

- [15] R. B. Sher, Property SUV[∞] and proper shape theory, Trans. Amer. Math. Soc. 190 (1974), pp. 345-356.
- [16] Extensions, retracts and absolute neighborhood retracts in proper shape theory. Fund. Math. 96 (1977), pp. 149–159.
- [17] L. C. Siebenmann, L. Guillou et H. Hähl, Les voisinages reguliers: criteres homotopiques d'existence, Ann. Sci E. N. S. 7 (1974), pp. 431-462.
- [18] N. E. Steenrod, Regular cycles of compact metric spaces, Ann. of Math. 41 (1940), pp. 833-851.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA Ibaraki, Japan FACULTY OF LIBERAL ARTS SHIZUOKA UNIVERSITY Shizuoka, Japan

Accepté par la Rédaction le 12. 12. 1977

Intersection of sectorial cluster sets and directional essential cluster sets

by

A. K. Layek and S. N. Mukhopadhyay (Burdwan)

Abstract. Let $f: H \to W$, where H is the upper half plane and W is a second countable topological space, and let R be the real line. It is proved that, except a set of points x on R, which is of the first category and measure zero, every essential directional cluster set of f is a subset of every sectorial cluster set of f at x; and if W is compact and normal, then except a countable set of points x on R, every essential directional cluster set intersects every sectorial cluster set of f at x.

1. Let H denote the open upper half plane and let z denote points of H. Let x denote points on the real line R. For each $x \in R$, $\theta \in (0, \pi)$ and h > 0, let

$$L_a(x) = \{z: z \in H; \arg |z-x| = \theta\}$$

and

$$L_{\theta}(x, h) = \{z \colon z \in H; |z-x| < h\} \cap L_{\theta}(x).$$

For each pair of directions θ_1 , θ_2 , $0 < \theta_1 < \theta_2 < \pi$, $\sigma_{\theta_1 \theta_2}$ denotes the sector in H with vertex at the origin, defined by

$$\sigma_{\theta_1\theta_2} = \{z \colon z \in H; \ \theta_1 < \arg z < \theta_2\} \ .$$

If there is no ambiguity, we shall simply write σ instead of $\sigma_{\theta_1\theta_2}$. By $\sigma(x)$ we mean the sector in H with vertex at x and which is obtained by a translation of σ . That is,

$$\sigma(x) = \{z: z \in H; \ \theta_1 < \arg(z - x) < \theta_2\}.$$

Also for $x \in R$ and h>0 we shall write

$$\sigma(x, h) = \sigma(x) \cap \{z \colon z \in H; |z - x| < h\}.$$

For $E \subset H$, the upper outer density $d_{\theta}^*(E, x)$ and outer density $d_{\theta}^*(E, x)$ of E at x in the direction θ are defined by

(1)
$$\overline{d}_{\theta}^{*}(E, x) = \limsup_{h \to 0} \frac{\mu^{*}[E \cap L_{\theta}(x, h)]}{\mu(L_{\theta}(x, h))}$$

and

(2)
$$d_{\theta}^{*}(E, x) = \lim_{h \to 0} \frac{\mu^{*}[E \cap L_{\theta}(x, h)]}{\mu(L_{\theta}(x, h))},$$

where μ and μ^* denote one-demensional measure and outer measure (Lebesgue). When the sets concerned are measurable, one gets the definitions of upper density $d_{\theta}(E,x)$ and density $d_{\theta}(E,x)$ of a measurable set E at x in the direction θ by replacing μ^* in (1) and (2) respectively by μ .

Let $f\colon H\to W$, where W is a topological space. The sectorial (directional) cluster set relative to the sector (direction) $\sigma(\theta)$ of f at x, designated by $C(f,x,\sigma)$ ($C(f,x,\theta)$), is defined to be the set of all w in W such that for every open set U in W containing w, x is a limiting point of $f^{-1}(U)\cap \sigma(x)(f^{-1}(U)\cap L_{\theta}(x))$. Replacing the condition that x is a limiting point of $f^{-1}(U)\cap L_{\theta}(x)$ by the stronger condition that $d^*_{\theta}(f^{-1}(U),x)>0$, one gets the definition of directional essential cluster set $C_e(f,x,\theta)$ of f at x in the direction θ . The essential cluster set $C_e(f,x)$ of f at f is the set of all f in f such that for every open set f in f containing f in f is the set of all f in f such that for every open set f in f containing f in f is the set of all f in f such that for every open set f in f in f containing f in f is the set of all f in f such that for every open set f in f in f is the set of all f in f

$$S(x, h) = \{z: z \in H; |z-x| < h\}$$

and the measure here is the two demensional Lebesgue measure.

A set $P \subset R$ is said to be porous at a point $x \in R$ if

$$\limsup_{r\to 0}\frac{\gamma(x,r,P)}{r}>0,$$

where $\gamma(x,r,P)$ is the length of the largest open interval in the complement of P which is contained in (x-r,x+r). A set $P \subset R$ is said to be *porous* if it is porous at each of its points. A set $T \subset R$ is said to be σ -porous if it is a countable union of porous sets. Clearly every subset of a porous set is porous and every subset of a σ -porous set is σ -porous. Also it can be verified that a σ -porous set is both of the first category and of measure zero. But there exists a perfect set of measure zero which is not σ -porous (see L. Zajlček, *Časopis pro pěstování matematiky* 101 (1976), pp. 350-359).

2. It is known [6] that if $f\colon H\to R$ is measurable and θ_1 and θ_2 are fixed directions, then except a set of measure zero on R, the set $C_e(f,x,\theta_1)$ is a subset of $C(f,x,\theta_2)$ and if f is continuous then the exceptional set is also of the first category. It is also known [4] that if $f\colon H\to R$ is arbitrary and σ is a fixed sector in H, then the total cluster set C(f,x) of f at x is equal to the set $C(f,x,\sigma)$ except a set of points x of the first category on R (see also [2, 5]). In [1] it is also proved that the set of points x at which there exist two arcs γ_1 and γ_2 in H with the property that the arc cluster sets $C_{\gamma_1}(f,x)$ and $C_{\gamma_2}(f,x)$ are disjoint, is countable (see [3, p. 85]).

In this paper, we prove in Theorem 1 that if f is arbitrary and if $\{\sigma\}$ is the collection of all sectors in H then, except a σ -porous set of points x on R, the set $C(f, x, \theta)$ is a subset of $\bigcap \{C(f, x, \sigma): \sigma \in \{\sigma\}\}$ for every direction θ , $0 < \theta < \pi$. We also prove in Theorem 2 that if f is arbitrary then, except a countable set of points x on R, the sets $C(f, x, \sigma)$ and $C_e(f, x, \theta)$ intersect for every σ and every θ .

Throughout the paper we shall consider $f: H \to W$, where W is a topological snace with a countable basis. The closure of a set E will be denoted by \overline{E} .

3. Let $E \subset H$ be arbitrary and $x \in R$. Let

$$\vartheta(E, x) = \{\theta \colon 0 < \theta < \pi; x \in \overline{L_{\theta}(x) \cap E}\}.$$

This will be used in the sequel.

LEMMA 1. Let $E \subset H$ be arbitrary and let $\sigma \subset H$ be a fixed sector. Then the set

$$T(E) = \{x \colon x \in R; \vartheta(E, x) \neq \emptyset; x \notin \overline{\sigma(x) \cap E}\}$$

is a \sigma-porous set.

Proof. Let for fixed positive integer m

$$T_m(E) = \{x \colon x \in R; \vartheta(E, x) \neq \emptyset; \sigma(x, 1/m) \cap E = \emptyset\}.$$

Then clearly

(1)
$$T(E) = \bigcup_{m=1}^{\infty} T_m(E).$$

Let, if possible for some m, the set $T_m(E)$ be a non-porous set. Then there is $x_0 \in T_m(E)$ such that

(2)
$$\limsup_{r\to 0} \frac{\gamma(x_0, r, T_m(E))}{r} = 0,$$

where $\gamma(x_0, r, T_m(E))$ is the length of the largest open interval in the complement of $T_m(E)$ and is contained in (x_0-r, x_0+r) . Again since $x_0 \in T_m(E)$,

$$\sigma(x_0, 1/m) \cap E = \emptyset$$
 and $\vartheta(E, x_0) \neq \emptyset$.

Let $\theta_0 \in \vartheta(E, x_0)$. Then since $x_0 \in \overline{L_{\theta_0}(x_0) \cap E}$ and

$$\sigma(x_0, 1/m) \cap E = \emptyset$$
,

we have $L_{\theta_0}(x_0) \not\subset \sigma(x_0)$. Let $\sigma_{\alpha\beta}$ be any sector such that $\bar{\sigma}_{\alpha\beta} \subset \sigma$. Then either $0 < \alpha < \beta < \theta_0$ or $\theta_0 < \alpha < \beta < \pi$. Let us first assume that $0 < \alpha < \beta < \theta_0$. Let

$$K = \frac{\sin \theta_0 \sin (\beta - \alpha)}{\sin \beta \sin (\theta_0 - \alpha)}.$$

Then from (2) there is a δ such that

$$0 < \delta < \frac{1}{m \sin \theta_0} \min \left[\sin(\theta_0 - \alpha), \sin(\theta_0 - \beta) \right]$$

and

3)
$$\gamma(x_0, r, T_m(E)) < \frac{1}{2}Kr \quad \text{for} \quad 0 < r < \delta.$$

Then both $L_a(x_0-\delta, 1/m)$ and $L_b(x_0-\delta, 1/m)$ intersect $L_{\theta_0}(x_0)$. Let

$$h_0 = \delta \, \frac{\sin \alpha}{\sin(\theta_0 - \alpha)}.$$

Since $x_0 \in \overline{L_{\theta_0}(x_0) \cap E}$, there is $z \in L_{\theta_0}(x_0, h_0) \cap E$. Let $x' \in (x_0 - \delta, x_0)$ be such that

$$z = L_{\alpha}(x', 1/m) \cap L_{\theta_0}(x_0).$$

Let I(x') be the open interval in R whose left end point is x' and right end point is x'' such that

$$z=L_{\beta}(x^{\prime\prime},\,1/m)\cap L_{\theta_0}(x_0)\;.$$

By a simple calculation, $\mu(I(x')) = K(x_0 - x')$. Hence from (3), since $0 < x_0 - x' < \delta$, we have

(4)
$$\gamma(x_0, x_0 - x', T_m(E)) < \frac{1}{2}\mu(I(x')).$$

Since $I(x') \subset (x', 2x_0 - x')$, from (4) and from the definition of $\gamma(x_0, x_0 - x', T_m(E))$ it follows that $I(x') \cap T_m(E) \neq \emptyset$. Let $x''' \in I(x') \cap T_m(E)$. Clearly, $z \in \sigma_{\alpha\beta}(x''', 1/m)$. Also since $z \in E$, $z \in \sigma_{\alpha\beta}(x''', 1/m) \cap E$. But since $x''' \in T_m(E)$, $\sigma_{\alpha\beta}(x''', 1/m) \cap E = \emptyset$, which is a contradiction. If $\theta_0 < \alpha < \beta < \pi$, then we would also arrive at a similar contradiction by considering the interval $(x_0, x_0 + \delta)$. Thus each $T_m(E)$ is porous and hence, from (1), the set T(E) is σ -porous.

THEOREM 1. If $f: H \to W$ is arbitrary and $\{\sigma\}$ is the collection of all sectors in H, then the set

$$\Theta(x) = \{\theta \colon 0 < \theta < \pi; C(f, x, \theta) \neq \bigcap \{C(f, x, \sigma): \sigma \in \{\sigma\}\}\}$$

is void, except a σ -porous set of points x on R.

Proof. For each pair of rationals α , β , $0 < \alpha < \beta < \pi$, denote by $\sigma_{\alpha\beta}$ the sector

$$\sigma_{\alpha\beta} = \{z \colon z \in H; \alpha < \arg z < \beta\}$$

and let $\{\sigma_{\alpha\beta}\}$ be the collection of all such sectors. Let $\{V_n\}$ be a countable basis for the topology of W and let

$$E_n = f^{-1}(V_n),$$

$$\vartheta(E_n, x) = \{\theta \colon 0 < \theta < \pi; x \in \overline{L_{\theta}(x) \cap E_n}\},$$

$$T_{\alpha \beta}(E_n) = \{x \colon x \in R; \vartheta(E_n, x) \neq \emptyset, x \notin \overline{\sigma_{\alpha \beta}(x) \cap E_n}\}$$

and

$$T = \{x \colon x \in R, \Theta(x) \neq \emptyset\}.$$

Now if $x_0 \in T$, then there is $\theta_0 \in \Theta(x_0)$. Hence

$$C(f, x_0, \theta_0) \not\subset \bigcap \{C(f, x_0, \sigma) : \sigma \in \{\sigma\}\}.$$

So there is $\sigma_0 \in \{\sigma\}$ such that $C(f, x_0, \theta_0) \not\subset C(f, x_0, \sigma_0)$. Hence there is E_{n_0} such that $x_0 \in L_{\theta_0}(x_0) \cap E_{n_0}$ and $x_0 \notin \sigma_0(x_0) \cap E_{n_0}$. Let $\sigma_{\alpha_0 \beta_0} \subset \sigma_{\alpha_0 \beta_0} \subset \sigma_0$.

So, $x_0 \notin \overline{\sigma_{\alpha_0\beta_0}(x_0)} \cap E_{n_0}$. Also since $x_0 \in \overline{L_{\theta_0}(x_0)} \cap E_{n_0}$, $\theta_0 \in \vartheta(E_{n_0}, x_0)$. Therefore, $x_0 \in T_{\sigma_0\beta_0}(E_{n_0})$. Thus we have

$$(5) T \subset \bigcup T_{\alpha\beta}(E_n)$$

where the union is taken for all integers n and for all pair of rationals α , β , $0 < \alpha < \beta < \pi$. By Lemma 1, each of the sets $T_{\alpha\beta}(E_n)$ is a σ -porous set. So, by (5) the set T is a σ -porous set and this completes the proof the theorem.

COROLLARY 1. If $f\colon H\to W$ is arbitrary and if $\{\sigma\}$ is the collection of all sectors in H, then except a σ -porous set of points x on R,

$$\bigcup \overline{\{C(f, x, \theta) \colon 0 < \theta < \pi\}} \subset \bigcap \{C(f, x, \sigma) \colon \sigma \in \{\sigma\}\}.$$

Proof. Since $C(f, x, \sigma)$ is closed for each $\sigma \in \{\sigma\}$, $\bigcap \{C(f, x, \sigma): \sigma \in \{\sigma\}\}$ is closed and so the proof follows from Theorem 1.

COROLLARY 2. If $f\colon H\to W$ is measurable and $\{\sigma\}$ is the collection of all sectors in H, then the set

$$Q = \{x \colon x \in R; C_e(f, x) \neq \bigcap \{C(f, x, \sigma) \colon \sigma \in \{\sigma\}\}\}$$

is of measure zero.

If, further, f is continuous, then this set is also of the first category.

Proof. From [5] it follows that if f is measurable then for a fixed θ , $0 < \theta < \pi$, the set

$$S = \{x \colon x \in R; C_e(f, x) \not\subset C_e(f, x, \theta)\}$$

s of measure zero and if further, f is continuous then the set S is also of the first category. Since σ -porous set is both of the first category and of measure zero, the proof follows from Theorem 1.

Remark. In Corollary 2, the essential cluster set $C_e(f, x)$ can be replaced by the strong essential cluster set $C_s(f, x)$ to get a stronger result. (For the definition of $C_s(f, x)$ see [7].) The proof is the same except that one is to consider $\theta = \frac{1}{2}\pi$ and replace $C_e(f, x)$ by $C_s(f, x)$ and apply a result of O'Malley [7].

4. Throughout this section W is a compact normal space which have a countable basis. In particular, W may be a compact metric space.

LEMMA 2. Let $f: H \to W$ be arbitrary and let G be an open subset of W. If $C_e(f, x, \theta) \subset G$ then $d_{\theta}^*(f^{-1}(G), x) = 1$.

Proof. Since $W \setminus G$ is closed and disjoint from $C_e(f, x, \theta)$, there exist points w_i , i = 1, 2, ..., k, in $W \setminus G$ and neighbourhoods $V(w_i)$ of w_i such that

$$W \setminus G \subset \bigcup_{i=1}^k V(w_i)$$

and

$$\lim_{r\to 0} \frac{\mu^*[f^{-1}(V(w_i))\cap L_{\theta}(x,r)]}{r} = 0$$

for each i = 1, 2, ..., k. Hence

$$\lim_{r\to 0} \frac{\mu^*[f^{-1}(W\backslash G)\cap L_{\theta}(x,r)]}{r} = 0$$

and the proof is complete.

LEMMA 3. Let $f: H \to W$ be arbitrary, and let G be an open subset of W. If $C(f, x, \sigma) \subset G$, then there is a positive integer n such that

$$f^{-1}(G) \cap \sigma(x, 1/n) = \sigma(x, 1/n).$$

Proof. Since $W \setminus G$ is closed and disjoint from $C(f, x, \sigma)$, there exists points w_i , i = 1, 2, ..., k, in $W \setminus G$ and neighbourhoods $V(w_i)$ of w_i such that

$$W \setminus G \subset \bigcup_{i=1}^k V(w_i)$$

and

$$x \notin f^{-1}(V(w_i)) \cap \sigma(x)$$

for each i = 1, 2, ..., k. Let $n_1, n_2, ..., n_k$ be positive integers such that

$$f^{-1}(V(w_i)) \cap \sigma(x, 1/n_i) = \emptyset$$

for each i = 1, 2, ..., k. Set

$$n = \max[n_1, n_2, ..., n_k]$$
.

Then

$$f^{-1}(W \setminus G) \cap \sigma(x, 1/n) = \emptyset$$

which proves the lemma.

Theorem 2. Let $f\colon H\to W$ be arbitrary and let E be the set of all points $x\in R$ for which there exist a sector σ_x in H and a direction θ_x , $0<\theta_x<\pi$, with the property that

$$C(f, x, \sigma_x) \cap C_c(f, x, \theta_x) = \emptyset$$
.

Then E is countable.

Proof. For each pair of rationals α , β , $0 < \alpha < \beta < \pi$, let

$$\sigma_{\alpha\beta} = \{z \colon z \in H; \alpha < \arg z < \beta\}$$

and let $\{\sigma_{\alpha\beta}\}$ be the collection of all such sectors in H. Let $\mathscr B$ be a countable basis for the topology of W and let $\mathscr G$ be the collection of all open sets which can be expressed as a finite union of sets $B\in\mathscr B$. Then $\mathscr G$ is countable. Let $\mathscr G^*$ be the set of all ordered pair (G_1,G_2) of sets of $\mathscr G$ with $G_1\cap G_2=\mathscr O$. So, $\mathscr G^*$ is also countable. Let for $G\in\mathscr G$ and $x\in R$,

$$\Theta(f^{-1}(G), x) = \{\theta : 0 < \theta < \pi; d_{\theta}^*(f^{-1}(G), x) = 1\}$$

$$P(G_1, G_2, \alpha, \beta, n) = \{x: x \in R; \sigma_{\alpha\beta}(x, 1/n) \cap f^{-1}(G_1) = \sigma_{\alpha\beta}(x, 1/n); \Theta(f^{-1}(G_2), x) \neq \emptyset\}.$$

Let $x \in E$. Then there exists a sector σ_x and a direction θ_x , such that $C(f, x, \sigma_x) \cap C_e(f, x, \theta_x) = \emptyset$. Then since the sets $C(f, x, \sigma_x)$ and $C_e(f, x, \theta_x)$ are closed and since W is normal, there exist two open sets G_1^0 , G_2^0 in W with $G_1^0 \cap G_2^0 = \emptyset$ such that $C(f, x, \sigma_x) \subset G_1^0$ and $C_e(f, x, \theta_x) \subset G_2^0$. Again, the sets $C(f, x, \sigma_x)$ and $C_e(f, x, \theta_x)$ being closed, they are compact and so there exist two open sets $G_1, G_2 \in \mathcal{G}$ such that $C(f, x, \sigma_x) \subset G_1$ and $C_e(f, x, \theta_x) \subset G_2$ and $G_1 \cap G_2 = \emptyset$. So, $(G_1, G_2) \in \mathcal{G}^*$. Hence, by applying Lemma 3 and Lemma 2, there exists a positive integer n such that

$$\sigma_x(x, 1/n) \cap f^{-1}(G_1) = \sigma_x(x, 1/n)$$

and

$$d_{\theta_{x}}^{*}(f^{-1}(G_{2}), x) = 1$$
,

Thus $\Theta(f^{-1}(G_2), x) \neq \emptyset$. Let $\sigma_{\alpha\beta} \in {\sigma_{\alpha\beta}}$ be such that $\sigma_{\alpha\beta} \subset \sigma_x$. Then

$$\sigma_{\alpha\beta}(x, 1/n) \cap f^{-1}(G_1) = \sigma_{\alpha\beta}(x, 1/n) .$$

Hence, $x \in P(G_1, G_2, \alpha, \beta, n)$. Thus

(6)
$$E \subset \bigcup P(G_1, G_2, \alpha, \beta, n)$$

where the union will be taken for all pair $(G_1, G_2) \in \mathscr{G}^*$, for all positive integers n, and for all rationals α , β , $0 < \alpha < \beta < \pi$. Since this is a countable union, the theorem will be proved if we show that each $P(G_1, G_2, \alpha, \beta, n)$ is countable. Let, if possible, for some $(G_1, G_2) \in \mathscr{G}^*$, positive integer n, and rationals α , β , $0 < \alpha < \beta < \pi$, the set $P(G_1, G_2, \alpha, \beta, n)$ be uncountable. Then there is a point $x \in P(G_1, G_2, \alpha, \beta, n)$ which is a limiting point of $P(G_1, G_2, \alpha, \beta, n)$ from both sides. Since

$$x \in P(G_1, G_2, \alpha, \beta, n), \quad \Theta(f^{-1}(G_2), x) \neq \emptyset$$
;

so there is θ_x at x such that $d_{\theta_x}^*(f^{-1}(G_2),x)=1$. We observe that $\theta_x\notin(\alpha,\beta)$. For, if $\theta_x\in(\alpha,\beta)$ then $f^{-1}(G_1)\cap f^{-1}(G_2)\neq\emptyset$, which contradicts the fact that $G_1\cap G_2=\emptyset$. Hence we consider the two cases $\beta\leqslant\theta_x<\pi$ and $0<\theta_x\leqslant\alpha$. Let us first consider the case $\beta\leqslant\theta_x<\pi$. Let $\sigma'\subset\sigma_{\alpha\beta}$, where

$$\sigma'(x) = \{z \colon z \in H; \ \theta_1 < \arg(z - x) < \theta_2; \ \alpha < \theta_1 < \theta_2 < \beta\} \ .$$

Since x is a limiting point of the set $P(G_1, G_2, \alpha, \beta, n)$ from both sides, there is a sequence $\{x_m\} \subset P(G_1, G_2, \alpha, \beta, n)$ such that $x_{m-1} < x_m < x$ for all m and $\lim_{m \to \infty} x_m$

= x. Let m_1 be the first integer such that

$$x_{m_1} \geqslant x - \frac{1}{n \sin \theta_x} \min \left[\sin(\theta_x - \theta_2), \sin(\theta_x - \theta_1) \right].$$

Then both sides of $\sigma'(x_m, 1/n)$, namely $L_{\theta_1}(x_m, 1/n)$ and $L_{\theta_2}(x_m, 1/n)$, will intersect $L_{\theta_n}(x)$ for all $m \ge m_1$. For $m \ge m_1$ let J_m denote the open segment on $L_{\theta_n}(x)$ with endpoints

$$z_m = L_{\theta_1}(x_m, 1/n) \cap L_{\theta_N}(x)$$
 and $z'_m = L_{\theta_2}(x_m, 1/n) \cap L_{\theta_N}(x)$.

Let

$$Q=\bigcup_{m=m_1}^{\infty}J_m.$$

Clearly $Q = f^{-1}(G_1)$. Let h_m denote the distance between x and z'_m . Then $J_m = Q \cap L_{\theta_n}(x, h_m)$ for all $m \ge m_1$. So, by a simple calculation,

$$\mu(Q \cap L_{\theta_x}(x, h_m)) \geqslant \mu(J_m) = \frac{h_m \sin \theta_x \sin(\theta_2 - \theta_1)}{\sin \theta_2 \sin(\theta_x - \theta_1)}$$

which shows that

$$\frac{\mu(Q \cap L_{\theta_x}(x, h_m))}{h_m} \geqslant \frac{\sin \theta_x \sin(\theta_2 - \theta_1)}{\sin \theta_2 \sin(\theta_x - \theta_1)} > 0.$$

Since $h_m \to 0$ as $m \to \infty$, taking limit as $m \to \infty$ we have

$$\vec{d}_{\theta_n}(Q,x) > 0.$$

Now since $Q \subset f^{-1}(G_1)$ and $f^{-1}(G_1) \cap f^{-1}(G_2) = \emptyset$.

$$L_{\theta_x}(x, h_m) \cap f^{-1}(G_2) \subset L_{\theta_x}(x, h_m) \setminus Q$$
.

Also since $d_{\theta_x}^*(f^{-1}(G_2), x) = 1$,

(8)
$$d_{\theta_x}(L_{\theta_x}(x, h_m) \setminus Q, x) = 1.$$

But (7) and (8) are contradictory. If $0 < \theta_x \le \alpha$ then we can arrive at a similar contradiction by considering a sequence $\{x_m\} \subset P(G_1, G_2, \alpha, \beta, n)$ such that $x_{m-1} > x_m > x$ for all m and $\lim_{m \to \infty} x_m = x$. This contradiction shows that each of the sets $P(G_1, G_2, \alpha, \beta, n)$ is countable and the proof is complete by (6).

COROLLARY 3. If $f: H \to W$ is arbitrary and σ is a fixed sector in H then the set

$$\Theta(x) = \{\theta \colon 0 < \theta < \pi; C(f, x, \sigma) \cap C_e(f, x, \theta) = \emptyset\}$$

is void, except a countable set of points x on R.

Corollary 4. If $f\colon H\to W$ and if $\{\sigma\}$ is the collection of all sectors in H and ψ be a fixed direction, $0<\psi<\pi$, then the set

$$\vartheta(x) = \{\sigma \colon \sigma \in \{\sigma\}; C(f, x, \sigma) \cap C_e(f, x, \psi) = \emptyset\}$$

is void, except a countable set of points x on R.

References

- F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), pp. 379-382.
- [2] A. M. Bruckner and C. Goffman, The boundary behavior of real functions in the upper half plane, Rev. Roum. Math. Pures Appl. 11 (1966), pp. 507-518.
- [3] E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge 1966.
- [4] P. Erdös and G. Piranian, Restricted cluster sets, Math. Nachr. 22 (1960), pp. 155-158.
- [5] C. Goffman and W. T. Sledd, Essential cluster sets, J. London Math. Soc. 1 (2) (1969), pp. 295-302.
- [6] S. N. Mukhopadhyay, On essential cluster sets, Fund. Math. 79 (1973), pp. 160-171.
- [7] R. J. O'Malley, Strong essential cluster sets, Fund. Math. 78 (1973), pp. 37-42.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF BURDWAN West Bengal, India

Accepté par la Rédaction le 30. 12. 1977