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Singular properties of Morley rank *
by

A.H. Lachlan (Burnaby, B. C)

Abstract. Morley rank gives a measure of complexity of definable subsets of the universe
of a given first-order structure. Let M be an N-saturated structure with universe [M]. Let 4 < |M|X
x|M| be definable, 4, = {b ¢ |M]|: <a,b> € A}, and 4* = {a ¢|M|: <a, b} e 4 for some b < |M]}.
A bound is computed for rank (4) given bounds for rank (4% and rank (4,), @ € |M, and the bound
is shown to be best possible.

Related problems are investigated and Morley rank is compared with other ranks in particular
with that of Lascar.

In this paper is investigated to what extent the rank of a formula yr(x, y) may be
bounded given bounds on the rank of 3y (x, y) and ¥ (a, x) for every element a of
the universe. We suppose that the model we are dealing with is appropriately
saturated. The rank in question is that introduced in Morley [5] and for any for-
mula ¢ (%) its Morley rank and degree are denoted r(p(x)) and d(o(®)) respectively.
Intuitively the rank of ¢ (x) measures the complexity of the subset 4 of the universe
defined by ¢(x). Thus we are investigating how the complexity of a definable binary
relation B is bounded given bounds on the complexity of A4 and B, where
B={(a,b): acA&be B}

For countable ordinals o, f with f>1 let g(a, p) be the least y such that for
every Ro-saturated structure M and every formula ¥ (x, y)in M

r@y¥(x, ) = a & (Yae M)[r( (a, ) <fl. — r(¥(x, )<y -

In § 1 we characterize ¢ by the equations:

and for a>1
o(e, ) = max(a+F, sup {o(«’, A} +(B)
where f is f—1 for f<o and B otherwise. For m,n<w and nx>1 we have
o(m+1,n+1) = (m+2)n+1.

* The author would like to thank the Mathematical Institute of the University of Warsaw
where the author was a guest from January through March 1977 while writing this paper.
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A closely related question asks how far the rank of ¢ (x) A () can be bounded
given bounds on the ranks of ¢(x) and ¥ (x). Thus we are asking to what extent
the complexity of the cartesian product of two definable sets is bounded by the
complexity of those sets. For any ordinals «, 8 we define 7 (e, B) to be the least v such
that for every sy-saturated structure M and all formulas ¢(x) and Y(y) in M

(o) = a&r(e() = B.— r(p) Ap())<y.
It is immediate that = (x, B)<e(x, f+1). In § 2 we prove that if mzn,
' n(m+1, n+1)2m+3+4(n%+n)

and we establish an upper bound for z(«, #+1) which is sharper than ¢(x, f+2).
However, we are not able to characterize 7.

In § 3 we characterize the functions ¢ and = in the context of categorical
theories. Here n(x,f) = a(+)A(+)1 and o(a, f) = sup {a(+)y(+)1} where
a(+)f denotes the natural sum of «, f.

In § 4 we compare our results with the corresponding properties obtained by
Lascar [4, § 5] for a different kind of rank denoted here by u. While Morley’s rank
may be regarded as being defined primarily on formulas, Lascar’s rank is defined
primarily on types complete over a set. It is defined, i.e. takes a value < oo, for all
complete types when the theory being considered is. superstable whereas Morley’s
rank is defined only for formulas which are s,-stable. Our conclusion here is that
Lascar’s rank is much better behaved than Morley’s because for Lascar’s rank the
functions corresponding to 7 and ¢ behave for all theories exactly as 7 and ¢ behave
for categorical theories. Finally we examine the corresponding properties for the
notion of degree introduced by Shelah [7] which like Morley’s rank is defined
primarily on formulas.

Our notation and terminology are mostly standard. Formulas are denoted by
Greek letters ¢, ¥, y, etc. We normally display thé free variables which occur.
If 4 is a subset of the universe of a structure defined by ¢ (x) we sometimes write r(4)
instead of r(p (x)) and x € 4 for @(x) Let # be a family of subsets of 4 then #c F
is said to be a basis for # if the closure of @ under the Boolean operations
includes #. If & is a family of relations on 4 then B & is a basis for F if & is
included in the closure of %’ under the Boolean operations, cartesian product, and
permutation of arguments, where &’ consists of & together with all the relations
on 4 definable in the pure theory of equality.

‘If a rank function is defined on formulas one can extend it to types by taking
as value the least value it takes on any finite conjunction of formulas in the type.
Conversely, a rank function defined originally on complete types can be extended
to formulas or types by taking as value the least upper bound of its values on com-
plete types containing the formula or extending the type respectively.

In a typescript of an earlier paper I made the false claim that =(x, §)
=a(+)B(+)1. I am grateful to Daniel Lascar for pointing out my error and
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stimulating me to make the investigations recorded here. Lascar independently
obtained some results about the function = — the fact that n(x, f)<(e+1)B+1
for example.

1. Characterization of the function g. In this section we shgll prove ’the ine-
qualities which fix the values of the function . First notice that in considering what
may be the maximum rank of ¥(x, y) we may suppose that

BV, Ve VoI Geg, ») AW (xa, 3). — %3 = x5 # 3]

Such formulas will be called regular. It suffices to look at regular formulas, because
we may form a new theory in which pairing functions are definable for the field
of the formula W (x,y) and then ¥ (x, ») may be replaced by

Fzl(x, DAy = (x, 2)]
It is easy to prove:
LemMa 0. o(a, 1) = a+1. ‘ '
Applying this to ¥(x, y) = ¢(y,x) we see that if ¢(x,y) is regular then

r(o(x, »)) = r@ye(y, x). .
Lower bounds for the values of ¢ are given by:

Lemma 1. o(x, fy=a+p.
LemMa 2. Let 1<aa<0,<...<a and 3<p, then

(@, B)= sup {e(, A} + 78 -

Proof of Lemma 2. We construct a structure M as follows. C].JQOSE.: y<B,
y=2. Let U be aunary relation such that M =0 a}nd l.et | M| —o be infinite. Let
{4;: i<w} be a partition of |M|—w into disjoint infinite sets.

Let % denote the set of all finite sequences

{Pos By Vis woes Tas Y2

such that i>0, y = yo>7¢>...>7;>0 and ny, ..., 7;<w. Choose infinite sets By,
o e X, such that
@) B(y} = [M|-, .
(i) for all o = {Yg, My, P1s s My Vip € Z, Af 71>1
{B;: ocreZ &I(®) = 1(6)+2}
is a partition of B,

(iii) for all ce X and all i, |B,n Al = %o '

When we complete the definition of M all the sets Ay, B, will becor‘ne deﬁ?}able
subsets of the universe. The sets B, ensure that the sets Ai‘have rank =7y in a uni. 0:;:
way. Of course if we were to adjoin only unary relations corresponding to
sets A;, B, then the sets 4; would have rank exactly 7.
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Let RM = {{i,a): ae 4, &i<w} and let Y(x,y) be the formula R(x,y).
For each ¢ € X let U, be a unary relation symbol and let U, M = B,. Define X' = % by:

X = {01 0 = Yo, By Y1» e M, Y0 €Z and gy = 1},

Notice that the sets B,, o€ X', are just those in the family {B,: ¢ € X} which are
minimal with respect to inclusion. Let {C;: i<w} and {D,: ¢ X’} be partitions
of o into disjoint infinite sets. Let VM = C,. Choose 8;<g(x;, f) for cach i<a.
For each je o we choose a possibly infinite sequence R} of relations on |M| as
follows. Let je D, and choose R}’ such that if

M; = M|, R} M), R M)
and
M) = C;u U {4yn B, ke Cj}

then.in every elementary extension of M;: r(dyy(x, »))<oy, r(y(a, x))<p for
every a, and r(y (x, »))=8;. Further we choose R} such that R}’ = R}'} [ and
such that every relation on |M,| definable in M; occurs in the sequence RY. Such
choice of 1_2’}‘ is possible because §;<g(x;, ). Our structure M is now complete;
we have

M = <|M|’ RM, Uf, Vi{u’ By>va!,i<¢o,j<a.v .

Without difficulty one can check that the relations displayed in the definition are
a basis for the set of all relations on [M| definable in M.

Consider k<. There exists unique j such that k e C; and unique o € X’ such
that je D,. The relations on A4, N B, definable in M are exactly the same as those
definable in M. In M;, 4, N B, has rank <f whence the same is true in M. Next
observe that {(4;— B,) n B,: T} is a basis for the family of relations on 4,—B,
definable in M. From this it follows that 4, — B, has rank y. Thus 4, has rank <p.

Now consider o as a subset of [M]. Let S; be the family of subsets of C; definable
in M;, then

{Cii i<o}u U {8 j<w}

is a basis for the family of subsets of w definable in M. Reasoning as for 4, n B,
above we see that in M, ¢(C;)<u;. Hence r(w)<oa.

Let e X’ and consider the rank of the formula ¥ (x,»)Aye B, in M. For
each j in D,, ¥(x,y) has rank >4; in M; and hence also in M the formula
V(x,y)Axe C;Aye B, has rank >4;. Since D, is infinite we have

W (x, YAy eB)y=sup{§+1: jeD,}.

Without loss of generality we may suppose that {e(x;, f): i<w) is either
a constant sequence .or strictly increasing. Taking the first case we choose &; such
that sup{d;+1: i<w} = g(¢, B); we just need to consider whether (o, f) is
a limit ordinal or not. When {g(x;, f): i<w) is strictly increasing, for each i we
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choose &;41 = @(e;, B). Thus we can choose the §; such that
r(W(x,)) Ay € B)zsup{dp+1: i<o} = sup o(e, B
<o

for each oeZ'. '
Now we prove by induction on y; that for all o = {y, 11,715 -5 i yoy in M

r{f(x,)AyeBs)= sup {e(ay, BY+Crd -

Thus in M we have r(y(x, )= sup {o(x;, B)}+(Ty). Since y was chosen arbi-
j<e

trary <f we have
e(e, P> sup {o(x, B}+CH)

as required.

We now obtain a suitable upper bound for o(a, B).

LemMa 3. Let M be an No-saturated structure and i (x, y) be a formulain M such
that r(3yy (x, )< and r(y(a, 0))<p for all a in M. Let a>1, f=2 and
r(y (x, p))=y+(B). There exists o <o such that if B<w then either y<o or
y<o(a', ); and if Bz then y<e(', B).

Proof. We may suppose that W(x,y) is regular, whence r@yy(y, x)
= r(y(x, ). Further, we may suppose that d(3y¥ (x, »)) = 1. Let Z be the set of
finite sequences of the form

(ﬁo: ny, ﬂl: ey Mgy ﬁi)

where B = Bo>pB1>...>pi=1and ny, .., m<@. Let =’ denote the set of all ¢in 2
maximal with respect to <. Since r@v (, x))zy+ (") we can find sets B,,6€2,
definable in M such that ‘

(@) Bgy Is the solution set of Ayy(y, x),

(i) for all ¢ = (Bg, Mys By s s B2 with 8;>1

{B;: octe X &l(@) = 1(®)+2}

is a family of disjoint subsets of By,

(i) for all & = {Boy 1y, Bus -vs 1 Bids 1(B)Z1+(BY-

Let M'>M and a e |M’'|—|M] be such that M'EAyy(a, y) and r(tp(a, lM[))
= r(3yy (x, ). For each A<=|M| definable in M let A"denote the corresponding
subset of |M’| definable in M. Let A, denote the solution set of V(a, x) and for

all be M let A, denote the solution set of Wb, x) in M. ) )
Let f<othen ~f = f—1. By n A’ is infinite for all o € Z’ then by induction

on ﬁl: for all o= <BO’ Ny, ﬁl: vy By ﬁz> € z’ r(Br,r n A(’r)zﬁx' Takn,‘g 0',= <ﬁ>
we have r(4.) B, contradiction. Now fix 0 € &' and n<o such that [B, 0 4, = n.
Let

C={beM: |B,n 4| =n}.
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By choice of tp(a, M), #(C) = r(Iyy(x,»)). Let
o =r@yy(x, Hax¢C).
Since d(Iyy (x, »)) = 1 by assumption, o’ <a. Let D be, the i i
R s R } solution set
3y(y(y, x)Aye Caxe B,) then Dc<B,, Aot

As remarked above, when ¢(x,)) is re
‘ . X N gular, r(Aye(y,x)) = r
Applying this to the formula defining D, ’ ( ( )) (‘/’(x’J’))-

r(D) = r(¥(x,y)Axe CayeB,).
By Lemma 0

N r G, »)AxeCaye B = r[Ay(¥(x, ) Axe Cay € B,)) = r(C).
Combining the equations established above we have

r(D) = r(@yy (x, y))<a.
Now B,—D is included in the solution set of y(¥(y, ) Ay ¢ C) whence
r(B,—D)<r(@y(¥ (¥, ) Ay ¢ C))<o(e, B .
Clearly r(B,) is equal to one of (D) and r(B
a, —D g

the conclusion in case f<o. (e ) ond 1B Thus e fave
in‘i‘-ul:\tl.v.)w let ﬁ%w then “f = B. If B, n A, is nonempty for all o e X’ then by
i ion on f;: for all ¢ = {ﬂo, ny, Byy sy, By € X, r(Byn 4))>"B,. Taking
: = {f) we have a contradiction since ~f = B. The rest of the argument runs as
or the case f<w except that we take n = 0 which makes D = &. Thus in thi
case the only possibility is y<g(a', f). . °

The function ¢ may now be characterized by:

THEOREM 1. 0(0, f) = B and for a>1

0(®, ) = max(u+$, sup {o(@, )} +("f)).

Proof. It is obvious that =
¢, ) = B. Leta>1, 2 and su he

exceeds the given expression. = cup {0’ pp'ose e d
pression. Let y = max(o+1, fli]: {o(@, B)}) if f<w and be

- {o@, B)} otherwise. Let y/(x,) be a formula witnessing that o(x, f)> the

sgzﬁczxzr(e;ssgnithin r(|f/;1(x, N)Zy+(h). Fl-rom Lemma 3 we have a contradiction,
yhen Lemn,la A s esslt an or equal. t}ne given expression when «>1 and f>2.
Trom I , (e, 1) = a+1 and it is easy to check directly that g(x, 2)za+2.

emmas 1 and 2, g(a, f)> the given expression when a1 and B =3. Since

124 T "
the given expression takes the values o 1, a+2 for l? 1, 2 leSpeCtlvely the PIOOf

2 . . .

<ot ';‘he1 flljmct‘lon 7. Here ‘our information is incomplete. Clearly 7 (x 13}

s;gws, th+t ) but in general the inequality is strict. We now give an example wh’ich
at n(x, f)<<a(+)B(+)1 is not true in general. This contradicts a previous
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claim of the author [2, Lemma 1, 12, p. 162]. Fortunately the only use made of
that lemma in [2] was to show that if ¢(x) and y(y) both have finite rank then so
also does @(x) Ay (y). The truth of this assertion is clear from Theorem 1.

Let A denote the set of algebraic numbers. We furnish A? with the following
functions: the projections p,, p; onto the diagonal and + and - on the diagonal.
The theory of the diagonal is the theory of algebraically closed fields which is well-
known to be strongly minimal, that is to say, the rank and degree of the universe
are both 1. It is easy to see that 42 has rank 2 and degree 1. We consider elements
(x,7) of B = 4*x 4% For n<w let B,=B denote the solution set of

Po(®)+p (X +Pe(D+21(D) = (2, 1)

and for k<o let B, ; denote the intersection of B, with the solution set of
Po(%)+2016)+ 206N +p1(») = (K, B) -
There is a unique F, p: A% — A2 such that (x,y) € B, if and only if
Fy o), 1) = (Po(2)s 1)) -

Now F, ; being 1-1 onto and definable takes definable subsets onto definable subsets
of the same rank and degree; similarly for F, ! Since the number of definable sub-
sets is ¥, we can choose a,,;, ¢ in A2 for n, k, i< such that they are all distinct

and
C={a, .. nmki<olv {F@a,x,0): n,k, i<w}

has finite intersection with each definable subset of 42 of rank 1. Now we define
a structure
M = <1Ml’ UMana p};[y M 'M3 -RM: Rgi>cec, i<o *

First let |M] = 4% U (4*x o x ), UM = 4% Next M, Y, 4 M are defined as
before on 42 and on the rest of the universe are to be trivial. Let

RY = {{a,{a, 1,jo): ac A1, j<0}
and finally for ce C, i<o let
RY, = {{e, 1,7 j<w}.
Let ¢(x) be "1U(x). Clearly
{RY: ce C i<} v {Sxoxo: ScA?, S definable in 4%}

is a basis for the family of subsets of 4* definable in M. If Sc 4? has rank <1 in 47
then |S n C| <%, whence SX@X® has rank 2 in [M]|. It follows easily that @(x)

has rank 3 and degree 1 in M. Now let
B:x = {<<x= LJYs <, k, l>>: <x7y>EBn and 1, j, k, l<w}
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and B,:,k be defined similarly from B, ,. For any ¢ = ay,x, 1 it is clear that
({c} xoxw)x ({F, ()} x 0 x @)

is a subset of B,:,k of rank 4 in M. Since the g, r, i are different for different

1,7(B,)>5. Thus r(B;)>6 whence r(¢(x) A¢(y)=7. Thus this example shows
that #(3, 3)>7.

The example can be generalized as follows. Let m>n 2. Form a model M with
universe
SU AU (A xoxw)u (AIxox o)

where 4o, 4; are disjoint copies of the algebraic numbers. We include the projection
functions on 45, A7 and also the functions + and -, all these functions being trivial
elsewhere. Let U} = 47 for i<2 and

RM = {{a,i,j>: ac Al v Al j<w}.

As in the case m = n = 2 we can easily construct nested definable subsets of Ay x Ay
of depth n+1 such that the innermost ones have the form {e} = {(co, ¢y)} where
¢;€ A}, and such that if C; denotes the set of all ¢; then C; n S is finite for each
S<4; which is definable and of rank >n—1. Now for each ¢ — (co, ¢1) we adjoin
to M relations on ({¢o}xwxw)x({¢e;} x @xw) such that this set has rank
n(m, n)—1 while {co} x % © and {¢;} x @ x & have ranks m, n respectively. Taking
¢4(x), i<2, to be the formula whose solution set is dixoxw we have r(pq(x))
=m+1, r(¢;(x)) = n+1, and r(@o(®) A @1 (X)) =7 (m, n)+n. Thus we have:

LemMa 4. If m=n>0 then n(m+1, n+1)>n(m, n)+n+1. ‘

The best result we have in the other direction is:

Levma 5. For o, f>1

(@, f+D<max{e(w, f+1), sup {n(, f+1)+1}}

Proof. Let ¢(x), ¥(x) be formulas in a structure M having ranks o, f+1
respectively and both of degree 1. Let 0(x, ), 0y(x, ¥) be formulas in M which
parttition p(x)AY(y). Let ae|M|—|M]|, k ®(a) and r(tp(a, |M[)) = o Since
d(ll/(x)) = 1 and 0, 6, are disjoint one of the formulas O(a, x), 6,(a, x) has rank
<fB+1. Denote this formula by 6(a, x). From [2, Lemma 1.8, p. 160] there is a for-
mula x(x) in M implying ¢(x) such that for all b in M

[Fx®)]=[F ¢(®) and r(0(5, x)<p].
Since k ¥(a) we have r(x(x)) =« and r (@) A "1 (®)) <. Observe that

r(x) A0, ) <e(w, B+1)
and

re@ A T2 AOCx, p)<n(e, f+1)
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for some &' <a. Since x(x) A8(x,»), ¢p(x)A 1x(x)AO(x, y) partition 6(x, y), for
some o' <o we have

F(0(x, My<max(e (o, B+1), n(e’, f+1)+1),

which proves the lemma.
From Lemma 4 we deduce by induction that

w(m+1, n+1)2m+3+3(n*+n)

and conjecture that equality holds. From Lemma 5, in the opposite direction we

have
n(m+1,n+D<ge(m+1,n+1) = (m+2n+1.

3. The functions 7 and g for a categorical theory. Throughout this section we
assume that the values of « and § are limited to whatever values are sensible for the
kind of theory concerned. In the case of &;-categorical theories rank can take only
finite values thus = is allowed only finite arguments and g(e, f) is considered for
a<w and f<w. In the case of x,-categorical theories m(e, f) is c?nsiflered for
a, f< and g(«, B) for a<4 and f< A, where A is the least ordinal which is not the
rank of a formula in any %,-categorical theory. Morley [5] conjectured that A = &,
but the value is still unknown.

Let o'(a, B) denote the least y such that for every Ko-saturated structure M and

every formula Y (x,y) in M
r@yy (e, M) <o & (Yae M) [r(Y (@, )< Bl — r(f(x, )<y -
We shall show that for a categorical theory
o', H(H)1 = n(a, f) = a(+H)B(+)1

and
olx, B) = su;z {a(+)p(H)1} .

Lemma 6. Let ¢(X, §) be a formula in a model M of an $;-categorical theory
e ( b)>: be M} is finite and ?

@ {<r(e(E, b)), d(o(X, b))>: be M} is finite and cw®, .

(i) }or (all m, n<c there exists ¢(¥) in M such that for each b in any elementary
extension of M

[ (%, B) = m&d(p(%, b)) = n] = [Fx(B)],

(ii) there exists a formula 0(%,5,2) in M and k<o such that if r(e (;"c_, E))%O
there exists an indiscernible sequence Ty, 1, ... such that the formulas 0(X, b, co)
0(%, b, &), ... are k-almost disjoint and

10, B, 5)Ae (X, B) = r(p(%, B)—1.

This lemma is not stated explicitly but follows easily from the facts assembled
to prove the main theorem of [1]. -


GUEST


154 A.H. Lachlan

LemMa 7. Let (x, y) be a formula in a model M of a categorical theory. For
each o there exists a formula 0(y) in M such that for all be M

r(f(x, b)) <a = FO®).

Proof. This is immediate from (ii) of the last lemma for 8- categorical theories.
For #,-categorical theories the result is immadiate from the fact that there are only
a finite number of 1-types over the finite set of paramsters occurring in ¥ (x, #).

LeMMmA 8. In a categorical theory all a, f>1

(e, py<max(sup {o'(y, H+1}, sup {o'@, +1}).
y<a P<

Proof. We follow the same line as in the proof of Lemma 5. Thus let ¥ (x, y)
be a formula in a model M of a categorical theory satisfying:

r(@vy(x, M)<a  and  r(Y(e, )<

for all @ in every elementary extension of M. Without loss of generality let
d@yy(x,»))=1. Fix a in an elementary extension M’ of M such that
r(tp(a, |MD) = o and k Ay (a, ).

Suppose (i (a, x))<f then from the last lemma there exists a formula 0 in M
such that for all ¢’ in any elementary extension of M

r(W e, D)< = FO@).

Now let ¥'(x, ) denote 6(x) A (x,y) and y''(x, y) denote 10(x) A (x, y). For
all ¢ we have r(y'(d, x))<p whence there exists py<f such that for all o,
r(y'(a’, x))<y either because rank is finite in the case of ,-categoricity or because
there are only finitely many 1-types over a finite set in the case of my-categoricity.
Also since (tp(a, |M|)) =«, F3yy(a,y), and d(Apy(x,») =1 we have
r(@yy"(x, y))<a. Since ¥(x,y) is equivalent to ¥'(x, yYAY"(x,»), r(¥(x,»))
= max(r(y’'(x, »)), r(¥"'(x, ). Thus in case r(y(a, x))<pB then

r( (¢, y)) <max( sup (¢’ (=, N+ 1}, sup &', A)+ 1).

Now suppose r(y (2, x)) = f and d(y (a, x)) = n. Let y,(x, ), i<n, be formulas
in M constituting a partition of ¥ (x, ). We can choose j< 2 such that r(tﬁ a, x))<p.
Reasoning exactly as for y(x, y) above we have

r(¥,0x, y)) < max( sup {o'(@, N+1}, sup {o'(v, B)+13)
< y<a
which gives
(¥ (x, y))<max( Sulz {o'(z, »)+1}, sup {o'(y, B}+1}).
< y<a . "

Thus in either case we have the desired conclusion
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THEOREM 2. For a categorical theory
0'(@, ()1 = n(z, B) = a(+) B(+)1
and o(x, B) = sup {¢'(x, P)+1}.
r<p

Proof. It is immediate that n(x, f)<¢'(«, f)(+)1. By a straightforward in-
duction a(+)B(+)1<n(x, f), see Wierzejewski [10]. From Lemma 8 we see by
induction that o'(x, f) <a(+) B. This proves the first part. Note that o(e, f) = a(+)B.
Let /(x, y) be a formula such that r(3yy(x, »)) = « and r(Y(a, x))<y for all  in
some §o-saturated model. Since

r( (x, )<’ @ D<a(+)y(+)1
we have ¢(, B)< sup{a(+)y(+)1}. On the other hand if there are formulas y(x)
y<p

and 0(x) with ranks «, y respectively then r(x(x)A8(»)) = o(+)y — this is the
same observation of Wierzejewski just mentioned. Thus p(, B)=sup{o(+)y(+)1}
<8

which completes the proof of the second part.

4, Comparison with other ranks. In [4, § 5] Lascar employed a rank defined
on types complete over some subset of a model. From now on we suppose that the
theory under consideration is superstable. For all n<w, for all 4, and all p € 5,(4)
we define u(p) e On. The key feature of the definition is that if p € S"(4), g € S"(B),
AcB, and pcg then

u(q)<u(p) = g forks over 4.

Subject to this stipulation u is to be least possible. The notion of forking is due to
Shelah and an extensive treatment of it will appear in [8]. Here we rely on the account
given by Lascar [3].

In order to compare Lascar’s rank with Morley’s it is convenient to identify
types with the corresponding infinite conjunctions. Thus when it is convenient we
regard types as formulas in this extended sense. If p(x, y) is a 2-type, by Ayp(x, )
we denote the 1-type

{3y Apol, §): Pocp & |Pol <o} -

Note that if p is complete over 4 then so is dyp(x, y). In [4, Thin. 8, p. 82] Lascar
showed that the rank  is well behaved with respect to existential quantification.

TuzoreMm 3 (Lascar). Let p(x,y)eS*(4) be realized by <a,b). Let
u(@yp(x, ) = o, u(p(a, x)) = p, then

Bra<u(p(x, )<a(+)8.

Following Lascar let us call a subset 4 of a model independent over B if for all

aecd
ultp(a, B U (4—{a}))) = u(tp(a, B)).
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From [3, Propositions 2, 3, pp. 56, 57] it follows that this notion is unchanged for
an §,-stable theory if we write r for 4. From Theorem 3 Lascar deduced that for
any ¢ there exists m<o depending only on tp(Z, B) such that if 4 is independent
over B and for each a€ 4, {a} is not independent over B U Rngé¢, then |4]<m.
This answers a question raised in [2, p. 166], because it shows that the upper
dimension of a model is finite if its lower dimension is finite. As a corollary Lascar
obtained an elegant proof that a countable superstable theory has >, countable
models if it is not xy-categorical. Thus even for the investigation of y-stable
theories Lascar’s rank is more powerful than Morley’s.

The closest relative to Lascar’s rank amongst ranks defined on formulas is
Shelah’s notion of degree, not to be confused with degree in Morley’s sense. (This
notion first appeared in [6] under the name rank and with a different definition.)
The degree of a formula ¢ is denoted s(¢), see [7] or [8] for a precise definition.
The key clause says that s(p(x))>B+1 if and only if there is a formula ¥ (x, )
and sequences ¢;, i<|T|*, such that:

M) sloG) Ay (x, e)]= B for all ,
(2) the ¥ (x, &)’s are almost contradictory.
The relationship between s and u is given by:

LemMmA 9. Let the parameters of ¢ (x) be in A. Then s(q) (x))=n if and only if there
exists pe S™(A) such that u(p)zn and @(x) € p. The “if” part holds for arbitrary
o€ On in place of n.

Proof. For induction suppose the result holds for n. First let s(p(x))=n+1.
As Shelah noticed in [7], in the above definition we can suppose that {¢;: i<|T|*}
is an indiscernible set, and further that it is indiscernible over 4. Thus in the present
case we have s[o(x) AY(x, ¢)]>n. By the induction hypothesis there exist B> A
and g e S*(B) such that u(g)=n and @(x) AV (x, &) € q. Clearly g forks over 4,
whence u(q} A)>u(q) and we may set p = g | 4. )

For the other direction suppose that pe S'(d), u(p)>n+1, and o(x)ep.
Then there exists B> 4 and ¢ e S'(B) such that gop, q forks over 4, and u(g)>n.
Further using [3, Theorem 10, p. 41] we may suppose that there is a formula y (x, 7)
and a set {;: i<w} indiscernible over 4 such that (x, ¢;) € ¢ and the formulas
V(x, ¢;) are almost contradictory. Now s(@(x) Ay (x, £))=n by the induction
hypothesis whence s(¢(x))=n+1.

This lemma is best possible in the following sense. For any a<w, there exists
a countable superstable theory for which s(x = x) = a and yet for every A and
peSY4), u(p)<o. Suppose T is the theory for o and R be a new binary relation
symbol. Let the axioms of T” say that R is an equivalence relation with infinitely
many equivalence classes, that T" restricted to any one of the equivalence classes
is T, and that no relationships hold between elements of different equivalence classes.
Then T" is good for e+ 1. Further, if Ty, T, ... are theories corresponding to ag, dy, ...
then their disjoint union corresponds to sup ;.

i<o

icm
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It tarns out that if s(AyY(x,»)<a and s(Y(a, x))<n for all ae M then
s(¥(x, y)) Sa+n. This follows immediately from Theorem 3 and Lemma 9 when
a<w. Otherwise one has to make a direct proof. If s(y (a, x)) is not bounded by
a natural number then we can place no bound on s(i(x, ¥)) given bounds on
s@yy(x, »)) and s(f(a, x)). To see this we use the same idea as in the last paragraph.

In an s,-categorical theory the ranks r, u, and s are all the same as may be seen
from Lemma 6. Lascar proved that r and u are the same for an 8- categorical
theory, see [3, Corollary 10, p. 79]. It follows that for an &,-categorical theory »
and s are the same. For suppose (¢ (x)) = o then there exist 4 and p e S'(4) such
that r(p) = a and @(x)ep. By Lascar’s result u(p) = «, whence s(¢ (x))=a by
Lemma 9. Thus s(¢(x))=r(¢(x)). On the other hand it is easy to show that
(@ (x))=s(p () for every theory x,-categorical or not. Thus r, 4, and s are all the
same for any categorical theory.
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