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L,,., equivalence between countable and
uncountable linear orderings *

by

Charles K. Landraitis (Boston, Mass.)

Abstract. The complete Ly, theory of an arbitrary denumerable (linear) order type A is
either (i) categorical, (ii) satisfied in all powers <2®0, or (jii) satisfied in all infinite powers. This
holds even if 2 is permitted to carry unary predicates. Algebraic properties necessary and suf-
ficient for 2 to be of type (i) or (iii) are stated.

§ 1. Preliminaries. Notation and terminology, where not specifically introduced,
will follow [1] or [5]. |4| will denote the cardinality of the set 4, and A =~ B that
the structures 2 and B are isomorphic. By an ordering we mean a structure
A = (4,<, PM)ep where < is a reflexive linear ordering of 4, || <o, and each
P¥is a unary predicate on 4. When no unary predicates are present % will be referred
to as an order type. Throughout the paper we assume that L is a first-order finitary
language for the orderings currently being considered and that-L,,,, and Ly, are the
infinitary languages with the same predicate symbols as L. By a Scott sentence we
mean a complete L, sentence satisfied by an ordering:

The universes of orderings %, B, €, Ay, Ay, ... are denot;d byd,B,C, Ay, Ay -
An ordering is referred to as densely ordered or dense if it satisfies

IxTy(x # y)AVxVy(x<j;—+ Az(x<z<y)) .
B is referred to as dense in U if U is dense and satisfies
Vx,yed(x<y—Ize B(x<z<))).

If U contains a densely ordered subset, then U is nonscattered. Otherwise 2 is
scattered. B is an interval of % if BN and. Vx,yeBVze A(x<z<y—z€B).
By a nontrivial interyal we mean one with at least two elements. An interval without
endpoints is open. The notations (a, b), [a, b] for intervals arc to be interpreted as
usual, while 9%, <7, A>, A”* denote the fntervals {be 4: b<a}, {be 4: b<al},
{be A: b>ad}, {be A: b>a}. Topological notions, such as néighborhood and limit-
point; are relative to-the topology generated by the open intervals of a dense ordering:

* The author wishes to thank Dr. V. Harnik for his support and assistance.
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Let A, B be orderings. G(U, B) is the game for two players in which a move
consists of a choice by player one of an element from either structure and by player
two of a corresponding element from the other structure. If, after @ moves, the
correspondence thus established is an isomorphism of the substructures generated
by the moves, then player two wins. Otherwise player one wins. If player two has
a winning strategy, then o and B are game-equivalent. A proof of game-equivalence
will be referred to as a back and forth argument.

For a language £ (e.g.; L, Ly, 01 L), B and U are L-equivalent if they satisfy
the same sentence of £. The well-known connections between game-equivalence,
L,,, and L, are as follows.

1.1. Tueorem. U and B are game-equivalent if and only if they are L, -~ equivalent.
If A is countable, then there exists a Scott sentence (which we always denote by @y)
such that the following are equivalent:

@) BF oy,

(ii) for each n, B and W realize the same L, n-types,

(iil) B is game-equivalent to A.

In general, if A is countable then

A<poB = A<, B and U=,,B = A=_,B

Since we do not need to distinguish between L., and L, , in this case, we simply
write W<V and A = B. We shall use the fact that an embedding o: A — B is
elementary if and only if for each new, 4y, ..,a,€ %A, (U, ay, ..., a,) is game-
equivalent to (B, o(ay), ..., o(a,)).

We refer to the class {|B|: B k ¢y} of cardinalities of models of ¢y as the
spectrum of @y (or as the spectrum of ). Card is the class of infinite cardinals, and
Card ** the set of infinite cardinals less than

A—B denotes the subordering of A with universe {ae 4: a¢ B}, A N B the
subordering of ; B with universe 4 ~ B. If £ is an order type, the sum 8 = ¥ 9,

zxed
is formed from copies B, = (B, <, PP);.; of U, with B, disjoint from each

By B # o B has universe () B, ordered by ( U <) u( U B,x By), with
14 X4

U PP If A, = B, all «, ﬁe &, then Z A, is denoted

by A& Wo+ U, +...+W,_, denotes Y A,. An ordering U s referred to as self-
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additive if A = A+ (this is a variant of a notion introduced in [8]). Note that if A
is countable and self-additive, then 9 QI+QI A routine back and forth argument
shows that if A, = B,, a e, then Z A, Z B,.

The set of automorphisms of 2 w1ll be denoted by Aut. The orbit of ae 4
in 9 is the set of be 4 such that for some o e Aut, o(a) = b, and is denoted by
O(a, ) or simply O(a). We shall make heavy use of the fact, which we now record,
that all members of an orbit have the same L., properties.

1.2. Lemva. If be O(a, W), then (U, a) = (U, b).

unary predicates PP =
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§ 2. Statement of the Main Theorem. While a countable structure 9 is isomorphic
to any countable model of its Scott sentence ¢y, g may have uncountable modefs.
Following a suggestion of Makkai, we refer to 9 as absolutely characterizable if
every model of ¢y is isomorphic to %, that is, if the spectrum of @y is {8y}. Countable
ordinals are absolutely characterizable, while the order type # of the rational numbers
is Ly ,-equivalent to any dense order type without endpoints. In [6] it is shown
that countable scattered order types are absolutely characterizable. Malitz and
Baumgartner [7], [3] have classified the spectra of Scott sentences for arbitrary
countable structures. In the theorem below, the principal result of this paper, we
extend Makkai’s theorem and provide a description of the relation between structural
properties of countable orderings and the spectra of their Scott sentences.

2.1. TueoReM. Let U be a denumerably infinite ordering with Scott sentence ¢y
The spectrum of ¢y is as described below. =

() {80} if and only if each orbit of N is scattered.

(ii) Al infinite cardinals if and only if % has a self-additive interval.

(iii) Al infinite cardinals »<2™ if neither (i) nor (ii) applies. Each of the cases
@), (i), (iii) does occur.

From Theorem 2.1 we may immediately draw the following conclusions.

2.2. CoroLLARY. (i) If a complete L, sentence yr is satisfied by an uncountable
linear ordering, then v is satisfied by an ordering of power 2°°.

(ii) The Hanf number for Scott sentences of linear ordering is (2%0)*.

A version of Theorem 2.1 can be stated and proved which replaces all mention
of infinitary languages with game-theoretic terminology. In this way the theorem
can be viewed as a description of the properties of the relation of game-equivalence
between countable and uncountable orderngs. Although the core of our proof
of Theorem 2.1 is almost purely combinatorial, we chose to emphasize connections
with L, ,, and L. This is in keeping with our intention of exploring the model
theory of L,,, in a concrete setting. Barwise and Eklof [2] have examined the in-
finitary properties of Abelian torsion groups, but relatively little work of this kind
has appeared.

The core of the proof of the main theorem ds in §§ 4, 5, while § 6 completes it by
showing that each of the cases (i), (ii), (iii) of Theorem 2.1 does occur.

§ 3. Countable oxderings in which every orbit is scattered. In this section we make
a routine application of the theorem of Makkai [6] cited in § 2 to establish part
of Theorem 2.1. The guiding idea is that if 2 is a union of absolutely characterizable
substructures (in this case, orbits) which are definable, then 9 is absolutely charac-
terizable. ‘

3.1, THEOREM. If 2 is countable and each orbit of U is scattered, then W is
absolutely characterizable.

Proof, For each a e 4, let |, be a Scott sentence for the subordering O(a, %)
and @, a formula of L, , with one free variable whose interpretation 6% in U is
2 — Fundamenta Mathematicae T, CVII/2
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O(a, ). Let % denote the relativization of y, to"6, so that B F /% if and only if

0% . o satisfies the sentence Vx( \/ 8,04 /\ ¥e), which we denote by L.
asd acA

If B F ¢, the first conjunct implies that B< U 8% and the second, by Makkai's
aed

theorem, that each B is countable.

To see that Theorem 3.1 extends Makkai's theorem, we now show that there
_exist nonscattered orderings in which every orbit is scattered. Let {4;: i € w} be an
enumeration without repetitions of 77, the order type of the rationals, Let 2[,, be a copy

of the finite ordinal i+1. Then ¥ = Y A, is a nonscattered ordering whose only
aen
automorphism is the trivial one.

§ 4. Denumerable orderings with a nonscattered orbit. Our goal in this section
is to prove the following theorem.

4.1. TueoreMm. If U is a denumerable ordering with a nonscattered orbit, then
@y has a model of power 2%,

For the present we fix countable U = (4, < , P{;er with nonscattered orbit
0(ay, M). We begin by defining a “factor” ordering 9[* via an equivalence relation
on ¥, and then showing that it suffices to prove Theorem 4.1 for 2*. The proof
then proceeds by analyzing the relation “dense in” between orbits of *, showing
that it is almost a linear ordering (Order Lemma), and then using this fact in con-
junction with back and forth arguments. We begin with a useful fact about orbits,
omitting the routine proof.

42. LemMa. If € is a subordering of B, o an automorphism of B, b€ B, then
0@, B) N €= 0, B) na(Q). In particular, O(b, B) N C is empty if and only
if O(b, B) N o(C) is empty. .

We now begin the construction of the ordering 2* mentioned above.

4.3. DerNITION. For each element a of 2, let a* denote the set {J {8: B is
an interval of %, ae B, and B ~ O(a, A) is scattered}.

Some straightforward but useful consequences of the definition are as follows.

4.4, LEMMA. Let a, b be elements of .

1. If ae O(b, N), then either a* n b* is empty or a* = b*.

2. a* is the largest interval B containing a such that B r O(a, W) is scattered.

3. If ae Aut, then o(a*) = (c(a))*. Thus if be O(a, W), b* is isomorphic
to a*.

We now put an equivalence relation ~ on 2.

4.5. DeFINITION. For b, ¢ in U, b ~ ¢ if and only if either 1 or 2 holds.

1. For some ae O(ay), b, c€ a*.

2. Neither b nor ¢ is in | {a*: a & O(a,)} and for-every din |J {a*: ae.0(ao)},
b<d if and only if c¢<d.

An important property of ~ which follows from Lemma 4.4 is as follows.

icm®
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4.6. LemMmA. Let o c Aut¥, a,beN. Then a ~ b if and only if a(a) ~ o(b).
Denote the equivalence class of @ € % by [a]. Let f be the map carrying a to [a],

and 4* the set {[a]: ae4}. To avoid ambiguity we write [a] for the substructure

of U and f (@) to denote the corresponding element of A*. It follows from Lemma 4.6

that for each o e Aut2 and ae %, f(0(a)) = o(f(a)).
4.7. DerNITION. Let 20* be any structure with universe A*, linear ordering <%,
and unary predicates QF, OF, ..., satisfying the following conditions.

@) F(@<*fb) if and only if either [a] = [b] or Vxe [a] Vye[bl(x<)).

(i) The unary predicates 0F", Y, ..., as many as needed, have the following

properties.

1. For each a e, A*F Q,f(a) if and only if b€ O(ay)d* = [a]).

2. For each a e % there is a unique ie w such that A* E O, f(a).

3. For each a, be , if A* E Q,f(a), then A* £ Q,f(d) if and only if for some
o e Aut?, [b] = o([a]).

We leave it to the reader to verify that 9* exists and note that the orbits of 20*
are the Q7. Some other properties of UA* are as follows.

4.8. LemMa, (1) For every oeAut¥ (c*e Aut A*) there is o*e AutW*
(0 € AutN) such that fo = o*f.

(2) For any aeW*, O(f(@), U*) = f(0(a, W) = {[3]: beO(a, W}

(3) O(f(ap), U¥) is dense in U*.

(4) (4*, <*) is isomorphic to an interval of the rationals.

Proof. (1) Let o%( £ (%)) be f(c(x)). Given o* € Aut &¥, we let o be any map
50 that for each a € 9, ¢ | [] is an isomorphism of [a] with f~*(c*( £ ())). (2) follows
from (1) and (3) from (2). From (3) it follows that (4*, <*) is densely ordered and

‘a routine back and forth argument then gives (4).

The proof of Theorem 2.1 could be carried out in 2, but the presence of an
orbit dense in 90* makes it more convenient to work there, as we now show that we
may do.

4.9, LEMMA. If A* = B, then there is an ordering G, |€| = |B); such that
A = C.

Proof. For cach be B such that b e OF, let €, be a copy of the isomorphism
type of any equivalence class{a] such that 2*k Q, f (a). Let € = Y G,. Aback and
beB

forth argument lifts player two’s winning strategy in G(U*, B) to GA, ). If
player one chooses a & A (ye ), player two responds in G, ([a']), whered’ ([a']) is
the response to [a] (b) dictated by his winning strategy in G(A*, B). The fact that
la] = &, ([a'] = G,) assures that player two bas a winning strategy.

Since we shall work in %* and no longer need to refer frequently to %, a,, or 1
we denote f (a,) by d, and free % and aq from the fixed meanings we have given them
in this section.

o


GUEST


104 Ch. K. Landraitis

4.10. DEFINITION. Let a, b be any elements of 2*. N(a,b) will denote the
interval {a} u (U {€: € isan open neighborhood of @ in A* and € n Oh, A*)
is empty}). If §<4*, let N(a, S) denote the interval ﬂ‘N(a, x).

xed

Note that if ce O(b, U*), then N(a, b) = N(a, ¢). We term an interval with at
most one point ¢rivial. For each b € A* and a € O(d, A*), N(a, b) is trivial if and only
if a is a limit point of O (b, A*). If N(a, b) is nontrivial, then it is the largest open
neighborhood of a which does not meet O(b, 2A*).

4.11. LemMMA. Let ae O(b, *), ¢, ¢, € ¥, and let o€ AutA* carry a to b.

(i) a is a limit point of O(c) if and only if b is.

(ii) o is anisomorphism between N (a, ) and N(b, ¢), and between N(a, c)— N(a, ¢;)
and N, c)—N(,¢y). '

(iii) If N(a, c)n N(b, c) is nonempty, then N(a,c) = N(b, c).

Proof. (i) Let U be a neighborhood of a. Then o(U) is a neighborhood of »
and, by Lemma 4.2, U n O(c) is empty if and only if 6(U) n O(c) is empty. For (ii)
we use the fact that ¢~ '¢ is the identity map. Since N(a,¢) n O(c) = O,
a(N(a, ©)) N O(c) = @. Since N(a, c) is the largest open neighborhood of & not
meeting O(c), o(N(a, ))SN(b,c). Similarly o™ Y(N(b, c))SN(a, ), and thus
67 'o(N(a, c))= N(a, c). Equality holds only if a(N(a, c)) = N(b, ¢). The second
part of (ii) follows from the first. For (iii) we may assume that N(a, ¢), N(b, ¢)
are nontrivial, and that N(z, ¢) n N(b, ¢) is nonempty. Then N(a, ¢) v N(b,¢)
is an open neighborhood of b not meeting O(c), and so contained in N(b, c).
Similarly, N, c)=N(a, c).

4.12, OrBIT LEMMA. For a,be A*, ce N(a,b), O(c, N(a, b)) = O(c, W) n
A N(a, b).

Proof. To obtain O(c, N(a, b))=O(c, U*¥) n N(a,b), let T be an auto-
morphism of N(a, b) carrying ¢ to ¢,. ¢ € Aut 2* such that o(c) = ¢, is obtained
by letting o [N(a, b) be = and o [ (A*—N(a, b)) be the identity map. To obtain
0(c, N(a, B))20(c, W¥) N N(a, b), let ¢ € Aut¥* with ¢(c) € N(a, b). By Lemma
4.11 ¢ [ N(a, b) e AutN(a, b) and o(c) € O(c, N(a, b)).

4.13, ORDER LEMMA. Let d, € O(d, U*), a,beW*. Then either N(d,,a)
SN(d;,b) or N(dy, b)SN(dy, a). Thus {N(d,, x): xeq*} is linearly ordered by
inclusion.

Proof. To obtain a contradiction we assume that, neither of N(d,, a), N(dy, b)
is contained in the other. Clearly neither is trivial. We may assume without loss of
generality that N(d;, @) = {xe N(dy, a): x<d,} is properly contained in
N(dy, b))t and that N(d,,a)>" properly contains N(d,, b)>". Let I be
N(dy, )" ~N(d,, @)% and J be N(d,,a)>"—N(d,, b)>™. Since N(d,q) and
N(d,b) are open, I and J are nontrivial. There are two possibilities for I:
() @a; e O(a, Uy~ I) Vx € I(x<a,). (i) There is a strictly increasing sequence
{a;: i€ w} contained in O(a, A¥) A I which is cofinal in I It follows that for
any yel such that y ¢ O(a, U*), there is an x e/ N O(a, A*) such that y<x.
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Since O(d, U*) is dense in A* there is d, eI~ O(d, A*). Since d, & O(a, A*),
there is x €/ n O(a, A*) such that d,<x. Now d, € N (dy,b) " N(d,, b), so that
by Lemma 4.11 (iii), N(dy, b) = N(d,, b).

Let o e Aut(%*) carry d, to dy. Then by 4.11 (ii), o carries N(d,,b) onto
itself. In particular, o(x) lies in N(d;, 5)®" and in Ofa, A*), violating the

=

assumption that N(d, > contains N(dy, 5)>%. W

Let S, be the set {ueA*: d is not a limit point of O(a, A*)} and recall that
N(d, Sy is defined to be (} {N(d, s): s S,}. N(d, S,) is an interval disjoint from S;.
If ae N(d, Sy), then d is a limit point of O(4), while if ae §;, N(d, a) is an open
neighborhood of d. For each d’ € O(d), 4.11 (i) implies that S, = S, and from 4.11 (ii)
that N(d', Sp) = N(d, S,). Since O(d) is dense in (4*, <), we see that S, = {aea*:
‘0(a) is not dense (equivalently, nowhere dense) in (A4*, )l

4.14. LEMMA. Either N(d, 85) = {d} or N(d, S,) is a neighborhood of d.

Proof. If N(d, S;) is not a neighborhood of d, then d is a limit point of S,
and so of S;°* or of §;“. Suppose the former. Then there is a strictly increasing
sequence {s;: i € ©} contained in S;* with limit . Let b & (%)%, d, e (d, b) ~ O(d),
and let o € Aut A* carry d to d;. Then all but finitely many elements of {o(s): ie 0}
lie in (d, b), d is a limit point of $7° and N(d, S,) = {d}, ®

To complete the proof of Theorem 4.1, we now consider separately the cases
N(d, Sy = {d} and N(d, S,;) # {d}, beginning with the latter.

4.15. DEFINITION. An ordering B = (B, <, PP); is a shufffe if (B, <) is
densely ordered without endpoints and satisfies the following conditions.

i) Vx \/ P;x.
iel

(i) Vx A ~(P,xAP;x).
i*]

(iif) If P is nonempty, then it is dense in B.

Routine back and forth arguments establish all parts of the mext lemma.

4.16. LeMMA. Let B = (B, <, PP);.; be a shuffle.

(i) The orbits of B are the nonempty P}.

(ii) If © is an open interval of B, then € = B.

(iii) B = B-¢ for any nonempty order type &.

4.17. LemMA. If N(d, S;) # {d}, then each of its open intervals is a shuffle.

Proof. (i) and (i) of 4.15 are immediate. For (iii), let a € N(d, S;), so that d is.
a limit point of O(a, A*). It follows that any point of O(d, A*) is such a limit point,
and that O(a, A*) is dense in A* and N(d, S,). It now suffices to notice that if Q;
is the predicate carried by a, O(a, W< Q" ®

Lemma4.17 implies that if N(d, S,) # {d}, then 2* has the form €, -+, + A, ,
where 2, is a shuffle. Since U, = A;-¢ for any nonempty order type £ U* is
L ,-equivalent to arbitrarily large orderings of the form Uy+,-£+4920,.
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1t remains to produce a model B of @y, |B] = 2% in case N(d, Sy) = {d}
Since the avenue of enlarging N(d, S,) is not open in this case, we turn to the orbits
of W*. IE B E gogs, then QF = OF, i € . Since the O, i>0, may be scattered, they
may be characterized absolutely by @gu and then necessarily be isomorphic to the
0%, i>0. But OF has order type 5, game-equivalent to order types of all infinite
powers, leaving open the possibility that O¥ may be enlarged to produce an un-
countable model of @g.. We show now that such an enlargement may be carried
out.

Let B* be a copy of 2A* and o, and isomorphism carrying 2* onto B*. Denote
oo(d) by e and 0,(S,) by Z,. Note that T, is {b e B*: e is not a limit point of
O(b, B}, and that for any ae ¥, A=4*, do(N(a, A) = N(ooa), oo(d)). As
a special case, N(e, T.) = ao(N(d, S,). Lemmas 4.11-4.14 and 4.17 hold for B*
(with the obvious modifications) and we shall use them freely. Since each x
€ 0(d, A*) is a limit point of S; and O(d, A*) is dense in A*, S, is also dense
in 9* and T, in B*.

Let (B*, <) be the (unique, up to order-isomorphism) interval of the reals
in which (B*, <) can be embedded as a dense subset. For any interval U of B¥,
let U* be the smallest interval of B* containing U. Note that if U is open in B*,
then U* is open in B*. Any set dense in U, e.g. Ofe, B*) or T, will also
be dense in U*. We construct B by adding points of B¥ to Q. The simplest
such enlargement of B* would be to let QF be 0§ U (B —B*), but this approach
is demonstrably not always successful (see § 7). Instead, we add a selected subset
of B*—B* to QF. Each element e, of O(e, B*) has the property that for any
1€, there is €, € O(e, B¥), e, # e, with e; € N(e,, ¢). Since this can be stated
in L,,q,, and 0% should in B play the part of O(e, B*), we single out the points
with the best chance of having this property. Let € be the set of elements x e B*
such that for any z eI, there is e’ € O(e, B*) with xe N(¢, 1), i.e.

€E=n U

teXe e1e€0(e,B*)
0% U(€—B*), and B= QF U xU 0" with the ordering <y inherited
>0

from (B*, <). Let B be (B, <g, 90, @7 V>0
For |QF] to be 2% it suffices that |§] = 2™, For each te ..

U {N(e,, H)*: e e O(e, B¥)}

is open and dense in (B*, <), so that ® is not only a G, set but also of second
category (comeager) in (B, <). It follows from the Baire Category Theorem that
 is uncountable. Since any uncountable G, set of reals has power 2%, |G| = 2%,

Our next theorem shows that B F @y

4.18. THEOREM. If B*=B'<B, then B’ = *.

We prove the theorem for B’ = B. It will be apparent how to adapt the back
and forth argument to B’ # B. Let g, and b, be the elements chosen from A* and B

N(eli t)+ .

Let OF =

icm
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on move i and 4, = {a;: i<n}, B, = {b;: i<n}. We show that after n moves
player two can maintain the following condition, stronger than the required partial
isomorphism.

4.19. There is an isomorphism o, carrying 2%* onto the substructure B* U B,
of B such that for each a; e 4,, o,(a;) = b;.

In the back and forth argument, we can let 6,4y = o, except when player one
chooses b,y from B—(B* u B,). In this case it will suffice to alter ¢, on o *(U),
where U' is an appropriate neighborhood of b,,, in B*,

Let b,, b, with b,<b,.<b, be the nearest elements of B, to b,.,. Since
b,+ 4 €€, there exists, for each reX,, an element e(¢) in O(e, B*) such that
byrr € N(e(), 1),

420 Lewva. G) () N(e(), 1)* = {buss}.
i N Ne@®, ) is'voz‘d.

Proof. (ii) follows from (i). Suppose without loss of generality that x<b,. ,
xeB*. Since X, is dense in BY, there is reX, such that x<r<b,,; and
x¢N(e(), ). W

4.21. LemMA. There are t;€X,, i€ w, such that -

i) U O, B*) is dense in B*.

(ii) For iew, N(e, t;+1) € N(e, 1).

(i) For ie o, N(e(tir1), t1+1) € N(e(@), 1),

V) N N(e, 1)) = {e}.

iew

) ) Ne@, t)* = {byss} and () N(e(r), 1;) is void.
iew iew

Proof. Since T, is dense in B* there are sequences x,<xy <... and yo>p>...
with limit e such that {x;: ie w} U {y;: ie w} is a subset of .. We first show
how the #; may be selected. Let £, = x,. Suppose that f,, ..., #, have been selec-
ted. If k>0 we assume that (i) and (iii) hold for each i<k and that:-N(e, #.),
=(xy, y)- Let j be the least index greater than k so that (x;, y)=Ne, t;). By
the Order Lemma, either N(e, x)SN(e, y;) or N(e, y;)SN(e, x;). In the former
case let 7, = x;. Otherwise let ., = ;. Then

N, i) S, y)EN(e, 1) and  Nle, ta ) SO, Y EGr 15 Fir ) -

Since b1 € N(e(t), 1) N N(e(ter), ), 411 (ii) implies that N(e(t), %)

=N(e(t+1), t). From this and 4.11 (if) it follows that N(e(fu+ 1), L+ 1) S N(e(d, 4)-

It follows from the construction that e is a limit point of U O(#;, B*), so that
i

=1}
this set is demse in B* and BY, (i) and (iv) follow. For (v) suppose that
x<byyyi[x>bys,]. Then for some iew there is ye O(f, B*) such that
X<y <Byy1 [x>y>bpyi]. Thus x ¢ N(e(t), t;)". &
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‘We not again make free use of lemmas of this section for structures isomor-
phic to those for which they are stated. We also use the variant of Lemma 4.11 (ii)
(whose statement is left to the reader) in which o is an isomorphism.

Let s, i€ o, by defined by s, = o (#). 4.21 (i) and (v) imply that for some
keo, Ne(t),t)=(b,, b). Let dy = oy '(e(t)). By the variant of Lemma
4.11 (i), o, (N(e(), 1)) = N(ow *(e(1)), o5 '(8) = N(do, 51), s0 that N(e(t), 1)
= N(d,, s;). Also by 4.11 (i), for i>k,

N(do, 540 —N(dos Sur1+ 1) ZN(e(ty), tk+t)—N(‘3(’k), tiaie1)

via restrictions of o, . Again by 4.11 (ii),

Nle(ty), tle+1)_N(e(tk)s tystrs) = NeCurino), tk+i)_'N(e(tk+i+1)a bysi41)
= N{e(tes s tia ) = N(elteain 1), Beriv) -

By the transitivity of the isomorphism relation there is for each ie w an isomor-
phism z; from N(dg, 8 4 )~ N(do, Siri+ 1) Ont0 N(e(tes ), fuy ) —N(e(tiu1a1)s fesrs 0-
Now U (N(do: S )—N(dy, Sk+l+1)) = N(dp, Sk)"‘{do} and, by 4.21 (v),

N N(do, Si+i) = {do} .

iew

Similarly, U (N(e@r s tes) = N(eWein1)s tiain 1) = N(e(t), &) and by 4.21 (v),

ico

O (N(e(isds tirs) = N(e(sis 1), firsa1)) is void. Thus U 7, is an isomorphism
iew iew

of N{dy, 50)—{do} with N(e(t,), t,). We can now describe player two’s response,
Opi1s 10 b,4y, completing the proof of 4.18, It is that Ou+y should be

On F(A*—N(dog SO)) Y U TV {(do, bn+1)} 3

agreeing with o, outside of N(dy, so) and matching b,.; with d,. B

§ 5. Countable orderings L, ,-equivalent to arbitrarily large orderings. In this
section we determine, in Theorem 5.1, that the Hanf number for Scott sentences
(of countable orderings) is (24)* and find two algebraic definitions of {2 2] = 8,
8.5 @y has arbitrarily large models}. The effect is to establish (ii) and (together with § 4)
(iii) of Theorem 2.1. The main combinatorial tool for the Hanf number proof is the
Erdés-Rado theorem (see [4]) whose use was prompted by a suggestion of S. Shelah
(personal communication).

5.1. THEOREM. Let || = 8,. The following are equivalent,

@) o has a model of power at least (2¥9)*.

() @y has arbitrarily large models.

(i) There are elements a,<ay<a; of N such that (WU, a;, ay) & (U, ay, a;)
= (9’[: a, a3)'

(iv) U has a self-additive interval.

icm®

e between table and

Ly, equival ble linear orderings 109
First we show that (iii) and (iv) are equivalent. If (iii) holds, then to see that
(ay, a,] is self-additive, note that (ay, a;] = (ay, a,]+(a,, a3] and that (g, a,]
= (a,, as] = (a3, as].
For the converse, let B be a self-additive interval of U, b € B. Forie {0,1,2,3,4}
let (B;, a;) be a copy of (B, d). Let B' = Z B;. Since B’ ~ B, it suffices to

0gi<4
show that

(B, a,,a) = (B, 0y, a5) = (B, a5, a).

(B = By +B5*™, By = By+B,, and BE" = B5™, 50 that (B) = (B) <.
Similarly, (B)>* = (8')>%. We also need (ay, a;) = (as, a;), which is immediate,
and (ay, a;) = (44, a3). B; splits into intervals B} (left) and B} (right) so that
VxeBVye®B|(x<y) and each is isomorphic to B;. We may assume that
Vi<4(a; e®BY) or Vi<4(a; € BY). Assume the former. Then
(a1, @) = By 4+ B35 = (B "+ B+ B85 = (B “+ B+ B, +B5%,

Now, since (8,)” "+ 8 & B7 and B5* = B, the last expression is isomorphic
to BT +B+B5" = (a4, a;). It follows that (aq,a,) = (ay, a;). With these
results we have

(B, a1, a3) = (B) 5" +(ag, a)+(B)>™ = (B) " +(ay, 23)+(B)>*
= (B, a4, a3)
and

(B, a1, a2) = (B +(ay, a2)+(B)7™ = (B)“+(az, a3) +(B)"

= (B, a2, 4).

We now show (i) = (iii) = (ii). Since (ii) = (i) is immediate, this will complete
the proof of Theorem 5.1.

Assuming (i), let B F ¢y, |B]>(2%)*. By the downward Léwenheim-Skolem—
Tarski theorem for L, ,, we may assume that B has power exactly (2*)*. For
each n € w, B realizes the same L, n-types as A. There are (2%°)*“increasing se-
quences of length two from B, and these realize at most &, distinct L, , 2-types.
The Erdés-Rado theorem (see [4]) in the form (2%°9)* — (%)%, implies that there is
a set B'< B of power %, such that all increasing sequences of length two from B’
realize the same L,,,, type in B. Let B, be a countable L, , elementary submodel
of B containing three points by<b,<b, of B”. Since U = B;, A has points
ap<ay <a, satisfying (iii).

In the remainder of § 5 we complete the proof of Theorem 5.1 by showing
that (iii) =-(ii). Assume (iii) with ay, gy, a,. Let ¥(vy,v;) be an L, , formula
such that for any countable € and ¢y, ¢, €C,

CE (e, c) = (€, ¢, ¢) = (U, a0, ap) -
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5.2. LEmMA. Let UF y/(a, b).
(i) For some ceA, AEY(a,c)ay(c,b)

(ii) For some ce 4, WE Y(c, ) Ar(c, b).

(ili) For some ce A, WE Y (a, )AY(b,c)

Proof. For (i), wehave 2 Jo(y (a0, v) AV (v, @) and (U, ag, a3) = (¥, a, b).
(i) and (iii) of 5.2 are similar. H

5.3. LemMA. The interpretation W™ of W in 9 is a transitive relation.

Proof. Let Ak W(a, b) Ay (b, ¢). It suffices to show that (N, a, b) = (U, a, c).

(A, a, b) = US4 (a, b)+A>? ,
= A (ag, @)+ U = U+ (a0, 4] +(ay, ) +U>*
& WS (g, bl+ (b, )+ U = (U, a,c). M

We now find a subordering X of A with the order type # of the rationals such
that if x; <X, are from X, then %k ¥ (xy, x;). Let X, be {a,,4,, a,}, and if X, is
Co< e <y, With WE Y (e;, €i41), then Lemmas 5.2 and 5.3 guarantee that there are
elements dy, dy, .., deey Of A such that dy<cy<di<e¢ <...<c,<dyy; and
WEY(x,y) for x<p, x,ye{dy, Cos s Oy digq}. Lot X' = U X,. X has order

new

type n and if x<y, x,y€ X, then WAk yr(x, y).

Let X be the interval {a e 4: 3b, ce X(b<a<c)} of U, so that A has the form
A, +X + U, for some (possibly void) intervals 2, , U, . Let £ be an arbitrary nonempty
order type, and for each a e ¢, let X, and X,<X, be isomorphic copies of X, X.

5.4, LemvA. U = g+ Y X+,
agé

Proof. Ifsuffices to show that player two has a winning strategy in G(X, ¥, X,),
aeé

since he may play the identity map elsewhere. Assume that after n moves the points
chosen from X are 4,<..<a,-, and those from Y X, are by<b; <..<b,;.
xed

Player two can win by maintaining the following situation throughout the game.

5.5. For each o such that the set of elements by, bysy, ..., b, chosen so far
from X, is nonempty, there are

(1) sa<bk: tu>bms Sas ta € Xu)

(i) uys va € X, U <ay, v,>a, so that if f>q and u, has been chosen, v, <u,,

(iii) there is an isomorphism o, of [u,, v,] with [s,,?,] such that o (a) = b,
for k<i<m.

5.5 holds before any moves are made. Whenever player one moves in [u,, v,]
or [s,, ¢}, player two’s response is dictated by ¢,. We leave it to the reader to verify

that in the remaining cases player two may provide a new interval or extend an exist-
ing one, as required. M

icm
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§ 6. A denumerable order type whose Scoft sentence has spectrum Card<2™,

In the preceding sections we have established that the spectrum of the Scott sentence
@q is described by one of the three cases listed in the main theorem, but not that
each of these does occur. Any scattered ordering provides an instance of case (i),
and the order type # one of case (ii). But instances of (iii) are not as readily available.
In this section we construct one.

6.1. THEOREM. There is a denumerable ordering 2 such that the spectrum of gy
is Card<?™.

‘We begin the proof with the construction of ¥ = (4, <, PP, , which will be
the union of the disjoint unary predicates P}, i e w. The construction is in @ stages.
After the nth stage, the subordering |J P} will have been constructed. Let P¥

isn
have order type 1, P} the order type w*+w of the integers, occurring coinitially and
cofinally in P U P§' with P§ dense in PZ U PY. Assume now ihat the nth stage,
giving {J P7, has been completed. Between each pair of consecutive elements a, b,
i<

i<n

with a<b, of PY, let the elements of PY_, lying between a and b have order type
@*+ w, be conitial and cofinalin {xe {J P': a<x<b} and such that PJis dense
i<nt1
in U PN
i€nt+t
6.2. Lemma. (i) Forn>0 the order type of P2 is scattered. (In fact, it is (0* + @)").

(i) A, PY, and \) P{* have order type y and are dense in U.
i>0

(i) The Py are the orbits of U.

(i) and (ii) follow immediately from the construction and (iii) from a routine
back and forth argument. The three parts together imply that the scattered orbits
of A are dense in A.

6.3. LeMMA. If € satisfies @y, then € <2™.
We show that G has a countable dense subset. For each 7, P = PY, For i>0,
PY is scattered. Thus Py = P¥ and U Pf is countable. Clearly ) P! is dense

i>0 i>0
in €.
To complete the proof of Theorem 6.1 we notice that 9 is densely ordered with
2 nonscattered orbit P¥, dense in 21. Thus the construction of A* just reproduces A,
and we may identify them. By Theorem 4.1, ¢y has a model B of power 2¥e,

§ 7. Concluding remarks. We have determined the Hanf number for Scott
sentences of countable orderings, but not for the subset consisting of Scott sentences
of order types (orderings without unary predicates) nor for the (larger) set of all
L,,. sentences whose models are orderings. In the former case Theorem 2.1 implies
that the Hanf number is at most (2¥°)*. In fact, it is exactly (2¥)*: from the ordering
9 constructed in § 6 an order type U’ can be defined so that (')* (in the notation

of § 4) is isomorphic to 2 and @, has spectrum Card<2™, In the latter case, the
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construction of § 6 implies that the Hanf number is at least (2%)*, but the proof
of Theorem 5.1 does not carry over as written. The application of the Erdés~Rado
theorem uses the fact that an arbitrary model of a Scott sentence has at most
89 Lo 2-types. For models of an arbitrary L, ,, sentence this cannot be assumed.

In § 6 we invoked Theorem 4.1 to produce B of power 2%° satisfying ¢g. It
turns out that (in the notation of § 4) N(d, S,;) = {d} in ¥ = U* and, in the con-
struction of B, € is all of B*—B. To find a case where, by contrast, the simple
expedient Qf = B* — B* does not suffice one may examine A—PY. The gaps created
by removing P{' reappear in B, but may not be added to Q%, as a back and forth
argument confirms. In general, € is the largest subset of B* which may be added to
Q¥ without modifying the Q¥, i>0.

It is not difficult to show that the model B of ¢y in the case N(d, S;) = {d}
of §4 has at least 2™ nonisomorphic elementary submodels. Tt follows that for any
denumerable 2, if @y has more than one (nonisomorphic) model, then it has at least
2% In the case of the 2 of § 6 it can be shown that 8 has a “universal” property:

if €F gy, then €<B. We do not know whether all @y with spectrum Card 2™

possess this property. Another question about gy with spectrum Card<2™ stems
from the fact that in Theorem 2.1 we are able to give structural characterizations
of orderings whose spectra are Card and {50}, but none for these. It is clear from our
analysis that orderings in which the union of the scattered orbits is dense, yet which
have a nonscattered orbit, possess this spectrum. However, there are also dense
orderings with the same spectrum but no scattered orbit.
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Continuous monotone decompositions of
planar curves

by

J. Krasinkiewicz and P. Minc (Warszawa)

Abstract. In this paper we prove that if X is a planar curve and f: X— Y is a monotone
open surjection onto a nondegenerate continuum Y such that either (1) £~ '(y) is a A-dendroid
for each y € Y, or (2) £~ '(») is locally connected for each y €Y, then fis a homeomorphism. We
give also some examples showing that the theorem is in a sense the best possible.

1. Introduction. In this paper we are going to discuss continuous monotone
decomposition of certain metric continua. It is well-known that the investigation
of continuous monotone decompositions of continua is equivalent to investigation
of continuous monotone and open transformations of continua. All the results of
this paper are expressed in the language of mappings. In [12] B. Knaster showed
that there is a continuous monotone and open map f from an irreducible continuum
onto the unit interval 7 = {0, 1] such that each fiber f~'(r) is nondegenerate. Since
then there has been a remarkable interest in investigations of structure of the fibers
for such mappings defined on irreducible continua (see e.g. [10] and [17]). These
investigations were in some sense closed by E. Dyer [8] who proved that for
every continuous monotone and open surjection with nondegenerate fibres from
an irreducible continnum onto a nondegenerate continuum there is an indecom-
posable fibre.

From this result it follows in particular that in the above Knaster’s example
there must be some f& I such that f~*(t) is indecomposable.  There are examples
of irreducible and nonirreducible continua admitting monotone open surjections
onto nondegenerate continua such that all fibers of the surjections are indecomposable
(even' pseudoarcs) (see [1], [4] and [L1]). It should be noted that the set of inde-
composable fibres in such situations is of a particular Borel type. In fact, we have
the following theorem easily resulting from a theorem of Mazurkiewicz.

1.1. TaeoreM. Let f: X — Y be a continuous monotone open surjection from
a continuum X. Then the set of all y € Y such that f ~'(y) is indecomposable (hereditarily
indecomposable) is a Gg-subset of Y.
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