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xedom(y) and if t'c¢ and ie{0,1} then [t"]n ran(h) = @. Since by is
a homeomorphism we have se Sg so that x e [s] and h([sD<z]. By the claim,
hlsDelt] for all j>k. Thus tsw and tcz. But z was arbitrary, sow = z.

Now suppose Vk(x ¢ dom(h,)) and win =z} r but w(n) # z(n). Let k be
odd and so large that if #& Sg and dom (¢)<<n+2 then ran(hy) N [f] # &, Let [ be
least so that x } I ¢ dom(hy). Lets = x| [; then s € M, ,. Let u; be as in the definition
of Zyy. Then [u] 0Dy = @, so dom(u)>n+2 and u,} (n+1) % wh (r+1) or
Uh (1) # 2t (n+1). Say that u,} (n+1) # wh (n+1). Now hyy y([sh €[] by
definition, and Ay([s]) < [u,} n+1] for all j2k+1 by the claim. This contradicts
our assumption that lim x, = x and lim #'(x,) = w. ‘

k—r 0

k-0
Thus 4 is well-defined. Clearly 4 is continuous. A completely symmetric argument
shows that #~* is well-defined (i.e. 4 is one-one and onto) and continuous, Thus / is
2 homeomorphism of “2. Clearly h} dom(#) = /', and thus h(4) = B. &

Both of the hypotheses that 4 and B are everywhere properly I' and that 4
and B are meager are necessary in Theorem 2. One can, however, replace “meager”
by “comeager” by passing to complements. In the case that I' = % !, the hypothesis
of bI'— 4D can also be shown necessary;. this follows from- [3] and the fact that
any properly 1 sct is Borel isomorphic to a meager, everywhere properly £} set.

We conjecture that Theorem 2 holds for subsets of the real line. Of course,

one must formulate the notion of reasonable closure properly in order to prove
this.
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On fine shape theory II
by

Y. Kodama (Ibaraki) and J. Ono (Shizuoka)

Abstract. Let Cg be the proper shape category defined by Ball in terms of proper mutation.

1t is proved that the fine shape category Cyis isomorphic to the full sul?category of Cﬁ whose
objects are locally compact metric spaces of the form X'x R*j’ where X is any compa.ctur‘n and
R+ is the space of non negative reals. The proper movability is defined and a characterization of
pointed FANR in terms of proper movability is obtained.

1. Introduction. The notion of proper shape was introduced originally by Ball
and Sher [3]. Their presentation paralleled Borsuk’s one [1], using a notion of proper
fundamental net in place of Borsuk’s fundamental sequence. Ball [1‘} has established
proper shape theory modeled on the ANR-systems of Mardesi¢-Segal [14], op
the mutations of Fox [7] or on the shapings of Mardesié [13]. Vie mean by ‘9”1, the:
proper shape category in the sense of Ball and Sher [3] and by %, the proper S}]ilape
category in the sense of Ball [1]. As presented by Ball [1], whether €, and ¥, are
isomorphic is an open question. o

Recently the authors [12] have introduced the fine shape category % cgnsmtmg
of all compacta and proved that %/ is isomorphic to the full sul?category %, of €,
whose objects consist of space of the form XX R, , where X is any compactum
and R, is the space of non-negative rea;!i. In tgis paper we first prove ft}tiz,t
%, is isomorphic to the full subcategor;z %, of ‘61,. consisting of spa?ces of the
form Xx R., X a compactum. This gives a partial answer to Ball’s ques'no‘n
mentioned above. In the second part of the paper we shall invest‘lgate a characterlst;c
property of a pointed FANR in connection with the'categones €y, €, and 6.
We use [12] as general reference for notions and notatxons‘. Throughout the paper
all spaces are metrizable and maps are continuous. If X isa sul?set of a space M,
then we denote by U(X, M) the set of all neighborhoods of X in M. .

2. 4, and %’g . Ball has defined the proper shape categories &, &, and '_?zr
whose objects consist of locally compact spaces and proved that these three categories
are isomorphic to each other. (Cf. [, §§2, 3 and 5, 'T!let.arems 4.6' and 5.3].) We
shall identify the categories 9’;, i=1,2,3, under Ball’s isomorphism and denote

: B
it by %,.
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THEOREM 1. Let %ﬁ be the full subcategory of € whose objects consist of spaces
of the form X x R,., where X is any compactuni and R.. is the space of non-negative
reals. Then there exists a category isomorphism %: € ; — ‘?g such that Z(X) = Xx R,
Sor every object X of %,.

Proof. Let Xand Y be compacta and let A and N be compact AR’s containing X
and Y respectively, We denote by J the set of non-negative integers and by 4 the
set of all strictly increasing functions 6: J—J. Let {U;: ieJ} be a closed neigh-
borhood basis of X'in M such that U;> U, , and let {¥:: ieJ} be a neighborhood
basis of ¥ in N such that V;,> ¥y, and each V; is an ANR. For each 5 e 4, let

Us= U Usox[i, i+1] and  Vy= U Vypx[i, i+1].

ieJ ieJ
Note that {U;: 6e 4} and {V;: 6 4} form neighborhood bases of X xR + and
YXR, in Mx R, and N, respectively. Define a map &;: R, — R, by
t+8(0)—5(0)
6(i+1)—6()
for 3()—8(0)<1<8(i+1)~5(0), ieJ. Now we define a functor X: ’ﬁ,—»?ﬁ as
follows. For an object X of &, let X(X) = Xx R... Suppose that a fundamental

map F: X' — Yin M, N is given. By the definition [12, § 1] of a fundamental map
there exists a §;e 4 such that

2.2)

@n &0} = i+

F(Uspy X [850), 0)) =¥y,  ielJ.
For each de 4, set
2.3) Ws = UJ Useay X [650 (D)~ 876 (0), 876 (i+ 1)~ 8,6(0)] -

Here 676 is a map in 4 defined by 675()) = 55(5 (1), e J. Obviously W, is a closed
neighborhood of X xR, in MxR,. Define a map f;: Ws— ¥V; by

@49 S, 1) = {F(x, 1+6:80), &ps®}, (v, 1) & Wy

Let (x, ) e W;. Then for some icJ xe Uspay and 850 (1) <t+856(0) < Spd (i +1).
Hence F(x,1)e Vg (cf. (2.2)) and Sors(t) € 1, i+1]. Thus  f(x, ) & Vg x

x[i, i+1]1c Vs and f; is well defined. Let @ be the set of all maps f satisfying
’the condition:

(25 f: U—V, where Ue U(XxR,, MxR,) and Ve U(YXR., MxR,),

(2.6)  there exists 5 e A such that Uc Ws, VscV and f(x) = jfii(x) for xe U,

where i1 U— W; and j: ¥;— ¥ are the inclusions.

Obviously ¢p forms a proper mutation of UXxR.,MxR,) into

U(YxR,, NxR,) in the sense of Ball [1, § 5]. Define Z([F]) = [¢;]. Here [F] is
the f-class determined by a fundamental map F (cf. [12, § 2]) and [¢] is the similarity
class of a proper mutation ¢ (cf. [1, § 5]

icm
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To show that ¥ is an isomorphism, we have to show that

if Fand G are fundamental maps of X into Y in M, N, then ¢ and ¢g are
similar if and only if F =G,

if f is a proper mutation of U(Xx R,, MxR,) into U(Yx R4, Nx R+?,
then there exists a fundamental map F: X— ¥ in M, N such that ¢y is
similar to f.

The proofs of (2.7) and (2.8) are obfained by a slight modification of the proof of

Theorem 2 of [12]. We shall prove only (2.8) and omit the proof of (2.7): For each

kelJ, let ¥, = U Vg% [i, i+1]. Since fis a proper mutation, there exists a map
ey

(2.8)

foi W= Viyr, fref and Woe UXx Ry, MxR,), kelJ, such that for some
Woe UX xRy, Wiry)

Jel W %ﬁw—l | W, in Vit1s
where =~ means properly homotopic. For k,ielJ, take Uy; e U(X, M) such that
r

U U x[i,i+11eW, and UppqicUpge;  for each k,iel.
ieJ

Choose 6 € 4 such that Usyyc Uy, i€J. There exists a proper homotopy
Hy: (U Usganx i, i+1)xI— Vi1
ieJ
such that
Hyx,1,0) = filx,©) and  Hyx,1,1) = fiss(x, 1)
for (x,1)e U Usgsnyx [i, i+1]. LetPy: Nx R, — Nand Pg,: NxR,— R, be
ieJ

the projections. Define H: U;— Py by
H(x,t) = {Py Hyx, 0, 1—k), t+ Py, Hi(x,0, 1=K}

for (x,1) e Us, te [k, k+1], keJ. Since
,H(U,,(k)x[k,k+l])cvk+1

by applying homotopy extension theorem H has an extension H: Mx R, — Nx R,
such that

for each keJ,

AUy x [k, 0))=V,  for kel.

Put F = PyH. 1t is easy to see that Fis a fundamental map of X into Y in M, N
and ¢ is similar to f. This completes the proof of (2.8). .
The following is a consequence of Theorem 1 and [12, Theorem 2] and gn\les
i i i Ball [1].
a partial solution to a question of
COROLLARY 1. Let %, be the proper shape category defined by Ball and Sher [3]
and let @, be the full subcategory of €, whose objects consist of spaces of the form
r
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X xR, ,where X is any compactum. Then there exists a category isomorphism from %,,
onto %ﬁ which is the identity on the set of objects.

For a locally compact space Y, we denote by Shﬁ( Y) the proper shape of Y in
the sense of Ball [1] which is taken in the category %5.

THEOREM 2. Let X, X' be compacta and let Y, Y’ be locally compact spaces.
If Shf(X X R)ZShEX % R,) (or equivalently Sh(X)=Sh (X)) and Shi(Y)
>ShZ(Y "), then Shlp’(X X Y)ZSh,’f(X 'x Y'). Here Sh,(X) is the fine shape of X.

The theorem is proved by the same way as in the proof of [10, Theorem 5']
and we omit the proof. »
~ For a compactum X and an abelian group G, we mean by “H(X:G) the g-di-
mensional Steenrod homology group of X with coefficients in G [18].

THEOREM 3. Let X and X' be compacta. If Sh(X)=Sh(X"), then “H(X':G)
is a direct factor of “H(X: G) for each q.

The proof is obvious. For, let Sh;(X)>Sh(X’). By Theorem 1 of [12], there
exist compact AR’s M, M’ containing X, X" as unstable subsets, respectively, and
proper maps f: M—X—->M'~X' and ¢g: M'—X' — M—X such that M—-X
and M’ — X' are locally finite simplicial complexes and gf %‘ 13— x- Note that fand g
can be chosen arbitrarily within their proper homotopy classes. By the definition
of the homology *H,, the maps f and g induce unique homomorphisms

fui "HX:0) = HX":G) and g, *HAX":G) > H(X:G)
q q

such that g, fi = the identity on *H,(X:G) for each ¢. This completes the proof.
ProBLEM. In Theorem 3, can the relation “Sh,(X)>Sh(X)" be replaced by
“SH(X)=Sh(X")"? ‘
Here Sh(X) is the shape of X in the sense of Borsuk [4].

3. Pointed FANR. A compactum X is said to be a pointed FANR if for every
x € X the pointed space (X, x) is an FANR in the pointed shape category in the
sense of Borsuk [4, p. 204]. It is known by Siebenmann, Guillou and Hihl [17]
and Dydak [5] that X is a pointed FANR if and only if X has the shape of
a CW-complex.

Let K be a compactum lying in a compact AR M. A compactum X< K is said

to be a fine fundamental retract of K in M if there exists a fundamental map r: K — X
in M, M such that

@B r(x,t) =x for each (x,t)e Xx R, .

A compactum X is said to be a fine absolute neighborhood. retract (FANR ) if for
every compactum Y containing X and for every compact AR M (or equivalently,
for some compact AR M) containing Y there exists a closed neighborhood K of X
in Y such that X is a fine fundamental retract of X in M.

Let Y be a compactum contained in a compact AR M as an unstable subset.
A compactum X< Y is a fine coretract of Y in M if there exists a proper map
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i M—Y— M—X (called a fine coretraction from Y to X in M) satisfying the
following condition;

(3.2) for every Ue U(X, M) there exists a Ve U(X, U) such that for every
U, € U(X, M) there exists a ¥, € U(X, V) and a homotopy H: (V—Y)x
xI— U satisfying that H(y,0) = r(y) and H(y,1) =y for ye VY
and H((V,— Y)x )= U,

The following is obvious.

(3.3)  Suppose that M and M’ are compact AR’s containing a compactum Y as an
unstable subset. If a compactum X< Y is a fine coretract of Y in M, then X
is also a fine coretract of Y in M'.

By (3.3) we can define as follows. A compactum X is an absolute fine coretract
if for every compactum Y containing X and for every (or equivalently, some) com-
pact AR M containing ¥ unstably there exists a closed neighborhood X of X inY
such that X is a fine coretract of K in M.

A compactum X is fine movable if for every (or equivalently, some) AR M con-
taining X and for every Ue U(X, M) there exists a U, € U(X, U) satisfying the
following condition:

(3.4) For any Ve U(X, M) there exists a homotopy H: UpxI— U such that
H(x,0) = x and H(x,1)e V for xe U, and H(x, t) = x for (x, t)e XxI.

This definition is slightly different from the original one [11, (2.2)], but it is easy to
see that two definitions are equivalent.

Next, after the model of S. Godlewski [8] we define an absolute (neighborhood)
proper shape retract. Let X, Y and P be locally compact spaces such that X is closed
in ¥ and Y is closed in P. A proper mutation r: U(Y, P)— U(X, P) is said to be
a proper mutational retraction if for every rer r(x) = x, xe X. A closed subset X
of a locally compact space Y is a mutational proper retract of Y if there exist a locally
compact space P containing Y as a closed set and a proper mutational retraction »
from U(Y,P) to U(X,P). A locally compact space X is a mutational absolute
neighborhood proper shape retract (ANPSR,,) if for every locally compact space ¥
containing X as a closed subset there exists a closed neighborhood K of X in ¥
such that X is a proper mutational retract of K.

Finally wc extend the concept of movability to the proper shape category.
A locally compact space X is said to be properly movable 1f for every (or equivalently,
some) locally compact ANR M containing X as a closed subset and for every
Ue U(X, M) there exists a closed neighborhood W of X in U such that for every
Ve U(X, U) there exists a proper homotopy H: WxI—U such that

(3.5 H(x,0)=x and H(x DeV for xeW.
The followings are obvious.

(3.6) Every ANPSR in the sense of Sher [16] is an ANPSR,,.

2 — Fundarnenta Math, 108/2
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(3.7)  Every ANPSR,, is properly movable.

(3.8)  Every movable compactum in the sense of Borsuk [4] is properly movable and

every properly movable locally compact space is movable in the sense of Kozlow-
ski and Segal [9].

(3.9)  Every locally compact 0-dimensional space is properly movable.

(3.10) The proper movability is a hereditarily proper shape property, that is, if X,
Y are locally compact, Shg(X )sShﬁ( Y) and Y is properly movable then X
is also properly movable.

Whether every ANPSR,, is an ANPSR is an open question. The following
example shows that the converse of (3.7) or (3.8) does not hold.

ExaMpLE. Let us define locally compact spaces X and Y lying the plane R* as
follows:

Se={(x,)eR%: (x=32"" )24y = 1)2¥}, k =1,2,3,..;
So = {(0,0) e R*};

X‘:(_QDSi)XRM
Y=(U Sx[0,iDuSyxR,.
i=0

R X i
Then X is movable in the sense of Kozlowski and Segal [9] but not properly mo-
vable. Also Y is properly movable but not an ANPSR,,.

By the example it is known that the proper movability is not productive.
However, the following theorem shows that if X is a compactum. and for some

APSR K in the sense of Ball [2] X'x K is properly movable then X is a pointed
FANR.

THEOREM 4. Let X be a compactum. Then the following are equivalent.
() X is a pointed FANR.

(ii) X is an FANR;.

(iii) X is an absolute neighborhood fine coretract.

(iv) X is fine movable,

(v) Xx K is an ANPSR for every ANPSR K.

(vi) Xx K is an ANPSR,, for every ANPSR,, K.
(Vi) Xx K is properly movable for every ANPSR,, K.
(viil) Xx K is an ANPSR for some APSR K.

(ix) Xx K is an ANPSR,, for some APSR K.

(x) Xx K is properly movable for some APSR K.
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We shall shéw the following implications:
(1) — (i) — (i) — @) — (@)
(i) > (vi) — (vi)
(V) — (viii) — (ix) = (x) — (v)

The proof of the implications (i) «>(iv) and (i)— (v), (vi) was given by
[11, Theorem 2] and [10, Theorem 6 and Remark 4].

() — (i) This follows from Dydak, Nowak and Strok [6, Lemma 4].

@ii) — (iif) Let Y be a compactum containing X. We assume that ¥ is a subset
of the Hilbert cube Q. Since X is an FANR, there exist a closed neighborhood K
of Xin ¥ and a fundamental map r: K— X in Q, Q satisfying the condition (3.1).
Choose 2 map o: Q— I such that K = ¢~ (1). Consider the product QxI and
identify O with @x{1}=@xI Define a map f: @xI—K— OxI—X by

£, 1) = {lx, Min(a(x), )/(1—Min (2(x), 1)), Min(a(x), £)}

for (x,t)e @xI—K. Obviously f is a fine coretraction from K to X in OxI

(iif) — (iv) Suppose that an absolute neighborhood coretract X is contained in
the Hilbert cube Q. Identify Q with @ x {1}=Qx I Since @ is an unstable subset
of QxI, there exist a closed neighborhood ¥ of X in Q and a fine coretracit%on
ri OxI—Y— @xI—X from Yto Xin QxJ Let Ue U(X, Q). By the definition
of a fine coretraction thete exist ¥, e U(X, Q) and ;>0 such that the neighbor-
hood Vyx[l—egy, 1le UX, @xI) satisfies the condition (3.2) for M = @,
U= UxTIand V= Vox[l=g, 1] Put Uy = Von Y. We shall prove that the
neighborhood U, € U(X, Q) satisfies (3.4) for M = Q. To do it, let ¥ be any open
neighborhood of X in Q. From the condition (3.2) there exists ¥y e U(X, Q),
&,>0 and a homotopy K: (Vox[1—¢&o, 11— Y)xI— Ux I such that

K(x,1,0)=r(x,t) and K(x,z,1)=(x, 1)
for (x,1)e Vyx[1—g, 11— 7, and
K((Vyx[1~e;, 1= Y)x e ¥xI.

Since r is proper, r™(Qx I—Vx I) is a compact set of Q xI— Y. Then there exist
We U(Y, Q) and &,>0 such that r(Wx [1—g,,1]—Y)c¥Vx I We may assume
that ¢,<s. Define a homotopy H': UgxI—U by

H{x,00=x for xeUp,

H'(x, §) = Po-K(x, (1—s8;), 1=5) Tfor (x,5)e Uyx (0,11,
where Py: QxI— Q is the projection. Then H{(Uyx {1} u FyxI)cV. Since Vis
an ANR, by a standard argument we can construct a homotopy H: UgxI—>U

from H' satisfying the condition:

an
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H(x,0)=x and H(x,D)eV for xel,,
H(x,t) =x for " (x,t)e XxIL

This completes the proof.

(v) — (viii) — (ix) and (vi) — (ix). Because every APSR is an ANPSR and
an ANPSR,, by Sher [16] and (3.6).

(vi) — (vii) and (ix) — (x). It is obvious from (3.7).

(x) — (iv) Let X be a compactum and suppose that there exists an APSR K such
that X'x K is properly movable. Since X e SUV® by Ball [2, Theorem 4.71, we have
Shy(R,)<Sh,(K) (cf. Sher [15]) and hence Shi(R.)<Shi(K) by Ball [1, The-
orem 7.0]. Then Shp(Xx R.)<Sh3(XxK) by Theorem 2. Therefore Xx R, is
properly movable by (3.10).

Let X be a subset of a compact AR M. We use the same notations as in the proof
Theorem 1. Let 4 be the set of all strictly increasing functions 8: J—J and let
{U;: ieJ} be a neighborhood basis of X in M such that each U, is closed and
UioU,y, ieJ. For each § e 4, we put

Us = U Usqyx[i,i+1].
iel
Let U be any neighborhood of X in M. There is a j, e J such that U= U. Put
‘ W= U Uppixli, i+1].
ieJ
Since X'x R, is properly movable, we can find a closed neighborhood ¥V, of Xx R,

in W such that for every Ve U(Xx R, , W) there exists a proper homotopy
H: VyxI— W such that

(3.1 H(y,0)=» and H(y,DeV. for ye Vo

We may assume that ¥, = U, for some & e 4. Put Uy = U0y Let U’ be an arbitrary
neighborhood of X in U,.. We shall construct a homotopy K: U, x I — U such that

Kx,00=x and K(x,DeU for xeU,,

(3.12)
. K(x,t) =x for (x,t)eXxI.

To do it, take a ky eJ such that U, cU’. Set
(3.13) V= Ugpix[i,i+1].

ieJ
By the property of ¥, = Uj, there exists a proper homotopy H: Uz x I — W satis-
fying (3.11). Since H YW Mx, kq—Jo1) is compact, we can find an m e J such
that

H((Us 0 Mx[m, 0))x 1)< W A\ M x [ko—jo, ),
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that is,
(3.14) Py H((Us 0 Mx [m, o)) xI)c Uy, ,

where Py M xI— M is the projection. Choose a map «: U, — [0, m+1] such
that

(3.15) o[, m+1D) = Upy, i=0,1,2,...,m+1.
Define f: Uy — I by
(3.16) B(x) = Min{l, m+1~a(x)} for xeUs.
Finally, let us define a homotopy K: U, xI— U by

K(x,s) = Py-H(x,a(x),sB(x)) for (x,5)eU.xI.

By (3.11) K(x,0) = x for x e Uy. Since f(x) = 1 for x € Uy— Uy, by (3.15) and
(3.16), we have K(x, 1) € Uy, for x € U by (3.13), (3.14) and (3.11). Als?, Bx) =0
for Uy 1) and hence K(x, ¢) = x for every (, £) € Ugp+1y x I. Thus K satisfies (3.12).
Therefore X is fine movable. This completes the proof.

Note that we can not replace “every” by “some” in (v), (vi) and (vii) of Theorem 4.
Because, consider the discrete space J = {0,1,2,..}. For every movable com-
pactum X, the product X'xJ is properly movable. However X is not generally
an FANR.
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Intersection of sectorial cluster sets and directional
essential cluster sets

by

A. K. Layek and S. N. Mukhopadhyay (Burdwan)

Abstract. Let f2 H -+ W, where H is the upper half plane and W is a second countable
topological space, and let R be the real line. It is proved that, except a set of points x on R, which
is of the first category and measure zero, every essential directional cluster set of fis a subset of
every sectorial cluster set of fat x; and if W is compact and normal, then except a countable set
of points x on R, every essential directional cluster set intersects every. sectorial cluster set of fat x.

1. Let H denote the open upper half plane and let z denote points of H. Let x de-
note points on the real line R. For each xe R, (0, m) and h>0, let
Ly(x) = {z: ze H; arglz—x| = 6}
and
Lo(x, h) = {z: ze H; |z—x|<h} 0 Lg(x) .

For each pair of directions 8, 8, 0<8; <0,<T, 04,9, denotes the sector in H with
vertex at the origin, defined by
o, = {7: z€ H; 0y <argz<0,} .

If there is no ambiguity, we shall simply write o instead of 6, By ¢(x) we mean
the sector in B with vertex at x and which is obtained by a translation of o. That is,
o(x) = {z: ze H; 0, <arg(z—x)<0,} .

Also for xe R and h>0 we shall write
o(x, b)) =o(x)n{z: ze H; lz—x|<h}.

For Ec H, the upper outer density d;(E, x) and outer density d}E,x) of Eatx in
the direction 0 are defined by

BB 0 Lo, B
o d5(E, x) = limswp— iy
and

*[E A Ly(x, B)]
@ d:(E, X) = limM

e AL )



GUEST




