COROLLARY. If a dendroid \(X \) contains a \(Q \)-point \(p \) such that (18) holds, then for every continuous selection \(\alpha : \mathcal{C}(X) \to X \) we have \(\sigma(K) = p \) (here \(K \) denotes the limit continuum mentioned in the definition of a \(Q \)-point).

The author does not know if condition (18) is essential in the corollary, i.e., if there exists a selectable dendroid containing a \(Q \)-point \(p \) for which (18) fails and with \(\sigma(K) \neq p \). Recently Mr. S. T. Czaub has found a dendroid (even a fan) with a \(Q \)-point \(p \) for which (18) does not hold, but this example is not selectable.

Consider now the dendroid \(D_2 \), described in [5], p. 305. Let \(X \) be a continuum obtained from \(D_2 \) by shrinking the horizontal straight line segment of \(D_2 \) to which the points \(p_1, p_2, \ldots \) belong (see the picture of \(C_\rho \), Fig. 1 on p. 305 of [5]) to a point \(p \). It is evident that \(X \) is a countable plane fan with a \(Q \)-point \(p \). As it was recently shown by Dr. T. Mackowiak, the fan \(X \) is selectable. Thus the existence of a \(Q \)-point in a countable plane fan \(X \) does not imply that \(X \) is not selectable.

References

INSTITUTE OF MATHEMATICS OF THE WROCŁAW UNIVERSITY
Wrocław

Accepé par la Réduction le 2. 1. 1978

Fixed point theorems for \(\lambda \)-dendroids

by

Roman Mańka (Wrocław)

Abstract. Fixed point theorems are proved for functions whose values and the images as well as the inverse-images of continua are continua.

§ 1. Introduction. Throughout this paper \(X \) will denote an arbitrary \(\lambda \)-dendroid, i.e. a hereditarily decomposable and hereditarily unicoherent metric continuum. We shall consider, under the name \(\epsilon \)-functions, functions having continua \(F(p) \subseteq X \) as values, non-empty for all \(p \in X \). If \(p \in F(p) \), then the point \(p \) will be called a fixed point of \(F \).

In [5] I proved that if \(F \) is upper semi-continuous, then

(I) there exists a fixed point of \(F \).

With the aid of papers [5] and [6] we prove here that the fixed point theorem (I) holds under the same remaining assumptions, even without the upper semi-continuity of the function \(F \).

First, a stronger fixed point theorem (§ 3, Theorem 1) is proved under the following two conditions ([5], p. 113, (I) and (II)):

(II) for every continuum \(K \subseteq X \) the image \(F(K) \subseteq X \) is a continuum,

(III) the property \(K \cap F(K) \neq \emptyset \) is inductive for continua \(K \subseteq X \), where the image \(F(K) \) means the union \(\bigcup \{ F(p) : p \in K \} \), and a property is called inductive provided that for every decreasing sequence of sets having this property their common part also has this property (see [6], p. 54). Then we prove a theorem stating exactly that (I) follows from (II) and (III) (§ 3, Theorem 2), which is next applied to considering the following condition on the sets \(F^{-1}(K) = \{ p \in X : F(p) \cap K \neq \emptyset \} \): (IV) for every continuum \(K \subseteq F(K) \) the set \(F^{-1}(K) \) is a continuum.

Namely, fixed point theorems are proved for \(\epsilon \)-functions satisfying (IV) or (II) (§ 4, Theorems 3 and 4), which imply a common generalization of the fixed point theorems by Gray [1], by the present author [6] and by Smithson [9], [10] (§ 4, Corollary).

Finally the following property of a non-degenerated subcontinuum \(E \subseteq X \) will be considered:
§ 3. Fixed point theorems for c-functions satisfying (II) and (III). By virtue of (III), there exists a continuum $K \subset X$ such that

\[(1.1) \quad K \cap F(K) \neq \emptyset.\]

(3.2) the continuum $K \subset X$ is irreducible with respect to (3.1)

(see [4], p. 54). Relations between such subcontinua K of X lead to the existence of a fixed point of F (see [5], p. 120, proof of the corollary). For the, following statement, valid for any set X, points to the possibility of using relations between irreducible subcontinua:

Lemma 1. For an arbitrary set-valued function F mapping X into itself and for every continuum $K \subset X$ the condition (3.2) implies

\[(3.3) \quad K = ab \quad \text{and} \quad b \in F(a) \quad \text{for some} \ a, b \in X.\]

Proof. For every point $b \in F(K) \cap K$ there exists a point $a \in K$ such that $b \in F(a)$ by the definition of the image $F(X)$, and simultaneously $b \in K$. Hence any irreducible subcontinuum $ab \subset K$ (see [4], p. 192, Theorem 1, here (2.1) for the λ-dendroid X) satisfies (3.1). (3.2) implies (3.3).

Lemma 1 will be used in the sequel. Now, we will apply Kuratowski’s theorem on the point of irreducibility to the proof of the following

Lemma 2. Let $a \in X$, $b \in F(a)$ and $Ab \cap F(\lambda b) \neq \emptyset$ for a c-function F satisfying (II) and (III). Then there exists a subcontinuum $K \subset X$ such that

\[(3.4) \quad a \in K \subset Ab,\]

(3.5) the continuum K is irreducible with respect to (3.1) and (3.4),

and then there exists a point $c \in X$ such that

\[(3.6) \quad ac = K,\]

\[(3.7) \quad ab \subset F(ac),\]

\[(3.8) \quad Ab \cap (F(ac - Ca)) = \emptyset.\]

Proof. Since Ab is a continuum and $a \in Ab$ in view of (2.2) and (2.3), and Ab satisfies (3.1) by assumption, there exists a continuum K satisfying (3.5) by virtue of (III).

To prove (3.6) for some point $c \in X$, suppose the contrary. Then by the theorem of Kuratowski, there exist two continua $K_1 \subset X$ such that

\[(3.9) \quad K_1 \cup K_2 = K,\]

\[(3.10) \quad a \in K_1 \quad \text{and} \quad K_1 \neq K.\]

Since $b \in F(a)$ by assumption, it follows that $b \in F(K_1)$, and by (3.5) $K_1 \cap F(K_1) = \emptyset$, whence $a \notin F(K_1)$. Since $F(K_1)$ is a continuum by (II), it follows according to (2.5) that $Ab \cap F(K_1) = \emptyset$. Therefore $Ab \cap F(K_2) = F(K_1) \cup F(K_2)$ by the definition of the images, we have $Ab \cap F(K) = \emptyset$ by (3.9), which contradicts (3.1) or (3.4).
Thus (3.6) holds for some $c \in X$.

Properties (3.1), (3.4) and (3.6) of the continuum imply that $A \cap F(ac) \neq \emptyset$.

Since $b \in F(ac)$ by assumption, we have $a \in F(ac)$ according to (2.5) and (II). (2.1) implies (3.7).

Finally, the set $ac - Ca$ being the component of a in ac (see [4], p. 208 for this concept), we have

\[ac - Ca = \bigcup_{j=1}^{n} K_{j}, \]

where the continua K_j all satisfy (3.10), in view of (3.6). Then $A \cap F(K_j) = \emptyset$ for all j, as above by (2.5) and (II). Since $\bigcup_{j} F(K_j) = F(\bigcup_{j} K_j)$ by the definition of images, it follows by (3.11) that $A \cap F(ac - Ca) = \emptyset$.

Theorem 1. For every c-function F satisfying (II) and (III), and for every two points $a, b \in X$ satisfying $b \in F(a)$ and $A \cap F(ab) = \emptyset$, there exists a fixed point c of F such that $ab = ac$.

Proof. It follows from Lemma 2 that Theorem II of [5] holds under assumptions (II) and (III) (see [5], p. 188–190, 151–171). The two remaining auxiliary theorems, I and III, of [5] are both derived from the two properties (II) and (III). Hence (see [6], p. 762–763) the theorem follows.

Theorem 2. Every c-function F satisfying (II) and (III) has a fixed point (property (I)).

Proof. Let $K = X$ be a continuum having property (3.2) and therefore satisfying (3.3) by Lemma 1. Then a is a fixed point of F when $a = b$. In the opposite case, $A \neq ab$ in view of (2.4). Since ab is a subcontinuum of ab by (2.2) and (2.3), it follows by (3.2) and (3.3) that $A \cap F(ab) = \emptyset$ and $b \in F(a)$. Thus, by Theorem 1, there exists a fixed point of F.

Remark 1. The theorem of Kuratowski remains true without any axiom of separability for connected and compact topological spaces in which every closed and connected set with a non-empty interior is decomposable (see [7], p. 53). Then also the above fixed point theorems hold for generalized non-metric λ-dendroids where sequences are replaced by transfinite sequences (see [5], p. 109, Remark 2, for the remaining statement which is needed in the fixed point theorems).

§ 4. Fixed point theorems for c-functions satisfying (II) or (IV). In the fixed point theorem below, we will consider two cases, $F(X) = X$ and $X \subset F(X)$, instead of considering a c-function F mapping X onto itself or onto itself, i.e., such that $F(X) = X$.

Recall that, for an arbitrary c-function F mapping X onto a space $F(X)$, we have for every $x \in F(X)$

\[p \in F^{-1}(x) \iff x \in F(p), \]

by the definition of the $F^{-1}(x)$. Hence by the definition of images $F(K)$ for any $K \subset X$

\[\forall x \in X \quad \forall p \in F^{-1}(x) \iff x \in F(p), \]

whence it follows that $F^{-1}(x) \neq \emptyset$ if $x \in F(X)$, i.e., that a set-valued function F^{-1} mapping $F(X)$ onto X is defined such that $(F^{-1})^{-1} = F$ by (4.1), i.e., that F^{-1} is a function $F^{-1}(p) = \{p \in F^{-1}(x) \mid x \in F(p)\}$ for all $p \in F(X)$.

Theorem 3. If $F(X) = X$ where F is a c-function satisfying (II), and for every $q \in F(X)$, the set $F^{-1}(q)$ is compact, then there exists a fixed point of F.

Proof. We have to verify that F satisfies (II).

Let a sequence of continua $K_j \subset X$ be decreasing and let $K_j \cap F(K_j) \neq \emptyset$ for $j = 1, 2, \ldots$. Then by (II) the non-empty sets $K_j \cap F(K_j)$ are compact, and their sequence is decreasing by the definition of the images $F(K_j)$. It follows by a theorem of Cantor (see [4], p. 208) that \(\bigcap_{j=1}^{\infty} (K_j \cap F(K_j)) \neq \emptyset \), i.e., that \((\bigcap_{j=1}^{\infty} K_j) \cap F(K_j) \neq \emptyset \).

Now it suffices to verify that \(\bigcap_{j=1}^{\infty} F(K_j) = F(\bigcap_{j=1}^{\infty} K_j) \).

Let $q \in F(K_j)$, i.e., $q \in F(K_j)$ for all j. Then $K_j \cap F^{-1}(q) \neq \emptyset$ by (4.2). Since the sequence $K_j \cap F^{-1}(q)$ is decreasing and $F^{-1}(q)$ is compact by assumption, it follows by the theorem of Cantor that \(\bigcap_{j=1}^{\infty} (K_j \cap F^{-1}(q)) \neq \emptyset \). Hence $F^{-1}(q) = \emptyset$, and therefore by (4.2), $q \in F(\bigcap_{j=1}^{\infty} K_j)$.

Thus F satisfies (II) and, (II), being satisfied by assumption, Theorem 2 holds.

Remark 2. The general statement is true for any set-valued function F mapping a topological space X into a set Y: the following two conditions are equivalent:

\[F^{-1}(y) \] is countably compact for every $y \in F(X)$,

\[2^{F(X)} \] is compact by “closed” and in $2^{F(X)}$ “closed” by “countably compact”.

Theorem 4. If $X \subset F(X)$ where F is a c-function satisfying (IV) mapping X onto a space $F(X)$, then there exists a fixed point of F.

**Proof of $F^{-1}(X) \subset X$ by the definition of the set $F^{-1}(X)$, and in view of (4.3) the c-function F^{-1} satisfies (II) by the assumed property (IV) of F. Also by (4.3), $(F^{-1})^{-1}(p)$ is compact for every $p \in F^{-1}(X)$, $F(p)$ being a continuum by the assumption that F is a c-function. Thus, by applying Theorem 3 to the c-function F^{-1}, we find that there exists a fixed point of F^{-1} which is a fixed point of F in view of (4.1).

Corollary. If $F(X) \subset X$ or $X \subset F(X)$ for a c-function F satisfying (II) and (IV), then there exists a fixed point of F.

The above corollary is a generalization of [9] (see also [10], p. 599) to λ-dendroids in the domain of continua, some generalizations being possible also for semi-continua (see [4], p. 188 for this concept). Simultaneously, it extends an analogous
theorem of [6] (p. 765, Theorem 3) to the case where the e-function is non-semi-continuous (the main Theorem 2 of [6] being derived from the above properties (II) and (III) only). Here observe that Theorem 4 above cannot be proved for e-functions satisfying (II) and (III) only. This is shown by the following simple

Example 1. Let X be a segment ab in a Euclidean plane with end points a and b and let p be an interior point of ab. Now let ac denote an arbitrary arc lying in the plane such that $ac \cap ab = ap$ and $p \neq c$.

Then no function f mapping ap onto bc and pb onto ca has a fixed point if $f(p) = c$, because $ap \cap bc = (p) = pb \cap ca$. However, f is continuous if both the images $f(ap)$ and $f(pb)$ are continuous.

In particular, for continuous monotone functions the above corollary is in fact proved in a paper by Gray (see [1], p. 450). The question arises whether the method of his proof can be extended to set-valued functions.

§ 5. End continua and fixed points. Every end continuum E of X has by definition the property that for every irreducible continuum $ab \subset X$

\[(5.1)\]
$ab \cap E \neq \emptyset \neq ab - E$ imply $E = Ab$ or $E = Ba$,

and thus

\[(5.2)\]
$a \in E$ and $b \in X - E$ imply $E = Ab$,

which implies (V) directly by (2.1) and (2.5). The properties (5.1), (5.2) and (V) are of course not equivalent (see § 6, Examples 2 and 3). Now observe that (V) means exactly that E is nowhere dense in every other subcontinuum of X which contains E; namely, the following lemma holds:

Lemma 3. A subcontinuum E of X has property (V) if and only if

\[(5.3)\]
$a \in E$ and $b \in X - E$ imply $E \subset Ab$.

Proof. Assume (V) to be satisfied and let

\[(5.4)\]
$a \in E$ and $b \in X - E$.

Then by (V),

\[(5.5)\]
$E \subset ab$,

and now if we set

\[(5.6)\]
$K = \overline{ab - E}$,

condition (V) will be applied to the continuum K (see [4], p. 435, Theorem 3). Since $E \cup K = ab$ by (5.5) and (5.6), and ab is connected, we have $K \cap E = K \neq \emptyset$. Simultaneously $K - E \neq \emptyset$, being $b \in ab - E$ by (5.4); thus $E \subset K$.

In this way it is proved that $E \cap F(E) = \emptyset$, i.e. in view of (5.6), that E is a nowhere dense subcontinuum of ab containing the point a by (5.4). Since ab is a subcontinuum of ab in view of (2.1) and (2.3), and thus a maximal subcontinuum of ab containing a and nowhere dense in ab (see [3], p. 453, Corollary 2), it follows that $E = Ab$, i.e. (5.3).

The converse statement follows directly from (2.1) and (2.3).

Theorem 5. For every e-function E satisfying (II) and (III) mapping X into itself, and for every subcontinuum E of X such that $E \cap F(E) = \emptyset$ and (V), there exists a fixed point belonging to E.

Proof. It follows from the assumed inequality (3.1) for the continuum E that E contains a subcontinuum $K \subset E$

satisfying (3.1) and (3.2), and thus also (3.3) by Lemma 1.

If $a \neq b$, then $E \neq F(E)$ in view of (2.4). Hence, according to (3.3),

\[(5.8)\]
$E = K$ and $F(E) = \emptyset$,

and hence $E \cap F(E) = \emptyset$ by (3.2). Since $b \in F(E)$ by (3.3), it follows by Theorem 1 that there exists a fixed point c of F such that $ab = ac$. Hence $Ac = Ab$ by (2.6). It follows by (5.7) and (5.8) that $E = Ac \neq \emptyset$. Since $a \in E$ by (5.7) and (3.3), we have $c \in E$ by (3.3) in Lemma 3.

Theorem 5 above yields a partial answer to the problem raised in [6] (p. 766).

§ 6. Essentiality of assumptions. The essentiality of the assumptions in Theorems 1–5 will first be proved for an essential part of them, namely for the following two implications:

\[(II) \land (IV) \implies (III) \land (II) = (I)\]

The essentiality of (II) is shown by the function f_1 defined on the unit interval $I = \{ t \mid 0 \leq t < 1 \}$ of the real line by the formula $f_1(t) = (t^{+}+1) \bmod 1$, i.e.

\[(6.1)\]
$f_1(t) = \begin{cases} t^{+}+1 & \text{for } t < \frac{1}{2} \\ t & \text{for } t \geq \frac{1}{2} \end{cases}$

The function f_1 does not have property (I), and (III) is satisfied.

Indeed, let a sequence of continua $K_j = I$ be decreasing and let $K_j \cap f_1(K_j) \neq \emptyset$ for $j = 1, 2, 3, \ldots$ Suppose first that $1 \notin K_j$ for all j (greater than some index), so that the inverse images $f_1^{-1}(K_j)$ are compact by (6.1). Hence

\[(6.2)\]
$\bigcap_{j=1}^{\infty} f_1^{-1}(K_j) = \emptyset$.

by the Cantor theorem, and therefore

\[(6.3)\]
$\bigcap_{j=1}^{\infty} f_1^{-1}(K_j) = \emptyset$.

It follows that

\[(6.4)\]
$\bigcap_{j=1}^{\infty} f_1^{-1}(K_j) = \emptyset$.

This inequality holds also in the case where $1 \in K_j$ for all j, directly by (6.1).
The essentiality of (III) is proved by the function defined on the same unit interval I by the formula

$$f_3(t) = \begin{cases} \sin \frac{t}{t} & \text{for } t \neq 1, \\ \frac{1}{t} & \text{for } t = 1, \end{cases}$$

which actually does not have property (I), and satisfies (II) if ω denotes the function of Cesàro (see [4], p. 131) defined on the closed interval. Indeed, ω attains every value between 0 and 1 in every interval (hence); thus f_3 also has this property (see also [2], p. 20 for another function with this property).

The essentiality of (IV) can be stated by the function defined on the closed interval $J = \{r: -1 \leq r \leq 1\}$ by the formula

$$f_4(t) = \begin{cases} \sin \frac{t}{t} & \text{for } t \neq 1, \\ \frac{1}{t} & \text{for } t = 1, \end{cases}$$

where s denotes an arbitrary number from J.

The function f_4 satisfies (II), in view of $f_4([-e, 0]) = J = f_3(0, e)$ for every $e > 0$, and hence whenever $s \neq 0$, f_4 does not have property (III) either.

The essentiality of (IV), (III) and (II) will now be considered with respect to the following conditions:

(VI) for every closed set $B \subseteq X$ the set $F^{-1}(B)$ is closed,

(VII) for every $q \in X$ the set $F^{-1}(q)$ is closed,

(VIII) if a sequence of continua $K_j \subseteq X$ is decreasing, then $F(\cap K_j) = \cap F(K_j)$.

Property (VI) means of course the upper semi-continuity of F, which for (single-valued) functions simply becomes continuity, and the following relations hold in view of Remark 2:

$$\text{VI} \Rightarrow \text{VII} \Rightarrow \text{VIII}.$$

These two implications are essential, is shown, in particular, by the following two examples of functions.

Example 2. Let X be the closure in a Euclidean plane of the diagonal of the function f, and let E denote the segment of condensation of X, i.e. the segment of the y-axis with end points -1 and 1. Then the formula

$$f_X(p) = \begin{cases} p & \text{for } p \in X, \\ -p & \text{for } p \not\in X, \end{cases}$$

defines a non-continuous function mapping X onto itself and satisfying (II) and (IV).

Indeed, if a continuum $K \subseteq X$ is contained in E or is in $X - E$, then the image $f_3(K)$ is a continuum because f_3 is continuous in each of these two sets E and $X - E$ separately. If $K \subseteq E \not\subseteq K - E$, then $E \cup K$ (property (V)), and then $f_3(K) = K$ by the definition of f_3. Thus f_3 satisfies (I), and hence also (IV) is satisfied, because $f_3^{-1} = f_3$ by (6.4).
In fact, for every $p \in X$, every sufficiently small neighbourhood of p has a countable, regular base of regions (see [4], p. 231, Theorem 8). Hence there exists a decreasing sequence of continua $K_j \subset X$ such that

$$ (p) = \bigcap_{j=1}^{\infty} K_j \quad \text{and} \quad p \in \text{Int} K_j \quad \text{for all} \quad j. $$

Then $F(p) = \bigcap_{j=1}^{\infty} F(K_j)$ by virtue of (VIII). Therefore by (IX), for every open set $V \subset Y$ such that $F(p) \subset V$ there exists a j' such that $F(K_{j'}) \subset V$. (VI) follows.

Problem. Can the c-function in Theorem 6 be replaced by a single-valued function?

References

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

Wrocław

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY

Wrocław

Accepted by the Redaction le 2. 1. 1978

Products of perfectly normal spaces

by

Teodor C. Przymusiński (Warszawa)

Abstract. Answering a question raised by R. W. Heath, we construct, assuming Continuum Hypothesis, for every natural n a separable and first countable space X such that

(a) X^n is perfectly normal;
(b) X^{n+1} is normal but X^{n+1} is not perfect.

The space X and X^{n+1} has cardinality ω, and can be made either Lindelöf or locally compact and locally countable.

We show that the existence of such spaces is independent of the axioms of set theory.

§ 1. Introduction. In 1969 R. W. Heath [7] raised a question whether for $n \geq 2$ there exist spaces X such that X^n is perfect but X^{n+1} is not. This question has also been repeated by D. Burke and D. Lutzer in [2] and has been brought to the author’s attention by Eric van Douwen.

In this paper we give a positive answer to this question, constructing, under the assumption of the Continuum Hypothesis (CH), the following two examples.

Example 1. (CH) For every $n < \omega$ there exists a first countable, locally compact, locally countable space X of cardinality ω, such that:

(a) X^n is perfectly normal and hereditarily separable;
(b) X^{n+1} is normal but X^{n+1} is not hereditarily normal (*).

Example 2. (CH) For every $n < \omega$ there exists a first countable space X of cardinality ω, such that:

(a) X^n is hereditarily Lindelöf and hereditarily separable;
(b) X^{n+1} is Lindelöf but X^{n+1} is not hereditarily Lindelöf.

This paper is closely related to our paper [16] where, under the assumption of Martin’s Axiom, positive results concerning the preservation of perfectness and perfect normality in product spaces are given.

* This paper was originated while the author was a Visiting Assistant Professor at the University of Pittsburgh in 1976/77.

(*) Let us recall that a perfectly normal space is hereditarily normal and that a Lindelöf space is perfect if and only if it is hereditarily Lindelöf.