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COROLLARY. If a dendroid X contains a Q-point p such that (18) holds, then
for every continuous selection o: C(X)— X we have o(K) = p (here K denotes the
limit continuum mentioned in the definition of a Q-point).

The author does not know if condition (18) is essential in the corollary, i.e., if
there exists a selectible dendroid containing a Q-point p for which (18) fails and
with o(K) 5 p. Recently Mr. S. T. Czuba has found a dendroid (even a fan) with
a Q-point p for which (18) does not hold, but this example is not selectible.

Consider now the dendroid D, described in [5], p. 305. Let X be a continuum
obtained from D, by shrinking the horizontal straight line segment of D, to which
the points p,, p,, ... belong (see the picture of C,, Fig. ! on p. 305 of [5]) to a point p.
Itis evident that X is a countable plane fan with a Q-point p. As it was recently shown
by Dr. T. Mackowiak, the fan X is selectible. Thus the existence of a Q-point in
a countable plane fan X does not imply that X is not selectible.
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Fixed point theorems for i-dendroids
by

Roman Mafika (Wroctaw)

Abstract. Fixed point theorems are proved for functions whose values and the images as
well as the inverse-images of continua are continua.

§ 1., Introduction. Throughout this paper X will denote an arbitrary A-dendroid,
i.e. a hereditarily decomposable and hereditarily unicoherent metric: continuum.
We shall consider, under the name c-functions, functions having continua F(p)c X
as values, non-empty for all p e X. If p € F(p), then the point p will be called a fixed
point of F.

In [5] I proved that if F is upper semi-continuous, then

(D) there exists a fixed point of F.

With the aid of papers [5] and [6] we prove here that the fixed point theorem @
holds under the same remaining assumptions, even without the upper semi-continuity
of the function F.

First, a stronger fixed point theorem (§ 3, Theorem 1) is proved under the
following two conditions ([5], p. 113, (I) and (II)):

(1) for every continuum K< X the image F(K)<=X is a continuum,

(111) the property K o\ F(K) # @ is inductive for continua K< X, where the
image F(K) means the union ) {F(p): pe K}, and a property is called inductive
provided that for every decreasing sequence of sets having this property their common
part also has this property (see [4], p. 54). Then we prove a theorem stating exactly
that (1) follows from (1) and (III) (§ 3, Theorem 2), which is next applied to con-
sidering the following condition on the sets F™Y{(K) = {pe X: F(p) n K # @}:

(LV) for every contimum K<F(K) the set F~'(K) is a continuum.

Nameély, fixed point theorems are proved for ¢-functions satisfying (IV) or (ID)
(§ 4, Theorems 3 and 4), which imply a common generalization of the fixed point
theorems by Gray [1], by the present author [6] and by Smithson [9], [10]
(§ 4, Corollary).

Finally the following property of a non-degenerated subcontinuum E of X will
be consideved:
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(V) for dny continuum K< X the inequalities KN E # & % K—E imply the
inclusion EcK. ‘

It will be stated under assumptions (V), (III) and (II) that if E n F(E) # @,
then E contains a fixed point of F (§ 5, Theorem 5). Simultaneously (V) ensures
(8 6, Theorem 6) the existence of non semi-continuous ¢-functions satisfying (II),
(IT) and (IV).

The remainder of the paper is devoted to examples proving the essentiality of
the assumptions (sb denote the unique continuum irreducible between points g
and b).

§ 2. Preliminaries on irreducible subcontinua of X. Recall that the assumption
of hereditary unicoherence (see [4], p. 162; see also [5], p. 106) means that the common
part of every two subcontinua of X is a subcontinuum of X, and thus that for every
two points a, b € X a subcontinuum irreducible between them (see [4], p. 190 and 193,
Theorem 1) is unique in X. Therefore the hereditary unicoherence of X means that
for every subcontinuum Ke X

@10 ¢eKand beK imply abcK.

By a theorem of Kuratowski (see [4], p. 193, Theorem 4; see also [7]), if a e K= X
and the continnum K cannot be decomposed into a union of two proper subcontinua
containing a, then the point a is a point irreducibility of K, i.e. K = ab for some
point be X. By the same theorem, the set of irreducibility Ab, i.e, the set of all
points p e X such that pb = ab (see [5], p. 106; see also [3], p. 230), is a continuum
by virtue of the hereditary decomposability of X (see [7], p- 52). Moreover it follows
that for every irreducible subcontinuum ab< X

(2.2) A4b is a continuum,
(2.3) aeAbcab,
2.4 - Ab=ab implies a=5b,

in view of the definition of 45, According to (2.1), for every continuum Ke X

(2.5) deX—Kand beK imply AbcX—K.

For every point ae X we define an equivalence relation —, called association
(see [5], p. 106), between irreducible subcontinua of X which contain the point « as
a point of irreducibility, such that

(2.6) ab—ac  implies Ab = Ac.

Finally, I call a continuum E an end continuum of X (!) provided that E forms
a set of irreducibility of every irreducible subcontinuum of ¥ which meets both E
and X—E.

(9 This notion is a generalization of the notion of E-set by Miller [8], p. 184.

icm

Fixed point theorems for A-dendroids 121

§ 3. Fixed point theorems for c-functions satisfying (IT) and (III). By virtue
of (III), there exists a continuum K< X such that
(3.1) KnFK)+@,
(3.2) the continuum K< X is irreducible with respect to (3.1)
(see [4], p. 54). Relations between such subcontinua X of X lead to the existence
of a fixed point of F (see [5], p. 120, proof of the corollary). For them, the following

statement, valid for-any set X, points to the possibility of using relations between
irreducible subcontinua:

LemMmA 1. For an arbitrary set-valued function F mapping X into itself and for
every continuum K< X the condition (3.2) implies
(3.3 K=ab and beF(a) for some a,beX.

Proof. For every point b € F(K) n K there exists a point z € K such that b & F(a)
by the definition of the image F(X), and simultaneously b € K. Hence any irreducible
subcontinuum ab <X (see [4], p. 192, Theorem 1; here (2.1) for the A-dendroid X)
satisfies (3.1). (3.2) implies (3.3).

Lemma 1 will be used in the sequel. Now, we will apply Kuratowski’s theorem
on the point of irreducibility to the proof of the following

Lemma 2. Let a€ X, be F(a) and Ab n F(A4b) # @ for a c-function F satis-
Sying (1) and (Y1), Then there exists a subcontinuum K< X such that
(34 aeK=db,

(3.5)  the continuum K is irreducible with respect to (3.1) and (3.4),

and then there exists a point ce X such that

(3.6) ac =K,
37 ’ abe F(ac),
(3.8) Ab A (Flac—Ca)) = & .

Proof. Since 4b is a continuum and @ € Ab in view of (2.2) and (2.3), ané Ab
satisfies (3.1) by assumption, there exists a continuum K satisfying (3.5) by virtue
of (ITL).

To prove (3.6) for some point ¢ & X, suppose the contrary. Then by the theorem
of Kuratowski, there exist two continua K;= X such that.

3.9 K vk, =K,
(3.10) aek;, and K #K.

Since be F(a) by assumption, it follows that b e F(K)), and .by (3.5)
K, n F(K}) = @, whence « ¢ F(K)). Since F(K}) is 2 continugm by (II), it follows
according to (2.5) that Abn F(K)) = @. Therefore 4b N (F(K}) U F(Ky) = 3.
Since F(K,)u F(K,) = F(K, U K;) by the definition of the images, we have
Ab A F(K) = @ by (3.9), which contradicts (3.1) or (3.4).
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Thus (3.6) holds for some ce X.

Properties (3.1), (3.4) and (3.6) of the continuum X imply that 4b N F(ac) # O.
Since b € F(ac) by assumption, we have a e F(ac) according to (2.5) and (I). (2.1)
implies (3.7).

Finally, the set ac— Ca being the composant of a in ac (see [4], p. 208 for this
concept), we have

@3.11) ac—Ca =) K,
J

where the continua K; all satisfy (3.10) in view of (3.6). Then Ab N F(X)) = &
for all j, as above by (2.5) and (II). Since {) F(X}) = F({ K) by the definition of
j i

images, it follows by (3.11) that 4b n F(aJc—Ca) =4

THEOREM 1. For every c-function F satisfying (1) and (1) and for every two
points a, b € X satisfying be F(a) and Ab ~ F(4b) = @, there exists a fixed point ¢
of F such that ab—ac.

Proof. It follows from Lemma 2 that Theorem II of [5] holds under asump.
tions (If) and (L) (see [5], p. 118-119, (15)~(17)). The two remaining auxiliary
theorems, I and III, of [5] are both derived there from the two properties (I1) and (IID).
Hence (see [6], p. 762-763) the theorem follows.

THEOREM 2. Every c-function F satisfying (1) and (1) has a fixed point (prop-
erty (I)).

Proof. Let K= X be a continuum having property (3.2) and therefore satis-
fying (3.3) by Lemma 1. Then a is a fixed point of F when @ = b. In the opposite
case, 4b 5 ab in view of (2.4). Since 4b is a subcontinuum of ab by (2.2) and (2.3),
it follows by (3.2) and (3.3) that 4b ~ F(4b) = G and b e F(a). Thus, by Theorem 1,
there exists a fixed point of F.

Remark 1. The theorem of Kuratowski remains true without any axiom
of separability for .connected and compact topological spaces in which every
closed and connected set with a non-empty inferior is decomposable (see [7], p. 52).
Then also the above fixed point theorems hold for generalized non-metric A-den-
droids where sequences are replaced by transfinite sequences (see [5], p. 109,
Remark 2, for the remaining statement which is needed in the fixed point theorems).

§ 4. Fixed point theorems for c-functions satisfying (1I) or (IV). In the fixed
point theorem below we will consider two cases, F(X)c X and X< F(X), instead
of considering a ¢-function F mapping: X into itself or omto itself, i.e. such that
F(X) = X.

Recall first that, for an arbitrary set-valued function F mapping X onto a space
F(X), we have for every ge F(X)

(4.1) peF Mgy iff geF(p),

by the definition of the set F™'(g). Hence by the definition of images F(K) for
any KX

(4.2) KaFYp#0 iff geFK),
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whence it follows that F~Y(q) @ iff g€ F(X). Thus a set-valued function F~*
mapping F(X) onto X is defined such that (F~1)~* = F by (4.1), i.e. that

(4.3) F™HNp) = F(p)

THEOREM 3. If F(X)<= X where F is a c-function satisfying (IN), and for every
ge F(X) the set F~(q) is compact, then there exists a JSixed point of F.

Proof. We have to verify that F satisfies (11D).

Let a sequence of continua K;= X be decreasing and let K; n F(K;) # O for
J=1,2,.. Then by (II) the non-empty sets K; n F(K;) are compact, and their
sequence is decreasing by the definition of the images F(Kj). It follows by a theorem

@ =

of Cantor (see [4], p. 2) that ﬂx(Kj N F(K)) # B,ie that (K)o () F(K) # D.
i= =17 =t

for all pe X,

0 0
Now it suffices to verify that F(K)cF(N K).
j=1 Jj=1

0
Let qejﬂ F(K}), i.e. ge F(K) for all j. Then K, nF~Y(g) # & by (4.2).
=1
Since the sequence K; N F~'(g) is decreasing and F~(q) is compact by assump-

tion, it follows by the theorem of Cantor that [ (K; n F~!(g)) # @. Hence
=1

(NK) A F~*(q) # @, and therefore by (4.2), g F( () K)).
J=1 j=1

Thus F satisfies (1II) and, (II) being satisfied by assumption, Theorem 2 holds.
Remark 2. The general statement is true for any set-valued function F mapping
a topological space X into a set Y: the following two conditions are equivalent
1° F~Y(q) is countably compact for every qe F(X),
0 o

2° F(jﬁ1 4) = '01 F(A)) for every decreasing sequence of closed sets A;cX.
= = -

This equivalence remains true replacing 1° “compact” by “closed” and-in 2° “closed”
by “countably compact”. h

THEOREM 4. If X< F(X) where F is a c-function satisfying (IV) mapping X onto
a space F(X), then there exists a fixed point of F.

Proof. F~*(X)< X by the definition of the set F~*(X), and in view of (4.3) the
c¢-function F~' satisfies (I1) by the assumed property (IV) of F. Also by (4.3),
(F~Y~Y(p) is compact for every p & F~1(X), F(p) being a continuum by the assump-
tion that F is a ¢-function. Thus, by applying Theorem 3 to the c-function F~1,
we find that there exists a fixed point of F~! which is a fixed point of F in view
of (4.1).

COROLLARY. If F(X)< X or X F(X) for a c-function F satisfying (II) and (IV),
then there exists a fixed point of F.

The above corollary is a generalization of [9] (see also [10], p. 599) to A-den-
droids in the domain of continua, some generalizations being possible also for semi-
continua (see [4], p. 188 for this concept). Simultaneously, it extends an analogous
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theorem of [6] (p. 765, Theorem 3) to the case where the c-function is non-semi-
continuous (the main Theorem 2 of [6] being derived from the above properties (1)
and (III) only). Here observe that Theorem 4 above cannot be proved for c¢-functions
satisfying (II) and (III) only. This is shown by the following simple

ExampLE 1. Let X be a segment ab in a Euclidean plane with end points g
and b and let p be an interior point of ab. Now let ac denote an arbitrary arc lying
in the plane such that ac n ab = ap and p # c.

:

a P b

Then no function f mapping ap onto bc and pb onto. ca has a fixed point if
f(p) = ¢, because ap n be = (p) = pb n ca. However, f is continuous if both the
images f (ap) and f(pb) are continuous.

In particular, for continuous monotone functions the above corollary is in fact
proved in a paper by Gray (see [1], p. 503). The question arises whether the method
of his proof can be extended to set-valued functions.

§ 5. End continua and fixed points. Every end continuum £ of X has by defi-
nition the properly that for every irreducible continuum abc X

(CB)} abNE+# @ #ab—E imply E=Abor E=Ba,
and thus
5.2) aeE and be X—E imply E = A4b,

which implies (V) directly by (2.1) and (2.3). The properties (5.1), (5.2) and W)
are of course not equivalent (see § 6, Examples 2 and 3). Now abserve that (V)
means exactly that E is nowhere dense in every other subcontinuum of X which
contains E; namely, the following lemma holds:

Lemma 3. A subcontinuum E of X has property (V) if and only if
(5.3) acE and be X—E  imply Ecdb.

Proof. Assume (V) to be satisfied and let

(5.4 acE and beX-E.
Then by (V),

(5.5 Ecab,

and now if we set

(5.6) K=ab-E,
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condition (V) will be applied to the continuum X (see [4], p. 193, Theorem 3). Since
EuU K = ab by (5.5) and (5.6), and ab is connected, we have K A E # @. Simul-
taneously K—E 5 @, being be ab—E by (5.4); thus EcK.

In this way it is proved that E— K = @, i.e. in view of (5.6), that E is a nowhere
dense subcontinuum of ab containing the point a by (5.4). Since 4b is a subcontinuum
of ab in view of (2.2) and (2.3), and thus a maximal subcontinuum of ab containing a
and nowhere dense in ab (see [3], p. 243, Corollary 2), it follows that Ec 45, i.e. (5.3).

The converse statement follows directly from (2.1) and .3).

THEOREM 5. For every c-function F satisfying (IT) and (1IX) mapping X into itself,
and for every subcontinuum E of X such that E n F(E) # & and (V), there exists
a fixed point belonging to E.

Proof. It follows from the assumed inequality (3.1) for the continuum E that E
contains a subcontinuum
(5.7 KcE
satisfying (3.1) and (3.2), and thus also (3.3) by Lemma 1.

If a # b, then Ab # ab in view of (2.4). Hence, according to (3.3),
(5.8) AbcK and’ Ab # K, .
and hence Ab N F(4b) = @ by (3.2). Since b € F(a) by (3.3), it follows by Theorem 1
that there exists a fixed point ¢ of F such that ab—ac. Hence Ac = Ab by 2.6).
It follows by (5.7) and (5.8) that E—dc # ©. Since ae E by (5.7) and (3.3), we
have ¢e E by (5.3) in Lemma 3.

Theorem 5 above yields a partial answer to the problem raised in [6] (p. 766).

§ 6. Essentiality of assumptions. The essentiality of the assumptions in
Theorems 1-5 will first be proved for an essential patt of them, namely for the
following two implications:

(IDAIY) = DA = I).

The essentiality of (I1) is shown by the function f; defined on the unit interval

I'= {11 0<t<1} of the real line by the formula fi(f) = (t+$)mod], i.e.
_ ittt for 1<i,
(ﬁ.l) ft(t) - {t_% for %Si.

The function fy does not have property (I), and (III) is satisfied.
Indeed, let a sequence of continua K; =1 be decreasing and let X; n f1(K)) # &
forj =1, 2, ... Suppose first that 1 ¢ X for all j (greater than some integer), so that

the inverse images fi"'(K;) are compact by (6.1). Hence le(Kj AfTUKD) # O
(-] o 3

by the Cantor theorem, and therefore ( () K;) N fl'?(Aﬂlli}) # @. It follows that
j=1 =

( a K) nfi( ﬁ K;) # @ in view of (4.2). This inequality holds also .in the case
j=1 i=1 "
where 1 € K; for all j, directly by (6.1).

4~ Fundamenta Math. 108/2
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The essentiality of (II) is proved by the function defined on the same unijt
interval I by the formula

o)
S0 = {fl(w(t))

which actually does not have property (I), and satisfies (IT) if & denotes the function
of Cesdro (see [4], p. 131) defined on the closed interval. Indeed, w attains every
value between O and 1 in every interval (ibidem); thus f;, also has this property
(see also [2], p. 20 for another function with this property).

The essentiality of (IV) can be stated by the function defined on the closed
interval J = {#: —1<¢<1} by the formula .

for
for

o) #t,

(6’25 ot)=1t,

1
in—- forts#0,
£ty ={""1

s for t =0,

(6.3)

where s denotes an arbitrary number from J.
The function f; satisfies (IT), in view of fy([~e, 0) = J = £3([0, ¢]) for every
€>0, and hence whenever s # 0, f; does not have property (III) either.
The essentiality of (IV), (ITT) and (II) will now be considered with. respect to
the following conditions:
(VD) for every closed set B<F(X) the set F~X(B) is closed,
(VII) for every qe F(X) the set F ~Yg) is closed,

) @ ©
(VIL) if a sequence of continua Ky< X is decreasing, then F( K) = ( F(K).
J=1 j=1

Property (VI) means of -course the upper semi-continunity of F, which for
(single-valued) functions simply becomes continuity, and the following relations
holc} in view of Remark 2:

(VD) = (VII) = (VIII).

These two implications are essential, is shown,
two examples of functions.

ExAMPLE 2. Let X be the closure in a Euclidean plane of the diagram of the
function f£;, and let E denote the segment of condensation of X, i.e. the segment of
the y-axis with end points —1 and 1. Then the formula

in particular, by the following

for
p for

peX—E,

,(6'4) pPeE

fip) = {‘i
defines a non-continuous function mapping X onto itself and satisfying (II) and (IV).

Indeed, if a continuum K< X is contained in E or in X—E, then the image
Ja(K) is a continuum because Ja is continuous in each of these two sets E and X—F
separately. If KN E @ # K—E, then EcK (property (V)), and then fy(K) = K

bg the definition of ;. Thus £, satisfies (D, and hence also (IV) is satisfied, because
Jit=f, by (6.4). ‘
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EXAMPLE 3. For X and E as above, let ¢ denote the orthogonal projection
of X onto E. Then the function

(6.5) Js(p) = g(fu(p) for every pe X

does not have property (VII). Namely, if we take for ¢ the point 1 of the y-axis,
the inverse-image f5*(¢) is not closed because f7(g)= S5 *(97%(g)). To prove (VIII)
for the function f5 it suffices to proceed in the same way as in the preceding example,
considering images f5(K;) for a decreasing sequence of continua K, X.

The function f5 satisfies (II) as a composition of two functions satisfying (IT).

Property (V) of the subcontinuum E of X is essential in Examples 2 and 3;
it follows here by (5.2), of course. Approximating this plane continuum X by
a topological ray (as in [3], p. 266, Lemma 1) we define a continuum by adding this
ray to X, where the segment E does not have property (5.2) and satisfies (V) in view
of Lemma 3. However, these two examples can be extended to such a large con-
tinuum.

In general, the following holds: )

THEOREM 6. If X contains a subcontinuum E which satisfies (V) nontrivially,
then there exists a non semi-continuous c-function F, mapping X onto-itself, with the
properties (II) and (IV). ! o '

Proof. £ being non-trivial, it is a proper subset of X and it contains more than
one point. Setting for an arbitrary ae E

(p) for. peX—E,
F(p) = (@) for peE—(a),
E for p=a

we define a c-function F mapping X into tself,
Fis non semi-continuous. Since E is nowhere dense in X by Lemma 3,
there exists a convergent sequence p; € X— E with limp; € E—(a). Then F(limp;) = (a)
; ;

J
and F(p;) = (p;) by the definition of F, and hence LtF(p)) = limp;. It follows that
LtF(p) n F(limp;) = @&, which proves the non semi-continuity of F (see [4],
p. 61-62, Theorems 1, 2).

Fsatisfies (I1). If a continuum K< X satisfies K< X—F or K< E, then the
image F(K) is a continuum: K, E or (2) by the definition of F. IfK n E # & # K—E,
then KK by (V), and hence F(K) =K.

F satisfies IV, It suffices to verify, regarding (4.1), that F~* = F.

Remark 3. Such examples as 2 and 3 above are impossible among c-functions
defined on the real line, and similarly Theorem 6 is not true for X locally connected.
Indeed, for every set-valued function F mapping a locally connected and locally
compact metric space X into a topological space ¥ such that

(IX) for every continuum K< X the image F(K) is compact the properties (VI),
(VII) and (VIII) are equivalent, i.e.

(V) = (VD).
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In fact, for every p € X, every sufficiently small neighbourhood of p hasa count-
able, regular base of regions (see [4], p. 231, Theorem 8). Hence there exists a de-
creasing sequence of continua K;< X such that

pelntk; for all j.

(= NK and
j=1

Then F(p) = ﬂ F(Kj) by virtue of (VIII). Therefore by (IX), for every open

set Y=Y such that F(p)cV there exists a j' such that F(K;)<=V. (VI) follows.

ProBLEM. Can the c-function in Theorem 6 be replaced by a single-valued
function ?
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Products of perfectly normal spaces
by

Teodor C. Przymusifski (Warszawa) *

Absiract. Answering a question raised by R. W. Heath, we construct, assuming Continuum
Hypothesis, for every natural »n a separable and first countable space X such that

(a) X" is perfectly normal;

(b) X"*1 is normal but X"** js not perfect.

The space X (and X"**) has cardinality , and can be made either Lindelof or locally com-
pact and locally countable.

We show that the existence of such spaces is independent of the axioms of set theory.

§ 1. Introduction. In 1969 R. W, Heath [7] raised a question whether for n>2
there exist spaces X such that X" is perfect but X"** is not. This question has also
been repeated by D. Burke and D. Lutzer in [2] and has been brought to the author’s
attention by Eric van Douwen. '

In this paper we give a positive answer to this question, constructing, under the
assumption of the Continuum Hypothesis (CH), the following two examples.

ExAMPLE 1. (CH) For every n<w there exists a first countable, locally compact,
locally countable space X of cardinality w; such that:

(a) X" is perfectly normal and hereditarily separable;

(b) X" is normal but X"*! is not hereditarily normal ().

ExAMPLE 2. (CH) For every n<w there exists a first countable space X of
cardinality w, such that:

(a) X" is hereditarily Lindelof and hereditarily separable;

(b) X"+ is Lindeldf but X"*' is not hereditarily Lindelof.

This paper is closely related to our paper [16] where, under the assumption
of Martin’s Axiom, positive results concerning the preservation of perfectness and
perfect normality in product spaces are given.

* This paper was oryginated while the author was 2 Visiting Assistant Professor at the

University of Pittsburgh in 1976/77.
(% Let us recall that a perfectly normal space is hereditarily normal and that a Lindelof space

is perfect if and only if it is hereditarily Lindelof.
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