88

 $x \in \text{dom}(h_k)$ and if $t' \subseteq t$ and $i \in \{0, 1\}$ then $[t^{\cap}i] \cap \text{ran}(h_k) = \emptyset$. Since h_k is a homeomorphism we have $s \in Sq$ so that $x \in [s]$ and $h_k([s]) \subseteq [t]$. By the claim, $h_j([s]) \subseteq [t]$ for all j > k. Thus $t \subseteq w$ and $t \subseteq z$. But t was arbitrary, so w = z.

Now suppose $\forall k(x \notin \text{dom}(h_n))$ and $w \upharpoonright n = z \upharpoonright n$ but $w(n) \neq z(n)$. Let k be odd and so large that if $t \in Sq$ and $\text{dom}(t) \leq n+2$ then $\text{ran}(h_k) \cap [t] \neq \emptyset$. Let l be least so that $x \upharpoonright l \notin \text{dom}(h_k)$. Let $s = x \upharpoonright l$; then $s \in M_{k+1}$. Let u_s be as in the definition of h_{k+1} . Then $[u_s] \cap D_k = \emptyset$, so $\text{dom}(u_s) > n+2$ and $u_s \upharpoonright (n+1) \neq w \upharpoonright (n+1)$ or $u_s \upharpoonright (n+1) \neq z \upharpoonright (n+1)$. Say that $u_s \upharpoonright (n+1) \neq w \upharpoonright (n+1)$. Now $h_{k+1}([s]) \subseteq [u_s]$ by definition, and $h_j([s]) \subseteq [u_s \upharpoonright n+1]$ for all $j \geq k+1$ by the claim. This contradicts our assumption that $\lim x_k = x$ and $\lim h'(x_k) = w$.

Thus h is well-defined. Clearly h is continuous. A completely symmetric argument shows that h^{-1} is well-defined (i.e. h is one-one and onto) and continuous. Thus h is a homeomorphism of ${}^{\omega}2$. Clearly $h \uparrow \text{dom}(h') = h'$, and thus h(A) = B.

Both of the hypotheses that A and B are everywhere properly Γ and that A and B are meager are necessary in Theorem 2. One can, however, replace "meager" by "comeager" by passing to complements. In the case that $\Gamma = \Sigma_1^1$, the hypothesis of $b\Gamma - AD$ can also be shown necessary; this follows from [3] and the fact that any properly Σ_1^1 set is Borel isomorphic to a meager, everywhere properly Σ_1^1 set.

We conjecture that Theorem 2 holds for subsets of the real line. Of course, one must formulate the notion of reasonable closure properly in order to prove this.

References

- [1] J. Christensen, Topology and Borel structure, New York.
- H. Friedman, Higher set theory and mathematical practice, Annals of Math. Logic 2 (1971),
 p. 326.
- [3] L. Harrington, Analytic determinacy and 0#, to appear.
- [4] K. Kuratowski, Topology, vol. I, New York-London-Warszawa 1966.
- [5] D. Martin, Borel determinacy, Annals of Math. 102 (1975), p. 363.
- [6] J. Steel, Ph. D. thesis, Berkeley 1977.
- [7] R. Van Wesep, Wadge degrees and descriptive set theory, to appear in: Proceedings of the UCIA — Cal-Tech logic seminar, Lecture Notes in Mathematics.

UNIVERSITY OF CALIFORNIA Los Angeles, California

Accepté par la Rédaction le 7, 11, 1977

On fine shape theory II

b

Y. Kodama (Ibaraki) and J. Ono (Shizuoka)

Abstract. Let C_p^B be the proper shape category defined by Ball in terms of proper mutation. It is proved that the fine shape category C_f is isomorphic to the full subcategory of C_p^B whose objects are locally compact metric spaces of the form $X \times R_+$, where X is any compactum and R_+ is the space of non negative reals. The proper movability is defined and a characterization of pointed FANR in terms of proper movability is obtained.

1. Introduction. The notion of proper shape was introduced originally by Ball and Sher [3]. Their presentation paralleled Borsuk's one [1], using a notion of proper fundamental net in place of Borsuk's fundamental sequence. Ball [1] has established proper shape theory modeled on the ANR-systems of Mardešić-Segal [14], on the mutations of Fox [7] or on the shapings of Mardešić [13]. We mean by \mathcal{C}_p the proper shape category in the sense of Ball and Sher [3] and by \mathcal{C}_p^B the proper shape category in the sense of Ball [1]. As presented by Ball [1], whether \mathcal{C}_p and \mathcal{C}_p^B are isomorphic is an open question.

Recently the authors [12] have introduced the fine shape category \mathscr{C}_f consisting of all compacta and proved that \mathscr{C}_f is isomorphic to the full subcategory \mathscr{C}_p of \mathscr{C}_p whose objects consist of space of the form $X \times R_+$, where X is any compactum and R_+ is the space of non-negative reals. In this paper we first prove that \mathscr{C}_f is isomorphic to the full subcategory \mathscr{C}_p^B of \mathscr{C}_p^B consisting of spaces of the form $X \times R_+$, X a compactum. This gives a partial answer to Ball's question mentioned above. In the second part of the paper we shall investigate a characteristic property of a pointed FANR in connection with the categories \mathscr{C}_f , \mathscr{C}_p and \mathscr{C}_p^B . We use [12] as general reference for notions and notations. Throughout the paper all spaces are metrizable and maps are continuous. If X is a subset of a space M, then we denote by U(X, M) the set of all neighborhoods of X in M.

2. \mathscr{C}_f and \mathscr{C}_p^B . Ball has defined the proper shape categories \mathscr{S}_p^1 , \mathscr{S}_i^2 and \mathscr{S}_p^3 whose objects consist of locally compact spaces and proved that these three categories are isomorphic to each other. (Cf. [1, §§ 2, 3 and 5, Theorems 4.6 and 5.3].) We shall identify the categories \mathscr{S}_p^i , i=1,2,3, under Ball's isomorphism and denote it by \mathscr{C}_p^B .

THEOREM 1. Let $\widetilde{\mathscr{C}}_p^B$ be the full subcategory of \mathscr{C}_p^B whose objects consist of spaces of the form $X \times R_+$, where X is any compactum and R_+ is the space of non-negative reals. Then there exists a category isomorphism $\Sigma \colon \mathscr{C}_f \to \widetilde{\mathscr{C}}_p^B$ such that $\Sigma(X) = X \times R_+$ for every object X of \mathscr{C}_f .

Proof. Let X and Y be compact and let M and N be compact AR's containing X and Y respectively. We denote by J the set of non-negative integers and by Δ the set of all strictly increasing functions $\delta\colon J\to J$. Let $\{U_i\colon i\in J\}$ be a closed neighborhood basis of X in M such that $U_i\supset U_{i+1}$ and let $\{V_i\colon i\in J\}$ be a neighborhood basis of Y in N such that $V_i\supset V_{i+1}$ and each V_i is an ANR. For each $\delta\in \Delta$, let

$$U_{\delta} = \bigcup_{i \in J} \ U_{\delta(i)} \times [i, i+1]$$
 and $V_{\delta} = \bigcup_{i \in J} \ V_{\delta(i)} \times [i, i+1]$.

Note that $\{U_{\delta} \colon \delta \in \Delta\}$ and $\{V_{\delta} \colon \delta \in \Delta\}$ form neighborhood bases of $X \times R_{+}$ and $Y \times R_{+}$ in $M \times R_{+}$ and N, respectively. Define a map $\xi_{\delta} \colon R_{+} \to R_{+}$ by

(2.1)
$$\xi_{\delta}(t) = i + \frac{t + \delta(0) - \delta(i)}{\delta(i+1) - \delta(i)}$$

for $\delta(i)-\delta(0)\!\leqslant\! t\!\leqslant\! \delta(i\!+\!1)\!-\!\delta(0),\ i\!\in\! J.$ Now we define a functor $\Sigma\colon\mathscr C_f\to\mathscr C_p^B$ as follows. For an object X of $\mathscr C_f$, let $\Sigma(X)=X\!\times\! R_+$. Suppose that a fundamental map $F\colon X\to Y$ in M,N is given. By the definition [12, § 1] of a fundamental map there exists a $\delta_F\in \Delta$ such that

(2.2)
$$F(U_{\delta_F(i)} \times [\delta_F(i), \infty)) \subset V_i, \quad i \in J.$$

For each $\delta \in \Delta$, set

$$(2.3) W_{\delta} = \bigcup_{i \in J} U_{\delta_F \delta(i)} \times [\delta_F \delta(i) - \delta_F \delta(0), \, \delta_F \delta(i+1) - \delta_F \delta(0)].$$

Here $\delta_F \delta$ is a map in Δ defined by $\delta_F \delta(i) = \delta_F(\delta(i))$, $i \in J$. Obviously W_δ is a closed neighborhood of $X \times R_+$ in $M \times R_+$. Define a map f_δ : $W_\delta \to V_\delta$ by

$$(2.4) f_{\delta}(x,t) = \{F(x,t+\delta_F\delta(0)), \, \xi_{\delta_F\delta}(t)\}, \quad (x,t) \in W_{\delta}.$$

Let $(x,t) \in W_{\delta}$. Then for some $i \in J$ $x \in U_{\delta_F\delta(i)}$ and $\delta_F\delta(i) \leqslant t + \delta_F\delta(0) \leqslant \delta_F\delta(i+1)$. Hence $F(x,t) \in V_{\delta(i)}$ (cf. (2.2)) and $\xi_{\delta_F\delta}(t) \in [i,i+1]$. Thus $f_{\delta}(x,t) \in V_{\delta(i)} \times [i,i+1] \subset V_{\delta}$ and f_{δ} is well defined. Let φ_F be the set of all maps f satisfying the condition:

(2.5)
$$f: U \to V$$
, where $U \in U(X \times R_+, M \times R_+)$ and $V \in U(Y \times R_+, M \times R_+)$,

(2.6) there exists $\delta \in \Delta$ such that $U \subset W_{\delta}$, $V_{\delta} \subset V$ and $f(x) = jf_{\delta}i(x)$ for $x \in U$, where $i: U \to W_{\delta}$ and $j: V_{\delta} \to V$ are the inclusions.

Obviously φ_F forms a proper mutation of $U(X \times R_+, M \times R_+)$ into $U(Y \times R_+, N \times R_+)$ in the sense of Ball $[1, \S 5]$. Define $\Sigma([F]) = [\varphi_F]$. Here [F] is the f-class determined by a fundamental map F (cf. $[12, \S 2]$) and $[\varphi]$ is the similarity class of a proper mutation φ (cf. $[1, \S 5]$).

To show that Σ is an isomorphism, we have to show that

- (2.7) if F and G are fundamental maps of X into Y in M, N, then φ_F and φ_G are similar if and only if $F \simeq G$,
- (2.8) if f is a proper mutation of $U(X \times R_+, M \times R_+)$ into $U(Y \times R_+, N \times R_+)$, then there exists a fundamental map $F: X \to Y$ in M, N such that φ_F is similar to f.

The proofs of (2.7) and (2.8) are obtained by a slight modification of the proof of Theorem 2 of [12]. We shall prove only (2.8) and omit the proof of (2.7). For each $k \in J$, let $\hat{V}_k = \bigcup_{i \in J} V_{k+i} \times [i, i+1]$. Since f is a proper mutation, there exists a map f_k : $W_k \to \hat{V}_{k+1}$, $f_k \in f$ and $W_k \in U(X \times R_+, M \times R_+)$, $k \in J$, such that for some $\hat{W}_k \in U(X \times R_+, W_{k+1})$

$$f_k \mid \widehat{W}_k \simeq f_{k+1} \mid \widehat{W}_k \quad \text{in } \widehat{V}_{k+1},$$

where \simeq means properly homotopic. For $k, i \in J$, take $U_{k,i} \in U(X, M)$ such that

$$\bigcup_{i\in J} U_{k,i} \times [i,i+1] \subset \widehat{W}_k \quad \text{ and } \quad U_{k+1,i} \subset U_{k,i+1} \quad \text{ for each } k,i \in J.$$

Choose $\delta \in \Delta$ such that $U_{\delta(i)} \subset U_{i,0}$, $i \in J$. There exists a proper homotopy

$$H_k$$
: $(\bigcup_{i \in I} U_{\delta(k+1)} \times [i, i+1]) \times I \rightarrow \widehat{V}_{k+1}$

such that

$$H_k(x, t, 0) = f_k(x, t)$$
 and $H_k(x, t, 1) = f_{k+1}(x, t)$

 $\text{for } (x,t) \in \bigcup_{i \in J} \ U_{\delta(k+i)} \times [i,i+1] \ . \ \text{Let} \ P_N \colon \ N \times R_+ \to N \ \text{and} \ P_{R_+} \colon \ N \times R_+ \to R_+ \ \text{be}$

the projections. Define $H: U_{\delta} \to \hat{V}_0$ by

$$H(x,t) = \{P_N \cdot H_k(x,0,t-k), t+P_{R_+} \cdot H_k(x,0,t-k)\}$$

for $(x, t) \in U_{\delta}$, $t \in [k, k+1]$, $k \in J$. Since

$$H(U_{\delta(k)} \times [k, k+1]) \subset \widehat{V}_{k+1}$$
 for each $k \in J$,

by applying homotopy extension theorem H has an extension \tilde{H} : $M \times R_+ \to N \times R_+$ such that

$$\widetilde{H}(U_{\delta(k)} \times [k, \infty)) \subset \widehat{V}_k \quad \text{for} \quad k \in J.$$

Put $F = P_N \tilde{H}$. It is easy to see that F is a fundamental map of X into Y in M, N and φ_F is similar to f. This completes the proof of (2.8).

The following is a consequence of Theorem 1 and [12, Theorem 2] and gives a partial solution to a question of Ball [1].

COROLLARY 1. Let \mathscr{C}_p be the proper shape category defined by Ball and Sher [3] and let \mathscr{C}_p be the full subcategory of \mathscr{C}_p whose objects consist of spaces of the form

 $X \times R_+$, where X is any compactum. Then there exists a category isomorphism from \mathfrak{C}_p onto \mathfrak{C}_p^B which is the identity on the set of objects.

For a locally compact space Y, we denote by $\mathrm{Sh}_p^B(Y)$ the proper shape of Y in the sense of Ball [1] which is taken in the category \mathscr{C}_p^B .

Theorem 2. Let X, X' be compact and let Y, Y' be locally compact spaces. If $\operatorname{Sh}_p^B(X \times R_+) \geqslant \operatorname{Sh}_p^B(X' \times R_+)$ (or equivalently $\operatorname{Sh}_f(X) \geqslant \operatorname{Sh}_f(X')$) and $\operatorname{Sh}_p^B(Y)$ $\geqslant \operatorname{Sh}_p^B(Y')$, then $\operatorname{Sh}_p^B(X \times Y) \geqslant \operatorname{Sh}_p^B(X' \times Y')$. Here $\operatorname{Sh}_f(X)$ is the fine shape of X.

The theorem is proved by the same way as in the proof of [10, Theorem 5'] and we omit the proof.

For a compactum X and an abelian group G, we mean by ${}^sH_q(X:G)$ the q-dimensional Steenrod homology group of X with coefficients in G [18],

THEOREM 3. Let X and X' be compacta. If $\mathrm{Sh}_f(X) \geqslant \mathrm{Sh}_f(X')$, then ${}^sH_q(X':G)$ is a direct factor of ${}^sH_q(X:G)$ for each q.

The proof is obvious. For, let $\operatorname{Sh}_f(X) \geqslant \operatorname{Sh}_f(X')$. By Theorem 1 of [12], there exist compact AR's M, M' containing X, X' as unstable subsets, respectively, and proper maps $f \colon M - X \to M' - X'$ and $g \colon M' - X' \to M - X$ such that M - X and M' - X' are locally finite simplicial complexes and $gf \cong 1_{M-X}$. Note that f and g can be chosen arbitrarily within their proper homotopy classes. By the definition of the homology sH_* , the maps f and g induce unique homomorphisms

$$f_*: {}^sH_q(X:G) \to {}^sH_q(X':G)$$
 and $g_*: {}^sH_q(X':G) \to {}^sH_q(X:G)$

such that g_*f_* = the identity on ${}^sH_q(X:G)$ for each q. This completes the proof. PROBLEM. In Theorem 3, can the relation " $\mathrm{Sh}_f(X) \geqslant \mathrm{Sh}_f(X)$ " be replaced by " $\mathrm{Sh}(X) \geqslant \mathrm{Sh}(X')$ "?

Here Sh(X) is the shape of X in the sense of Borsuk [4].

3. Pointed FANR. A compactum X is said to be a pointed FANR if for every $x \in X$ the pointed space (X, x) is an FANR in the pointed shape category in the sense of Borsuk [4, p. 204]. It is known by Siebenmann, Guillou and Hähl [17] and Dydak [5] that X is a pointed FANR if and only if X has the shape of a CW-complex.

Let K be a compactum lying in a compact AR M. A compactum $X \subset K$ is said to be a *fine fundamental retract of K in M* if there exists a fundamental map $r: K \to X$ in M, M such that

(3.1)
$$r(x,t) = x$$
 for each $(x,t) \in X \times R_+$.

A compactum X is said to be a *fine absolute neighborhood retract* (FANR_f) if for every compactum Y containing X and for every compact AR M (or equivalently, for some compact AR M) containing Y there exists a closed neighborhood K of X in Y such that X is a fine fundamental retract of K in M.

Let Y be a compactum contained in a compact AR M as an unstable subset. A compactum $X \subset Y$ is a *fine coretract of Y in M* if there exists a proper map

(3.2) for every $U \in U(X, M)$ there exists a $V \in U(X, U)$ such that for every $U_0 \in U(X, M)$ there exists a $V_0 \in U(X, V)$ and a homotopy $H: (V - Y) \times I \to U$ satisfying that H(y, 0) = r(y) and H(y, 1) = y for $y \in V - Y$ and $H((V_0 - Y) \times I) \subset U_0$.

The following is obvious.

(3.3) Suppose that M and M' are compact AR's containing a compactum Y as an unstable subset. If a compactum $X \subset Y$ is a fine coretract of Y in M, then X is also a fine coretract of Y in M'.

By (3.3) we can define as follows. A compactum X is an absolute fine coretract if for every compactum Y containing X and for every (or equivalently, some) compact AR M containing Y unstably there exists a closed neighborhood K of X in Y such that X is a fine coretract of K in M.

A compactum X is fine movable if for every (or equivalently, some) AR M containing X and for every $U \in U(X, M)$ there exists a $U_0 \in U(X, U)$ satisfying the following condition:

(3.4) For any $V \in U(X, M)$ there exists a homotopy $H: U_0 \times I \to U$ such that H(x, 0) = x and $H(x, 1) \in V$ for $x \in U_0$ and H(x, t) = x for $(x, t) \in X \times I$. This definition is slightly different from the original one [11, (2.2)], but it is easy to see that two definitions are equivalent.

Finally we extend the concept of movability to the proper shape category. A locally compact space X is said to be properly movable if for every (or equivalently, some) locally compact ANR M containing X as a closed subset and for every $U \in U(X, M)$ there exists a closed neighborhood W of X in U such that for every $V \in U(X, U)$ there exists a proper homotopy $H: W \times I \to U$ such that

(3.5)
$$H(x,0) = x \quad \text{and} \quad H(x,1) \in V \quad \text{for} \quad x \in W.$$

The followings are obvious.

(3.6) Every ANPSR in the sense of Sher [16] is an ANPSR_m.

^{2 -} Fundamenta Math, 108/2

- (3.7) Every ANPSR_m is properly movable.
- (3.8) Every movable compactum in the sense of Borsuk [4] is properly movable and every properly movable locally compact space is movable in the sense of Kozlowski and Segal [9].
- (3.9) Every locally compact 0-dimensional space is properly movable.
- (3.10) The proper movability is a hereditarily proper shape property, that is, if X, Y are locally compact, $\operatorname{Sh}_p^B(X) \leqslant \operatorname{Sh}_p^B(Y)$ and Y is properly movable then X is also properly movable.

Whether every ANPSR_m is an ANPSR is an open question. The following example shows that the converse of (3.7) or (3.8) does not hold.

Example. Let us define locally compact spaces X and Y lying the plane \mathbb{R}^2 as follows:

$$\begin{split} S_k &= \{(x,y) \in R^2 \colon (x-3/2^{k+1})^2 + y^2 = 1/2^k\}, \ k = 1, 2, 3, ...; \\ S_0 &= \{(0,0) \in R^2\}; \\ X &= (\bigcup_{i=0}^{\infty} S_i) \times R_+; \\ Y &= (\bigcup_{i=0}^{\infty} S_i \times [0,i]) \cup S_0 \times R_+. \end{split}$$

Then X is movable in the sense of Kozlowski and Segal [9] but not properly movable. Also Y is properly movable but not an ANPSR_m.

By the example it is known that the proper movability is not productive. However, the following theorem shows that if X is a compactum and for some APSR K in the sense of Ball [2] $X \times K$ is properly movable then X is a pointed FANR.

THEOREM 4. Let X be a compactum. Then the following are equivalent.

- (1) X is a pointed FANR.
- (ii) X is an FANR_f.
- (iii) X is an absolute neighborhood fine coretract.
- (iv) X is fine movable.
- (v) X×K is an ANPSR for every ANPSR K.
- (vi) $X \times K$ is an $ANPSR_m$ for every $ANPSR_m$ K.
- (vii) $X \times K$ is properly movable for every $ANPSR_m K$.
- (viii) X×K is an ANPSR for some APSR K.
- (ix) $X \times K$ is an ANPSR_m for some APSR K.
- (x) $X \times K$ is properly movable for some APSR K.

We shall show the following implications:

$$(i) \rightarrow (ii) \rightarrow (iii) \rightarrow (iv) \rightarrow (i)$$

$$(i) \rightarrow (vi) \rightarrow (vii) \rightarrow (vii)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

The proof of the implications (i) \leftrightarrow (iv) and (i) \rightarrow (v), (vi) was given by [11, Theorem 2] and [10, Theorem 6 and Remark 4].

(i) -> (ii) This follows from Dydak, Nowak and Strok [6, Lemma 4].

(ii) \rightarrow (iii) Let Y be a compactum containing X. We assume that Y is a subset of the Hilbert cube Q. Since X is an FANR_I, there exist a closed neighborhood K of X in Y and a fundamental map $r\colon K \to X$ in Q, Q satisfying the condition (3.1). Choose a map $\alpha\colon Q \to I$ such that $K = \alpha^{-1}(1)$. Consider the product $Q \times I$ and identify Q with $Q \times \{1\} \subset Q \times I$. Define a map $f\colon Q \times I - K \to Q \times I - X$ by

$$f(x, t) = \{r(x, \min(\alpha(x), t)/(1 - \min(\alpha(x), t))), \min(\alpha(x), t)\}$$

for $(x, t) \in Q \times I - K$. Obviously f is a fine coretraction from K to X in $Q \times I$.

(iii) \rightarrow (iv) Suppose that an absolute neighborhood coretract X is contained in the Hilbert cube Q. Identify Q with $Q \times \{1\} \subset Q \times I$. Since Q is an unstable subset of $Q \times I$, there exist a closed neighborhood Y of X in Q and a fine coretraction $r\colon Q \times I - Y \to Q \times I - X$ from Y to X in $Q \times I$. Let $U \in U(X, Q)$. By the definition of a fine coretraction there exist $V_0 \in U(X, Q)$ and $\varepsilon_0 > 0$ such that the neighborhood $V_0 \times [1-\varepsilon_0, 1] \in U(X, Q \times I)$ satisfies the condition (3.2) for M = Q, $U = U \times I$ and $V = V_0 \times [1-\varepsilon_0, 1]$. Put $U_0 = V_0 \cap Y$. We shall prove that the neighborhood $U_0 \in U(X, Q)$ satisfies (3.4) for M = Q. To do it, let V be any open neighborhood of X in Q. From the condition (3.2) there exists $V_1 \in U(X, Q)$, $\varepsilon_1 > 0$ and a homotopy K: $(V_0 \times [1-\varepsilon_0, 1] - Y) \times I \to U \times I$ such that

$$K(x, t, 0) = r(x, t)$$
 and $K(x, t, 1) = (x, t)$

for $(x, t) \in V_0 \times [1 - \varepsilon_0, 1] - Y$, and

$$K((V_1 \times [1-\varepsilon_1, 1]-Y) \times I) \subset V \times I$$
.

Since r is proper, $r^{-1}(Q \times I - V \times I)$ is a compact set of $Q \times I - Y$. Then there exist $W \in U(Y, Q)$ and $\varepsilon_2 > 0$ such that $r(W \times [1 - \varepsilon_2, 1] - Y) \subset V \times I$. We may assume that $\varepsilon_2 < \varepsilon_1$. Define a homotopy H': $U_0 \times I \to U$ by

$$\begin{split} H'(x,0) &= x \quad \text{for} \quad x \in U_0 \;, \\ H'(x,s) &= P_0 \cdot K(x,(1-s\varepsilon_2),1-s) \quad \text{for} \quad (x,s) \in U_0 \times (0,1] \;, \end{split}$$

where $P_Q: Q \times I \to Q$ is the projection. Then $H'(U_0 \times \{1\} \cup V_1 \times I) \subset V$. Since V is an ANR, by a standard argument we can construct a homotopy $H: U_0 \times I \to U$ from H' satisfying the condition:

$$H(x,0)=x$$
 and $H(x,1)\in V$ for $x\in U_0$, $H(x,t)=x$ for $(x,t)\in X\times I$.

This completes the proof.

 $(v) \rightarrow (viii) \rightarrow (ix)$ and $(vi) \rightarrow (ix)$. Because every APSR is an ANPSR and an ANPSR., by Sher [16] and (3.6).

 $(vi) \rightarrow (vii)$ and $(ix) \rightarrow (x)$. It is obvious from (3.7).

 $(x) \rightarrow (iv)$ Let X be a compactum and suppose that there exists an APSR K such that $X \times K$ is properly movable. Since $K \in SUV^{\infty}$ by Ball [2, Theorem 4.7], we have $Sh_n(R_+) \leq Sh_n(K)$ (cf. Sher [15]) and hence $Sh_n^B(R_+) \leq Sh_n^B(K)$ by Ball [1, Theorem 7.0]. Then $\mathrm{Sh}_{n}^{B}(X\times R_{+}) \leq \mathrm{Sh}_{n}^{B}(X\times K)$ by Theorem 2. Therefore $X\times R_{+}$ is properly movable by (3.10).

Let X be a subset of a compact AR M. We use the same notations as in the proof Theorem 1. Let Δ be the set of all strictly increasing functions $\delta: J \to J$ and let $\{U_i: i \in J\}$ be a neighborhood basis of X in M such that each U_i is closed and $U_i \supset U_{i+1}$, $i \in J$. For each $\delta \in \Delta$, we put

$$U_{\delta} = \bigcup_{i \in J} U_{\delta(i)} \times [i, i+1].$$

Let U be any neighborhood of X in M. There is a $j_0 \in J$ such that $U_{j_0} \subset U$. Put

$$W = \bigcup_{i \in J} U_{j_0+i} \times [i, i+1].$$

Since $X \times R_+$ is properly movable, we can find a closed neighborhood V_0 of $X \times R_+$ in W such that for every $V \in U(X \times R_+, W)$ there exists a proper homotopy $H: V_0 \times I \rightarrow W$ such that

(3.11)
$$H(y, 0) = y$$
 and $H(y, 1) \in V$ for $y \in V_0$.

We may assume that $V_0 = U_\delta$ for some $\delta \in \Delta$. Put $U_* = U_{\delta(0)}$. Let U' be an arbitrary neighborhood of X in U_* . We shall construct a homotopy $K: U_* \times I \to U$ such that

(3.12)
$$K(x,0) = x \quad \text{and} \quad K(x,1) \in U' \quad \text{for} \quad x \in U_*,$$
$$K(x,t) = x \quad \text{for} \quad (x,t) \in X \times I.$$

To do it, take a $k_0 \in J$ such that $U_{k_0} \subset U'$. Set

$$(3.13) V = \bigcup_{i \in I} U_{k_0+i} \times [i, i+1].$$

By the property of $V_0 = U_\delta$, there exists a proper homotopy $H: U_\delta \times I \to W$ satisfying (3.11). Since $H^{-1}(W\cap M\times [0,k_0-j_0])$ is compact, we can find an $m\in J$ such that

$$H((U_{\delta} \cap M \times [m, \infty)) \times I) \subset W \cap M \times [k_0 - j_0, \infty),$$

that is,

$$(3.14) P_M \cdot H((U_{\delta} \cap M \times [m, \infty)) \times I) \subset U_{k_0},$$

where $P_M: M \times I \to M$ is the projection. Choose a map $\alpha: U_* \to [0, m+1]$ such

(3.15)
$$\alpha^{-1}([i, m+1]) = U_{\delta(i)}, \quad i = 0, 1, 2, ..., m+1.$$

Define $\beta \colon U_* \to I$ by

(3.16)
$$\beta(x) = \min\{1, m+1-\alpha(x)\} \text{ for } x \in U_*.$$

Finally, let us define a homotopy $K: U_* \times I \rightarrow U$ by

$$K(x, s) = P_M \cdot H(x, \alpha(x), s\beta(x))$$
 for $(x, s) \in U_* \times I$.

By (3.11) K(x, 0) = x for $x \in U_*$. Since $\beta(x) = 1$ for $x \in U_* - U_{\delta(m)}$ by (3.15) and (3.16), we have $K(x, 1) \in U_{k_0}$ for $x \in U_*$ by (3.13), (3.14) and (3.11). Also, $\beta(x) = 0$ for $U_{\delta(m+1)}$ and hence K(x, t) = x for every $(x, t) \in U_{\delta(m+1)} \times I$. Thus K satisfies (3.12). Therefore X is fine movable. This completes the proof.

Note that we can not replace "every" by "some" in (v), (vi) and (vii) of Theorem 4. Because, consider the discrete space $J = \{0, 1, 2, ...\}$. For every movable compactum X, the product $X \times J$ is properly movable. However X is not generally an FANR.

References

- [1] B. J. Ball, Alternative approaches to proper shape theory, Proc. Charlotte Top. Conference.
- Proper shape retracts, Fund. Math. 89 (1975), pp. 177-189.
- and R. B. Sher, A theory of proper shape for locally compact metric spaces, Fund. Math. 86 (1974), pp. 163-192.
- [4] K. Borsuk, Theory of Shape, Warszawa 1975.
- [5] J. Dydak, A simple proof that pointed connected FANR-spaces are regular fundamental retracts of ANR's, Bull. Acad. Polon. Sci 25 (1977), pp. 55-62.
- [6] S. Nowak and M. Strok, On the union of two FANR-sets, Bull. Acad. Polon. Sci. 24 (1976), pp. 485-489.
- [7] R. H. Fox, On shape, Fund. Math. 72 (1971), pp. 47-71.
- [8] S. Godlewski, Mutational retracts and extensions of mutations, Fund. Math. 84 (1974), pp. 47-65.
- [9] G. Kozlowski and J. Segal, Locally well-behaved paracompacta in shape theory, Fund. Math. 95 (1977), pp. 55-71.
- [10] Y. Kodama, On product of shape and a question of Sher, Pacific J. Math. 92 (1977), pp. 115-134.
- [11] Fine movability, to appear.
- [12] and J. Ono, On fine shape theory, Fund. Math. 105 (1979), pp. 29-39.
- [13] S. Mardešić, Shapes for topological spaces, Gen. Top. Appl. 3 (1973), pp. 265-282.
- [14] and J. Segal, Spaces of compacta and ANR-systems, Fund. Math. 72 (1971), pp. 41-59,

- [15] R. B. Sher, Property SUV[∞] and proper shape theory, Trans. Amer. Math. Soc. 190 (1974), pp. 345-356.
- [16] Extensions, retracts and absolute neighborhood retracts in proper shape theory. Fund. Math. 96 (1977), pp. 149–159.
- [17] L. C. Siebenmann, L. Guillou et H. Hähl, Les voisinages reguliers: criteres homotopiques d'existence, Ann. Sci E. N. S. 7 (1974), pp. 431-462.
- [18] N. E. Steenrod, Regular cycles of compact metric spaces, Ann. of Math. 41 (1940), pp. 833-851.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA Ibaraki, Japan FACULTY OF LIBERAL ARTS SHIZUOKA UNIVERSITY Shizuoka, Japan

Accepté par la Rédaction le 12. 12. 1977

Intersection of sectorial cluster sets and directional essential cluster sets

by

A. K. Layek and S. N. Mukhopadhyay (Burdwan)

Abstract. Let $f: H \to W$, where H is the upper half plane and W is a second countable topological space, and let R be the real line. It is proved that, except a set of points x on R, which is of the first category and measure zero, every essential directional cluster set of f is a subset of every sectorial cluster set of f at x; and if W is compact and normal, then except a countable set of points x on R, every essential directional cluster set intersects every sectorial cluster set of f at x.

1. Let H denote the open upper half plane and let z denote points of H. Let x denote points on the real line R. For each $x \in R$, $\theta \in (0, \pi)$ and h > 0, let

$$L_a(x) = \{z: z \in H; \arg |z-x| = \theta\}$$

and

$$L_{\theta}(x, h) = \{z \colon z \in H; |z-x| < h\} \cap L_{\theta}(x).$$

For each pair of directions θ_1 , θ_2 , $0 < \theta_1 < \theta_2 < \pi$, $\sigma_{\theta_1 \theta_2}$ denotes the sector in H with vertex at the origin, defined by

$$\sigma_{\theta_1\theta_2} = \{z \colon z \in H; \ \theta_1 < \arg z < \theta_2\} \ .$$

If there is no ambiguity, we shall simply write σ instead of $\sigma_{\theta_1\theta_2}$. By $\sigma(x)$ we mean the sector in H with vertex at x and which is obtained by a translation of σ . That is,

$$\sigma(x) = \{z: z \in H; \ \theta_1 < \arg(z - x) < \theta_2\}.$$

Also for $x \in R$ and h>0 we shall write

$$\sigma(x, h) = \sigma(x) \cap \{z \colon z \in H; |z - x| < h\}.$$

For $E \subset H$, the upper outer density $d_{\theta}^*(E, x)$ and outer density $d_{\theta}^*(E, x)$ of E at x in the direction θ are defined by

(1)
$$\overline{d}_{\theta}^{*}(E, x) = \limsup_{h \to 0} \frac{\mu^{*}[E \cap L_{\theta}(x, h)]}{\mu(L_{\theta}(x, h))}$$

and

(2)
$$d_{\theta}^{*}(E, x) = \lim_{h \to 0} \frac{\mu^{*}[E \cap L_{\theta}(x, h)]}{\mu(L_{\theta}(x, h))},$$