operatorname{tp}(x, f(a_1^{\sigma(1)})) \neq \operatorname{tp}(a_1^{\sigma(1)}, f(a_1^{\sigma(1)}))$, attach $\bigcup_{n \leq \infty} f^{-n}(x)$.
- b) For every $x \in C_2$ such that $f(x) = f(a_1^2)$, x is algebraic over $f(a_1^2)$, and $f(a_2^2) \notin \bigcup_{n \le n} f^{-n}(x)$, attach $\bigcup_{n \le n} f^{-n}(x)$.
- c) For the unique x such that $f(x) = f(a_1^2)$, x is algebraic over $f(a_1^2)$, and $f(a_2^2) \in \bigcup_{n < \omega} f^{-n}(x)$, attach $\bigcup_{n < \omega} f^{-n}(x) \bigcup_{n < \omega} f^{-n}(a_2^2)$.

In general, to obtain C^m go down to $f(a_m^{\sigma(m)})$ and discard the finite number of its predecessors which realize over it the same type as $a_m^{\sigma(m)}$. Then continue down C_{m+1} . (Of course it could be in (v) that one of the sets was empty. In that case we may have nothing to discard.)

Take
$$C = \bigcup_{m \in \mathbb{Z}} C^m$$
.

From considerations like Lemma 4, follows that $C \equiv C_k$ for all k.

Now for each $I \subseteq \omega$ we define $C_I > C$:

If $m \in I$ attach directly below $f(a_m^{\sigma(m)})$ in C exactly one copy of the non-algebraic tail we discarded above.

If $k \notin I$ we do not add anything below $f(a_k^{\sigma(k)})$. By Lemma 1.2 $C_I > C$, and there are $2^{\aleph o}$ of them which are not isomorphic.

References

- S. Burris, Scott Sentences and a problem of Vaught for mono-unary algebras, Fund. Math. 80 (1973), pp. 111-115.
- [2] A. Ehrenfeucht, An application of games to the completeness problem for formalized theories, Fund. Math. 49 (1961), pp. 129-141.
- [3] C. C. Chang and H. J. Keisler, Model Theory, North-Holland, 1973.
- [4] L. Marcus, Minimal models of theories of one function symbol, Israel J. Math. 18 (1974), pp. 117-131.

- [5] A. Miller, Vaught's conjecture for one unary operation, preprint, July 1976.
- [6] M. Rubin, Theories of linear order, Israel J. Math. 17 (1974), pp. 392-443.
- [7] Yu. Shishmarev, Categorical theories of a function, Math. Notes 11 (1972), pp. 58-63.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA Santa Barbara, California

Current address: INFORMATION SCIENCES INSTITUTE UNIVERSITY OF SOUTHERN CALIFORNIA 4676 Admiralty Way Marina del Rey, California 90291

> Reçu par la Rédaction le 7. 2. 1977 Accepté par la Rédaction le 16. 1. 1978