170
References

[1]1 F. Adams, A variant of E. H. Brown’s. representability theorem, Topology 10 (1971),
pp. 185-198.
[21 E. Brown, Jr., Abstract homotopy theory, Trans. Amer. Math, Soc. 119 (1965), pp. 79-85.
[3] A. Calder and J. Siegel, Homotopy and Kan Extensions, Categorical Topology Mannheim
1975, Springer Lecture Notes (54), pp. 152-163.
[4] — Homotapy and uniform homotopy, Trans. Amer. Math. Soc. 235 (1978), pp. 245-270.
[51 — Kan extensions of homotepy functors, ¥, Pure Appl. Algebra 12 (1978), pp. 253-269.
[6]1 A. Deleanu, The Brown-Adams representability theorem, J, London Math. Soc. 6 (1973),
© pp. 561-562,
[71 P.I. Hilton, On Kan extensions of cohomology theories and Serre classes of groups, Fund.
Math. 73 (1971), pp. 113-165.
[8] — Localization homology and a construction of Adams, Trans. Amer. Math, Soc, 179 (1973),
pp. 349-362.
[91 A. Dold, Lectures in Algebraic Topology, Springer, Berlin—~Heidelberg 1972.
[10] C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math, 69 (1947),
pp. 200-242.
[111 S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University
Press 1952,
[12] S.T. Hu, Homotopy Theory, Academic Press, 1959.
[13] S. MacLane, Categories for the Working Mathematician, Springer, New York 1971.

UNIVERSITY OF MISSOURI-ST.LOUIS

Accepté par la Rédaction le 2. 1. 1978

icm

The number of countable models of a theory of one wnary function
by
Leo Marcus (Marina del Rey, Ca.)

Abstract. If T is a theory in the language of one unary function symbol then T has 1, %o,
or 280 countable models.

§ 1. Introduction. Let L° denote the language containing equality and one
unary function symbol. We prove:

TuroreM 1. If T is a complete first order theory in L°, then T has 1, 8, or 2%
countable models. -

The part of the theorem claiming that if T has > #, countable models then T
has 2% countable models is the first-order Vaught conjecture for L° The L.,
Vaught conjecture was claimed by Burris in [1] but an error was found by Arnold
Miller. After writing the first draft of this paper I learned that Miller [5] had already
proven Theorem 1 by a different method in a more general setting, and some infor-
mation about the LY, case. .

The following theorem of Shelah gives information about the number of
uncountable models of a theory in L°.

TrEOREM (Shelah). If T is a complete first-order theory in L® then either T has 2*
models of power A for all Az, or T has <3,(lo) models of power- %, for some n<w
and all oz w.

There is a similar theorem for L§,,-

The proof uses general considerations of stability. The problem of the number
of countable models of a first-order theory of linear order was solved in Rubin [6].

I am indebted to Mati Rubin for calling my attention to the error in [1], and
to him and to Miller for detecting errors in earlier versions of the present paper.

§ 2. Preliminaries. We preserve the notation and definitions of [4]. Here is a brief
review. (For model-theoretic notation and definitions see [3].) The language contains
one unary function symbol f, and equality.

The distance between a and b relative to a set 4 is d(a, b) = min{r: there
are k, I such that k-1 = r and there are Xo, .. Xi> Yoo s 1€ A such that a = X,
b = yo, f(3x) = X144 for i<le, f(¥) = Pjr1 for j<I, and x, = y;}. A path from a
to bis such a sequence (Xo, ..., ¥ip. We say a is above b if there is a path from a to &
which contains f(5). The set 4 is below b if b is above every element of 4. Notice
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that there could be & and b such that a is both above and below b. A is directly

below b if 4 is the union of sets of the form A, = U f™%a), where f(a) = b.
n<w

(Note f%a) = a.)

Any model breaks up into the disjoint union of components, a component
being the set of points of finite distance from a given point. When we count occurrences
of components in a model, we count o disjoint copies of the same component as o
occurrences.

If a € B let Nbdja, the r-neighborhood of @ in B, be the set of points in B of
distance <r from a. If 4 is a set let Nbdz4d = UA Nbdja. A U B indicates disjoint

ae

union, i.e., if necessary taking an isomorphic copy of 4 which is disjoint from B.

Let 4 be a set, a;€ 4, i =1, ...,n; g<w. The g-type of {ay, ..., a,» over 4 is
{¥Cegs oes X,)1 ¥ has <g quantifiers and Ak (ay, ..., a,)}. Wewrite Nbd},a = Nbd3b
if the g-type of @ over Nbd/,a is the same as the g-type of b over Nbdjb.

We use = for elementary equivalence, < for elementary submodel, = for
isomorphism.

The following two results are from [4].

LemMa 1.1. For any m and n there are numbers r = r(m, n) and q = q(m, n)
such that for any \y (X) with n free variables and m quantifiers, and for any model M
and every @, b from M of length n, if Nbd}a =, Nbdj,b then M & (a@) = y(b).

1.2. If f(a) = b and a is not algebraic over b in M (i.e., a does not satisfy any
Jormula o (x, b) which. is satisfied by only finitely many members of M) then
M- U f@<M.

n<o

In addition ‘we need the following facts.

LemMa 2. Let C, = C, be components. Then:

() For any M, MO C, = MO C,.

(i) Let by € Cy and b, € C, realize the same type, F, is the set of predecessors
of £(b) whic.h are above by, | = 1,2. Let C{ be the component whose set of elements
is (Cy—F,) U F,, and f is defined as in Cy—F and F, except that f (a) = by ifae F,
and f(a) ¢ F,. Then C| = C,.

Proof. Follows from Lemma 1.

Levma 3. Let A, B be components, acd, beB, M=AO B Then
(M, a)=(M,b) iff (4,a) = (B, b).

Proof. We use the Ehrenfeucht game criterion. See [2]. We shall give informal
descriptions of the winning strategies.

=: We must show that player II has a winning strategy in G,((4, a), (B, b))
for n<w. We know that I7 wins in every G((M, a), (M, b)); we just have to show that
he can choose elements in the appropriate components. So assume I chooses x, € 4.
IT consults his strategy for Gatasn+ar (M, 6), (M, b)) and finds a suitable p, € M.
Obviously d(x,,a) = d(y,, b) so ¥y € B. Now let I choose x,€4 (if I chooses
¥2 € B the proof is the same). If d(a, x,)<d(a, x3)+2-3"~1 II can choose y, e M
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according to Gag,xp+an((M, @), (M, b)) and again it will follow that y, e B. If
however d(a, X,)=d(a, x;)+2-3""" then II looks at Gy, xyy+3n-1((M, @), (M, b))
as if x, were I’s first move, and then II chooses y, € M. - Again y, must be in B, Note
that d(yy,y,)=2-3""1. It is clear how II continues to play.

<=: Now assume II has a winning strategy in all G,((4, ), (B, b)), and assume I
chooses x; as a first move in G,,((M, a), (M, b)). Assume x; € (M, a). If x; €4,
IT plays according to G,(4,a),(B,b). If x,eB, let y; =x, and play
G,((4, @), (B, b)) getting x] e 4. Let y; = x. Now {(a, x3), (b, ¥})) is a winning
position for I7in G,((4, @), (B, b)) so {(a, x,), (b, ¥,)) is a winning position for I7in
G,((M, a), (M, b)). The continuation is clear.

LeMMA 4. Let A and B be components ae 4, be B.

@) If for every r, g, Nbdya =, Nbd3b, then 4 = B.

(i) If there is n<w such that for all r, q there is a' € A, d(a, a’)<n such that
Nbdja' =, Nbdpb, then A = B. :

Proof. (): Let M = 4 U B. Since Nbd}a =, Nbdjb, and Nbd)a = Nbdja,
Nbdhh = Nbdjb, we have by Lemma 1. () (M, @) = (M, b). Thus by Lemma 3,
(4, a) = (B, b), and 4 = B. (ii): We shall show that there are a* € 4, b* & B such for
all r, g Nbdja* =, Nbdpb*, and thus the result follows from (i). From the hypo-
thesis of (ii) we can find a* € 4, d(a, a*)<n and m<n such that for all r, g there
is a' € 4, f™(a") = a*, and Nbdja' =, Nbdpb. Now take b* = f"(b).

LemMA 5. The following conditions satisfy (iv)— () = @) = (iii). Let M be
a model and C a component.

@) M<M O C.

(i) There is N = M in which 8, copies of C occur.

(i) There is N = M with 8, occurrences of components = C.

(iv) There is N = M such that a different number (including zero) of compo-
nents = C occur in M and N.

Proof. (i) = (iii) is clear by Lemma 2, so we shall prove (i) = (ii) and then
i) — (). .

(i) — (ii): Tt is sufficient to show that if M<M UC,then MO C<LM O CUC.
Let C,, C, be two copies of C disjoint from M and from each othcr.. Assume
MuCyuC ko(c,d b) where de M, FeC,, ceC;. By the Tarski-Vaught
test (see [3]) and Lemma 4 it is sufficient to find de M U C, “equivalent enough”
to ¢ and “far enough” away from @ U b. But M<M U Co, so we can even findde M
which will work.

(i) — (i): Let MO CE (b, 8), ae M, beC. As above it is ‘sufﬁcient to find
ce M equivalent enough to b and far enough away from @. But since C' occx.lrs 8o
times in a model = M there are elements ¢ € M equivalent to b, and arbitrarily far
from each other. So some will be far enough away from a.
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(iv) — (i): First assume that more components = C occur in N than in M.
Let MU Cok ¢(a, b, ©), (b or & possibly empty) where C, is a copy of C disjoint
from M, ae Cy, be M but the members of b do not occur in componenis = C,
¢e M and the members of ¢ do occur in components = C. We must find de M
far from b and ¢ and equivalent to a. Since there are more components = C in N
we can find 2’ and ¢’ in N which are equivalent enough to a and ¢ respectively, and o' is
not in any component which contains.a member of ¢'. Thus in M we can find J which
is equivalent enough to « and arbitrarily far from ¢. Now if all these d were close to
an element be b then by Lemma 4(ii) C = the component of b, contradiction.

Now assume that M contains more occurrences of components = C than does N.
So by the above proof N<N U C. Thus by (i) — (ii) there is a model = N in which No
copies of C occur. Thus there is such a model = M (since M = N). Thus by (ii) — (i)
M<MUC H

§ 3. From one to &, countable models. We use a result of Shishmarev [7]. He
defines " as limited if there is n<w such that

TV v £ = f147()

i.e.,, every component is of diameter <.

THEOREM 3 (Shishmarev [7]). T is 8,-categorical iff
() T is limited, and
(1) If M E T then there are only a finite number of non-isomorphic sets of the Jorm

U fa in M.

n<wo

THEOREM 4. If T' has >2 non-isomorphic countable models, then T has infinitely
many non-isomorphic countable models.

Proof: Assume T has only finitely many countable models, and let M, be
the prime model of T. Since T is not ,-categorical at least one of (i), (i) from
Theorem 3 does not hold. Thus it is easily seen: (iii) The components of M, are not

of bounded diameter, or (iv) There are infinitely many non-isomorphic sets of the
form |J f~™(a) in M,.
n<wo

Case 1. First assume (iii). Consider the following type

P =p(x) = {x is part of a component C (of infinite diameter) disjoint
from M, such that no element of C is algebraic in Ccl.

It is easy to see how to write p as a set of first-order sentences with parameters
from M,. (Algebraicity in a component can be expressed by a formula referring to
the whole model by using Lemma 1; see Corollary 2.2 of [4].) Also p is consistent,
so such a component C exists in some model = M.

CrLamM 1. M, contains <2 copies of C.
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Proof. It is sufficient to prove C<C U C U ..., sinceif My = Au CU C U ...,

—
finite or infinite
where A does not intersect any copy of C, then 4 U C<M,, and the two can be iso-

morphic only if M, contained only one copy of C, or M, = A, with no copies of C.
The proof of C<C U C U ... is similar to the analogous parts of Lemma 5.
CLAIM 2. Mo<M, U C.

Proof. Follows from Lemma 5, (iv) — ().

Now we can similarly add any finite number of copies of Cto M,, getting ¥, non-
isomorphic elementary extensions. This proves Theorem 4 in Case 1.

Case 2. (iv) holds, In this case the elements a € M, for which the sets

U @

n<o
are non-isomorphic all realize different atomic types. So there is a non-atomic
1-type in 7. Let b realize this type, andlet D = ( U f7"(b)) n N, where N is some

n<o

countable model of T containing b. Since b¢ My, D n My = Q.

Case 2.1. If there is m<w such that f™(b) € My, let m be the minimal one and
consider ¢ = f™ (). Then ¢ is not algebraic over f(c), simply because ¢ ¢ M.
So we may adjoin the set  |J f7"(c) n N onto f(¢) any finite number of times and

n<w.

thus get ¥, non-isomorphic elementary extensions of M. See Lemma 1.2.

Case 2.2. There is no such m. Then no component containing b intersects M?.
Let C be any countable component containing b. Now by Lemma 5, (iv —1)
My<M, U C and we again get Ny elementary extensions of M,.

This completes the proof of Theorem 4.

§ 4. From &, to 2% countable models.
TuEOREM 5. If T has >, countable models, then T has 2% countable models.
Proof. Let M,, i<cw,, be countable elementarily equivalent models.
Case 1. There are only 8, non-isomorphic components C;, j<w, which occur
as components in some M’s.

CLAM. At least one of the following four alternatives holds:
(A) There is i<o, and j,<w for n<w such that

i) ¢, = C, for m,n<o.

(i) M, has 8, occurrences of components = Cj,-
(B) There is i<w, and j,<o for n<w such that

@) C,, & C, for m# n.

(i) M, has only a finite (or zero) number of occurrences of components =

n<o.

(iii) For all n<w there is i,<wy such that M;, has a different number (zero,
Sfinite, or infinite) of occurrences of components = C;, than does M.

C

n?
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(C) There is i<w; and k,<w for n<w such that
() Cip # iy m # 1. .
(ii) M, has a finite (or zero) number of occurrences of components = Cy ,
n<o.

(ili) For all n<w there is i,<wq such that M, has an infinite number of
occurrences of components = C,,.

(D) There is i<w, and I,<w for n<w such that
O G, #C, m#n
(i) M, has a (positive) occurrence of Cj,, n<ow.
(iii) For all n<w there are infinitely many j<o such that C; = C,,.

Proof of Claim. Assume (A) does not hold. Then: (x) if for any j<w and
i<w; M; has &, occurrences of components = C;, then there are only finitely
many k<o with G = C;j.

Assume also (B) does not hold. Then: (x+) If C; , n<w, are pairwise # and
there is i, such that M; has only a finite (or zero) number of occurrences of com-
ponents = C;,_ for all n<w, then for all but finitely many n<w, every M, contains
the same number of occurrences of components = C; . Divide the Cj, j<w, into
elementary equivalence classes E,, n<a<w, where E, = {C}: j<eo,<w}. For
all i<, consider the set {(n; ", ..., B!, ... Dp<a,: n<c} where fi?is the number
of copies of Ci occurring in M;.

The following properties hold:

1) (From (%)) If &, = o then for all i<w,, Y fr'<x,.

<an

2) (From (xx).) If there is iy<w, such that for infinitely many n<o,

Y, B = y,<o, then for all but finitely many of the above n and for all i<w,

k<ap
T B =1,

k<an

. Now since there are 8, non-isomorphic M, there are &, sets {<n; B’ i)kqn: n<a}
satisfying 1) and 2).

Case 1.1. There is only a finite number of n<w® such that «, = w.
Then by 1) it follows that there are &, sets

{<n; By Dyes,: n<a and o, <w}.

By 2) it follows that there are &, sets

{<n; Bircon: n<a and @, < and Y
k<op

=},

This set is just

{<ns BrForcan: < and w,<o and Fk<a) (Bl = 8} .

icm°®
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Thus there are 8 sets
(13 B Duca: n<a and o, <0 and @k<a)(@ ' = 5o) and @l<a) (B <o)}

Thus (C) holds.

Case 1.2. For infinitely many n<ow, a, = o; and there are <§, scts
{<n; B h<ay: n<o and #, <o} satisfying 1) and 2).

Thus there must be 8, sets {{n; fi Dy<q,: n<a and o, = o}. By 1), for each
i<w;, Y Pu'<so. So there are sy infinite sets

k<on
{3 B it <ty = 0, 3 i 0.
This satisfies (D). The claim is proved. Now whether (A), (B), (C) or (D) holds we
can construct 2% non-isomorphic models = M, asfollows: If (A) holds use Lemma 2.

If (B) holds use (iv) — (i) of Lemma 5.

If (C) holds use (iii) — (i) of Lemma 5.

If (D) holds use Lemma 2.

Case 2. There are &; non-isomorphic components appearing as components in
some M;’s. '

Case 2.1. Among those 8, components, there are §; which are pairwise not
elementarily equivalent. Thus there are infinitely many not elementarily equivalent
to any component of Mo, say. So, by (iv) — (i) of Lemma 5, we can construct 2% non-
isomorphic elementary extensions of M,.

Case 2.2. There is a component C such that there are 8, non-isomorphic com-
ponents = C which appear as components in some M;’s. Thus it is sufficient to
prove the following.

LemMA 6. If there are 8, non-isomorphic components C,=C, i<y,
are 2% non-isomorphic components = C.

Proof. If there are not 2%, then only %, complete types are realized in the C;;
thus we may assume that there is a complete type p which is realized in each C;,
by b;, say.

Claim 1. (i) or (i) holds: .

(@) %, of the C, are pairwise non-isomorphic from b, down (i.e., the isororphism
b, |— b; cannot be extended to the set of predecessors of by.

(i) 8y of the C, are pairwise non-isomorphic from by up (i.e., the isomorphism
b, |~ b; cannot be extended to Ci— "k<J b (D))

w

then there

Now we prove Lemma 6 in the case that (i) holds; when (i) holds the proof
is similar.

There exists ny, 1<n; <o, such that for %, of the i<, there is lskl(i)lsw
such that for all j<k,(@), f™(a )= b aj; is not algebraic over f(.a,-.j),
{ab y; j<k(@)} = {x: ") = by, x is not algebraic over f(x)}, and ny is mm_nna.l.
Thus the sets | f7"(b) are elementarily isomorphic for all the above i.

0<n<ny
3 — Fundamenta Mathematicae CVILL/3


GUEST


178 L. Marcus

Case 1, There are &, i such thatthesets (J f7"G)v U f "”(cz}_ ;) are
. : 0€n<ny+1 n<a
: J<ks(D)
pairwise -nonisomorphic.

Claim 2. Then (i) or (iv) holds:

(iii) There are 8; i such that there exists j(i) such that all the f (a,l, i) realize
the same type and the sets | f~"(f (af j(i))) are pairwise nonisomorphic.

‘ n<a

(iv) There are %, i such that there exists j(i) such that all the f (a,l, ) redlize
different types.

Proof of Claim 2. Assume not (iv). Then there is I, |I| = 8y, such that the
number of types realized in { f(a;, Pt j<ky(D)} is finite for each i € I, In addition we
may assume that the number of types realized in {f (a;): j<k,(), i€ } is finite.
Furthermore we may assume that the number of times each type is realized in
{f(a};): j<ky(i)} is constant for all ie I. So we may assume that there is a certain
type ¢ such that the sets U { U f7(f(ai.)): f(al ) realizes g} are pairwise non-

n<w

isomorphic for all ie I Thus (iii) follows.
Now we return to the main proof.
Assume (iii) holds. There are then &, nonisomorphic sets of the form

U 77 "(aj, j)- Furthermore there is # such that for §, of the above sets, call them 4,
n<wo

I<w, the set {j<k(): U f™(al) = 4} is finite or empty. For every Icw
n<w

construct the model C; as follows: Start with C; and form C; by attaching exactly
one (additional) copy of 4; beneath f(a; ;) iff le L

By Lemma 1.2 C; = C;, and there are 2% of them which are pairwise non-
isomorphic.

Now assume (iv) but not (iii). Notice that all the types realized by the f (a}_ )
in the statement of (iv) are realized in every C; in f~ """ (b)), say by d,, m<w. Fur-
thermore there is an i such that for n, of the di, m<w, call them d}, the set
{i<k(i): f(al,) = di} is finite or empty.

For every /< o we construct the model C; as follows: Start with C; and form C;
by attaching behind df exactly one (additional) set of the form |J f “"(a,'ﬂ' ) where i,

n<a

and j are such that f (4}, ;) realizes in C,, the same type as dfin C,. (If {j<k(@): f(a} D)
=dj} # 0 then of course we may take iy = i).

Again by Lemma 1.2 C; = C,, and there are 2X° of them which are pairwise
nonisomorphic.

This concludes the proof for Case 1.

Case 2. No §; of the sets U ey u

U f™al,) are pairwise
O<n<ni+1 <

n
. . 1<k
nonisomorphic.
Thus, there are &; which are isomorphic. The isomorphism has to break down
at some later stage, so there is m,>n, such that for 8, i there are aj j€Cy,
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j<k)<o, f™at) =b;, ap; not algebraic over f(a?,), a?;¢ U f (el DA
<
FEoe)

and n, is minimal (after n,). .

The proof now breaks up into two cases analogous to Case 1 and Case 2,
with n, in place of »,.

Continuing in this fashion we either get 8, pairwise nonisomorphic components
at some finite level beneath the b/’s, or:

Case . There are numbers 0 = ny<n;<n,<..<w and components C,
k<o, such that for all k< there are elements df, ..., af € C, satisfying

@) f™(ak) = "(d}) = ... = f™d) = by (s0 df = by).

(ii) o is not algebraic over f(d}), for all 1<j<k.

(i) o5, ¢ U F7(d}) for all j;>j,>0.

n<ae

(iv) The part of C, above and including 1 () is elementarily isomorphic to the
part of C; above and including f(a}), for all k<.
) {x e Cyp: tp(x, £ (@) = tp(d, S (@ # 1{x € Crua: tp(x,f(@™)
= tp(ai, f @)} -
See the figure.

(4

Ca

bo b, by

ny

| Flabie

al algebraic

N
non-algebraic .m‘.’ CEY YD nonalg.

U S™al)
neuw

non-alg.
alg.

3
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Now we define a component C= (J C™ C= C, for all k; C"cCmti,
m<e
Because of (v) there is o(k) € {k, k+1} such that

{x€ Cogy: tp(x, £ (5®) = tp(ak, £ (@)}
U F(f(aD). Thus C° = C,—- 1<"U<m @)

is finite. Let C° = C,—
1<n<w
Consider C° as being Cp) — U F7(f(@5™)). Now we describe what to attach
c1€n<o
to the bottom of C° (i.e., to f(a5*) in order to obtain C:

a) For every x € Cy;, such that f(x) = f({"), x is not algebraic over f(a3("),
and tp(x, £(a5™M) # tp(af®, £ (a5™)), attach U f~"(x).
n<ao

b) For every x e C, such that f(x) = f(a}), x is algebraic over f(a?), and
f@)¢ U f"(x), attach {J f7"(x).
n<@o n<o
¢) For the unique x such that f(x) = f(a?), x is algebraic over f@@, and
f@)e U f (), attach U f7"(x)— U f~%a}).
n<ow n<o n<o
In general, to obtain C™ go down to f (a,‘f,""’) and discard the finite number of
its predecessors which realize over it the same type as aZ™. Then continue down
Cu+1- (Of course it could be in (v) that one of the sets was empty. In that case we may
have nothing to discard.)
Take C= | C".
m<o
From considerations like Lemma 4 _
Now for each Icw we define C;>~C:
If m e I attach directly below £ (a5™) in C exactly one copy of the non-algebraic
we discarded above.
If k ¢ I we do not add anything below f (af*®). By Lemma 1.2 C;>C, and there
are 2% of them which are not isomorphic.

« follows that C = C, for all k.

=

tai
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