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The structure €4(R R*) = (R", Ly, Dy, Bs) does not satisly A4, while it is a m
of & U {Al, A2, A3, AS'}. Indeed, it suffices to verify AS'. If {abcd} &K then
is obviously satisfied. Let a,b,¢,de K. Then « = ¢/(x), b =e,(y), ¢ = ¢,
d = e,(v) for some x,y,z,ve R Assume
B (abd) A B (bed) A be = ad;
then Byg+(f(@).f (B)f (D) A Bug( £V S (O F (D) Allb~¢|| = |lu~—d]||, thus
[fo@) <o)< folt) v fol®) Sl 2oV 2So(0)] ALy =2 = |x=1].

In turn

|y=z| = |x—v| |= x-+z = y+v v X+) =z40
1= fo() +£5(2) = fo(N)+/o(0) v fol¥)+7o(¥) = fu(2)+F4(0),
* whence fo(2) = fo(v) and therefore ¢ = d.

Thus Ad ¢ Cn(Al, A2, A3, AS) and so A4 cannot be replaced by A5’

It is not difficult to check that A4 becomes dependent in the presence of WP.
In conclusion

04" = Cn(8" v {Al, A2, A3, WP}),

and so the weak Pasch axiom is the only plane axiom of ordered Euclidean geometry,

concerning the betweenness relation.
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Pointed and unpointed shape and pro-homotopy
by

Jerzy Dydak (Warszawa)

Abstract. In the papet we consider whether every unpointed shape morphism can be realized
as & pointed shape morphism and whether every pointed shape morphism being an unpointed
shape equivalence is also a pointed shape equivalence.

1. Introduction. The main pointed shape invariants, i.e., pointed 1-movability,
pointed movability, being pointed FANR are at the same time invariants of the
unpointed shape theory (see [10] and [12]). However it is not knov.m whether t].ley
are hereditary shape invariants, On the way to attack this problem arise the following
questions:

QuesTioN 1. Let (X, x) and (Y,3) be pointed continua and let f: X— Y
be a shape morphism. Does there exist a morphism g: (X, x) — (Y, ) such that the
induced morphism g': X — Y is equal to f?

QuEsTION 2. Let (X, x) and (Y, y) be pointed continua and let f: (X, x)— (¥, )
be a shape morphism such that the induced morphism f ‘e X— Yisan isomorphism.
Is f an isomorphism?

The analogous questions may be considered in pro—homotopy.‘ ;

In this paper we consider the above questions., We show that in general the
answers to Question 1 and Question 2 (in pro-homotopy) are negative. However .
they can be positively answered in some special cases. . )

Specially interesting is Question 2 because the negative answer to it WOElld give
a weak proper homotopy equivalence not being a proper homotopy equivalence
which existence has been asked by T. A. Chapman and L. C. Sicbenmann 7

2. Notations and terminology. By H(H,) we denoted the homotopy category
of (pointed) connected CW complexes.

For any category C we denote by pro-C its pro-category (see [1] and (19D 3-11Sd;
by tow(C) we denote a full subcategory of pro-C whose objects are towers 1. e. 1over e
sequences in C. (see [11]). ) '_‘

By F: pro-H, — pro-H we denote the forgetful functor obtained by suppressing
base ‘points. : -
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Each covariant functor G: C — D induces in a natural way a functor pro-G:
pro-C — pro-D. .

Any pro-group consisting of Abelian (free) groups will be called an Abelian (free)
pro-group.

A pro-group (G,, p}, 4) is said to be normal provided for any ae 4 there
exists b>a such that for each ¢>b the group imp¢ is a normal subgroup of imp?.

T. Watanabe [26] has originally introduced iormal inverse sequences as towe:s
(G, Pa™") of groups such that for any n there exists & >n such that imp} is a normal
subgroup of G, for each m>k.

Lf:{fm 2.1. Any'normal tower (Gy, D3 ) of groups is isomorphic to a tower
(H,, ¢v* 1) such that imqf is a normal subgroup of H, for each kzn.

Proof. .We may assume that imp}, is a normal subgroup of im put! for kzn+1.
Take H, ="11‘I11p:+1. and let gp*1: H,.; — H, be defined by pI"**, Tt is easily seen
that (H,, ;™) satisfies the required conditions.

The idea of considering normal towers of groups comes out fi

‘ ) : rom tt
B. I. Gray [13]. e workof

The first derived functor lim?*: tow(Gr) — Ens, from towers of groups to the

category of pointed sets is defined as follows (see [5], p. 251):
o0

Let G = (G,, pj*). I x = (%)), g = (g) E,I‘I Gy, thenlety = g-x be defined by
. i
i = guxepit oY)

* 1 . . @
im* G is the set of equivalence classes of ﬂ G, under the equivalence relation
< =t

‘~” given by

x~y ff y=g-x for some g .

Then lim* G is a pointed one-point set (written lim' G = «) iff for each y = ()’

there exists g = (g,) such that for each i

Yi=arntienl).

By K(:, 1): Gr — Hy we denote the Eilenberg-MacLane functor, i.e., K(G,1)

is a IfC’/V[V col;plex of type (G, 1) (see [24], pp. 427-428).
»§* X Y are two maps and o is a path joining | : ; i
) ; © _ Joining f'(x,) and g (), then f'is
a-homotopic to g provided there is a homotopy H: Xx[— ;’ joining f 0’311(1 g Sl{Ch
that ;‘g) = H(x,, t) for each te] (see [24], p, 379).
© maps f, g: (X, xp) — (¥, y,) are said to be ide
PR A ali o ¢ freely homotopic provided
N Th; tower of groups (G,, P+ satisfies the Mittag-Leffler condition provided.
f ;uele(xc n there exists k2# such that imp} = imp!" for each mzlk (see [2]). It is
h -known that a tower of groups G satisfying M-L is isomorphic to a tower whose
onding maps are onto and lm'G = * (see [5], p. 252-253)
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3. Morphisms of pro~H, inducing isomorphisms of pro-H. This section is devoted
to Question 2 in pro-homotopy. First of all we construct a group A and homo-
morphisms &, g: A4 which yield an example of a morphism f of pro-H, such
that F(f) is an isomorphism of pro-H and fis not an isomorphism of pro-H,.

Let A be the group generated by an infinite countable set (x;)i2; of generators
with relations

X3 kX iskNzan = EEIE e .

for all k20 and i>3, i.e.,

v it o1 .
A s {Xg ey Xy XT XX = Xy XX,y fOr i<m) .

Let
A = (X ot X7 0200 5= X2 X,x,4 for m<i<p).
Let B, be the subgroup of 4, gencrated by all x;, izm-+1. Then ¢, B, — 4,
defined by @,(x) = xj;'xx, is a monomorphism and 4, is obtained from A,,
by adjoining a new generator x,, and relations

x;‘xx,,, = (/),,,.M(X) for  xe B4y .

Thus 4,, is an HNN extension of A,..( (see [14] and [23]). In particular we may
consider 4,,,., to be a subgroup B, of 4, (see [14]).
Let g,h: A-> A be homomorphisms defined by
gGe) = x4y and  A(x) = x7'xpx;  for each izl

Then
gh(x) = g (7 Xy 3y) = X7 K42 %z
and
hg (x) = h(xpeq) = X3 AX423
for each i1, Thus gh = hg and h and g are conjugate.
Let us show that x, ¢ im#A for each k3.
Suppose on the contrary that
Xp == XTiax, where  XE A,

By using the abelization of 4, = A we get x € Ay~Ajy . Take a number n such
that x & A, ~dy 4, .

Then 2<n<<k and consequently x can be expressed in terms o
fore

f x,, 1zn. There-

Xitoy = art aw,n, and ap g = 1
in A,_;. But x ¢ A,,, = B, and by Britton’s Lemma (see [6] and [23])
x,,"x,f..ilxx,,q # 1.

This contradiction shows that x,¢imh for each k>3.
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Let G, = 4, pi** = g and &, = & for each n, Then the diagram

hnwt
Gn—l- 1 > Gn + 1
1 n41
Gn ”“’ h‘: - Gll

is commutative and consequently 4, generate a morphism 4: (G, pp*t) - (G,, pt*!
of pro-Gr.

Since img® is not contained in im# for each k (because Xy, € img"), then A
is not an epimorphism of pro-Gr (see [20] and [22] fora description of epimorphisms
of pro-Gr).

By applying the Eilenberg-MacLane functor we get a morphism

J1 (R(G, 1), K(p) ™, 1)) = (K(G,, 1, K(py*!, 1)

of pro-H, not being an isomorphism. However the diagram

K4, )0k, 1)

Kg,1) /éw, K@)

K(4, 1)

v K4, 1)

is commutative in H (because 4 and g are conjugate). Consequently F(f) is an
isomorphism of pro-H (see [22]). Moreover F(f) is the identity morphism.
Thus, in general, the answer to Question 2 in pro-homotopy is negative.
Now we pass to consider additional assumptions under which the answer to
Question 2 is positive.
TuBoreM 3.1. Let f: X —. Y be a morphism of pro-H, such that F(f) is an
isomorphism. Then f is an isomorphism of pro-Hy iff pro-my f is an epimorphism.
Proof. Necessity is obvious. So we prove sufficiency. It is enough to consider
the case where f'is a special morphism (see [19]), i.e.,

X = ((Xa: Xa)s [p:]:'A) > V= ((Ym ya): [qZ]’ A)
and f is generated by a family of maps

f;: (Xﬂ’ xﬂ) d (Ya’ ya)
with
fobe=gifyrelx, for b3a.
Since F(f) is an isomorphism of pro-H, then for each ae A there exist b>a

and a map g: (¥, y,) = (X,, x,) such that 41y and pl are freely homotopic. So let
@ be a loop at x, such that p? is a-homotopic to gf;.

& ©
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Take a map h: (Y, 1n) = (X, x,) being a-homotopic to g (see [24], pp. 379-
380). Then Af, is a-homotopic to gf, and consequently

b hf, rel. Xp .
Thus we get
3.2. For cach ae A there exist bza and u map
he (Y 1) = (Xeo X)) with  pll s b, rel. x,
Observe that we have not used that pro-m, f is an epimorphism of pro-Gr.
Now, for each a & A, there exist ¢2062 ¢ and a map
4t (Yo ) = (X5, x|
such that
imn, ¢hcimr, £, and Jvg =~ q;  freely.

So let o be a loop at x, such that

f»g is a-homotopic to g¢j.
Take a loop £ at x, such that

JuB = qira.

Let bt (Y, ¥ — (X,, x,) be a map such that

pig is p-homotopic to /.
Then

fipbg is (f,B)-homotopic to £k,

oty is (g% a)~homotopic to 4¢ and

fped = qifig rel. y.
Hence

Jul = qg el g

Thus we get

33. For cach he A there oxist ezb and a map g: (Y, 1)) = (Xpr X3) with
Jog = qp xely, .

Take data as in 3.2 and 3.3. Let
r=hfg: (yc: .Vc) ad (Xa! x,).

Then
Jar = fihf)g = fuphg = qbfog = qbaf = g

and '
tfe = h(f0)fe = hg f. = hfup§ = pap§ = i ,

all homotopies preserving base points.
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By Morita’s characterization of an. isomorphisms of pro-categories (see [22],
Theorem 1.1) f is an isomorphism of pro-H,, which completes the proof.

In order to apply Theorem 3.1 we need the following

LemmA 3.4. Let r: (G,, ph, A)— (H,, 45, A) = H be a special morphism of
pro-Gr generated by homomorphisms r,: G,— H,. Suppose that for each a e A there
exist b>a and a homomorphism s: Hy— G, such that (r,s, ¢%) and (sry, p*) are
pairs of conjugate homoiforphisms. If either

1. H is a normal pro-group or

2. H is a free pro-group,
then r is an isomorphisms of pro-Gr.

Proof. 1. Suppose H is a normal pro-group and ae A. Take ¢2b>q and
a homomorphism s: H, — G, such that

(r55, gp) and (sr., pj) are pairs of conjugate homomorphisms and

imgj is a normal subgroup of img’.

So let ye H, and ze G, be elements such that

res(x) = y~lgi(x)p for each xe H,
and
sr(x) = 27 p(x)z  for each xe G, .
Hence kerr.ckerpf and r is a monomorphism of pro-Gr (see [20] and [22]).
Now

raPas(x) = glrys(x) = g W 1qix)gl(») for cach xe H,

and since img is a normal subgroup of imgq?, then
img;<imr, .

Therefore r is an epimorphism of pro-Gr and this implies that r is an isomorphism
of pro-Gr (see [20] and [22]).
‘ l&'2.. Supp?se H is a free pro-group. If for any a e A there exists bza such that
imgq, is Abelian, then H is a notmal pro-group and the result follows {rom the first
_-part of the proof. So assume there exists a, & 4 such that im¢® is not Abelian for
any b>aza,.
" Take aza,. Then there exist b>a, homomorphism s: H, ~» G, and clements
yedG,, ze H, such that

ras(X) = z7'qix)z  for each x e H,

and
sr(%) =y~ 'pl)y  for cach x€G,.
Let 72: H,— G, be defined by

1) =p~'s(x)y for xeH,.

e ©
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Then
fro(%) = pi(x)  for each xe G,
and
rat(x) = ugl()u - for each x e H,,
where u = z-r,(y"%).
We are going to show that u = |,
Suppose, on the contrary, that u s 1, Then
for

W g s () = rph(x) = glry(x) xeG,.

Take two elements v, wig im(glr,). Then

wlow=1v and ulwy=w.

Consequently {u, v} = {v,} and {u, w} = {v,}, i.c., the subgroup of H, generated
by u and v s an infinite cyclic group generated by v,, and the subgroup of H,
generated by u and w is an infinite cyclic group generated by v, (see [18], p. 95).
Since u is a power of both v, and v,, then the group {v,, v,} is also an infinite cyclic
group. Hence wo = vw and im(q’r,) is Abelian.

Take ¢2b and a homomorphism s': H, ~ G, such that r,s' and ¢f are conjugate.
Then ¢2r,s" and g¢ are conjugate and consequently img( is isomorphic to a subgroup
of im(gsry). Thus img; is Abelian, a contradiction,

Consequently u == 1 and r is an isomorphism of pro-Gr,

THEOREM 3.5, Let fi X — Y be a morphism of pro-Hy such that F(f) is an
isomorphism of pro-H. If pro~m, ¥ is isomorphic to a normal ( free) progroup, then fis
an isomorphism of pro-H. '

Proof. Letg: pro-m; ¥ — G be an isomorphism of pro-Gr, where G is a normal
(free) pro-group. Let

ho= g-(pro-m; f).
By 2.2 of [19] there exist isomorphisms

Gy~ pro-m X and  ji G — Gy
(B i

group. Since F(f) is an isomorphism of pro-H, then it is casily seen that r satisfies
the condition of Lemma 3.4, Consequently r is an isomorphism of pro-Gr. Hence
pro-my f is-an isomorphism of pro-Gr and by Theorem 3.1, f is an isomorphism
of pro-H,.

As an immediate consequence of Theorem 3.5 we get the following -

TueoREM 3.6, Let fi (X, x) =+ (Y, y) be a pointed shape morphism inducing
an unpointed shape equivalence. If Y is @ pointed 1-movable continuum or a curve,
then f is a pointed shape equivalence.
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4. Realizing morphisms of pro-H as coming from pro-H,. K. Borsuk [4] has

given an example of a curve X such that Sh(X, a) # Sh(X, ) for some points

a, be X. Consequently, by Theorem 3.6, there is no shape morphism /2 (X, a)— (X, b)

equal to 1y when suppressing base points. Moreover the following holds
THEOREM 4.1. Let X be a curve and x € X. Then (X, x) possesses property

(%)  for each shape morphism f: Y — X and for any y& Y there exists g: (Y, )
— (X, x) equal to f when suppressing -base points

iff X is pointed movable or has the shape of some solenoid,

Proof. Sufficiency. Observe that (X, x) possesses Property (x) iff (2, z) does,
where Sh(X, x) = Sh(Z, z). If X has the shape of some solenoid S, then by the
result from [15]and Theorem 3.6, Sh(X, x) = Sh(S, ). Itis shown by J, Keesling [15]
that (S, @) possesses Property (¥).

For X being pointed l-movable the result follows from Theorem 4.2.

Necessity. Let (X, x) = lim((X,, x,), pi™"), where X, are 1-dimensional
connected polyhedra. If for each » there exists m>n such that imm,(p™) is Abelian
group, then it is an infinite cyclic group. Consequently p}' can be factored through
a circle and X has the shape of some solenoid.

So it suffices to consider the case where imm(p!) is not Abelian for each
mzn, )

Take an arbitrary point y = ()%, € X. By Property (x) there exists a shape
morphism

Fo (X, 0)— (X, %)
equal to 1y when suppressing base points. Hence there exist an increasing function
a: N— N and maps

Ju (Xa(n)= .va(n)) = (X, X,)
freely homotopic to p2™ such that
P:Hf;:-|-1 =f..1128l?'” el Yoy -
So let £, be ,-homotopic to p°™ for some path g, joining x, and p,. Then
Pu* fusr 18 (P30, 4)-homotopic to ptertt)

and

a(n+1)

f;lpn(n)

Hence

is a,-homotopic to p@*+d),

o) . . .
S is B,-homotopic to pf*if,, ;.

where §, = o, *pt™ (a7 k). Hence

M D@ = w0 ) ©) = b7 (0 o) (OB,

icm°
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where b, = [B,]. Since imm(pi"'/,,.,) is supposed to be non-Abelian, then b, = 1
(see the proof of Lemma 3.4). Hence o, o Pt orel. Xy, v, Thus x and y are
joinable in the sense of J. Krasinkiewicz and P, Minc [17]. Hence X is pointed
I-movable (see [17]) and X is pointed movable (see [16] and [21]).

Thus the proof of Theorem 4.1 is concluded.

Thus, in general, the answer to Question I is negative. However Question 1
can be positively answered in the following special case.

TreoreM 4.2. Lot (X, x) be an object of tow (Hy) such that lim' pro-n, (X, x) = *.
Then for any object (Y, ) of tow(Hy) and for any morphism [ Y — X of tow(H)
there exists a morphism gt (Y, )= (X, x) of tow(Hy) with F(g) = /.

Proof. We may assume

(X, x) = ((Xu'o xn)s [/)’r: ' []) » (Y, p) = (( y;u )"n)a [‘]xMJ)

and f is generated by maps
./;1: ( yn’ J“H) had ('/\’I“ "‘ﬂ)
such that

prie L is o-homotopic to fg)"!

for some loop &, at x,. Since [im' pro-z,(X, x) = », then there exist loops f, at x
with
ot oa Bt B )t el
Take g,: (Y, 2,) = (X,, x,) such that
Sy is B,-homotopic to ¢,.
Then

Pyt g 8Pl By ) -homotopic to prt g,
v ot ey is a-homotopic to fqi Tt and
guqytt is By '~homotopic to fgt 1.
Hence
- . " - T 41
1’7’.' lﬂu py 18 (([’ﬁ’ Jﬂ:r}' l) 1*a,,m/f,,)-homotoptc to gu‘l:: s

i 41 R 9
1e., f’:: ot = Huln rel, x, .

It is easy to sec that {the morphism g gencrated by g, satisfies the required conditions.
The author does not know the answer to the following special case of
Question 2.
QUESTION 3. Let fi X Y be a morphism of tow(Hy) such that F(f) is an
isomorphism of tow(H) and [im' pro-my ¥ == %, Is | an isomorphism of tow(Hy)?
However we can prove the following.
5 — Iundamenta Mathematlcae . CVIIL
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TueoREM 4.3. Let f: X — Y be a morphism of tow(Hy) such that F(f) is an
isomorphism of tow(H) and lim'pro-r, ¥ = . Then there exists an isomorphism
g: X— Y of tow(H,) with F(g) = F(f).

Proof. Assume

= ((%,, %), [7)™1])
and f is generated by maps
Sor (X x) = (Y5 )

for each n. Since F([) is an isomorphism of pro-H, then we may assume that there
exist maps

= (Yo 22 ")

'II

with jnpt:H = Ay nil rel. Kt 1

Bt (Vats Vur 1) = (Ko )
and loops o, at y, such that

fih, is a,~homotopic to gi+?

and
Pyt by foey relx,.y  (see 3.2).
Take loops f, at y, such that
o & ﬁn*(qz”‘ 1/]:rl'i)”i rel. R

Let #,: (Y, p) = (Y ¥ and a2 (¥yq, Yyies) = (Ys 3) be maps such that
idy, is f,-homotopic to #,

and
u, is f,-homotopic to g!**,

Let g, = t,f,. Then

i+ 1 n
B Gns s = G My Syar 15 (@ Byu )™ -homotopic to git L,

L
InPn - guhnf;ﬁ-i = tn nhn ntl is ﬁn b ]'IOantOPIC to ‘/nhu,/l.ﬁ‘bi?
(fihn)fy+1 is o-homotopic to g™, ;.

Consequently

AR gy veloxy, g

Thus g, generate a morphism g: X -+ ¥ of pro-H, with F(g) =
Let ry = hyttyiy: (Yoazy Vors) = (X, x,). Then
Jatw = fubyttyy 1 38 a,-homotopic to ¢! Uy 1»
@ ey s (g3"*B,4 1) -homotopic to gt

Hence

FOO.

gutn = tufury s (Bt ok (g By ) - h0m010[’)lb to ¢,

icm°®
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Consequently

gllrﬂ = q:+2 .
This implies that pro-zyg is an epimorphism of pro-Gr and by Theorem 3.1, g is
an isomorphism of pro-H, which completes the prooF

rel Yoia -

5. Concluding remarks. The following result strengthens those obt'uned in [10].

TueoreM 5.1. Let f3 X — Y be a shape equivalence (shape domination) and
xe X, ye Y. If Y is pointed 1-movable (X and Y are pointed 1-movable), then there
exists a pointed shape equivalence (domination)

g: (X, %)= (Y, )

equal to f when suppressing base points.
Proof. If fis a shape equivalence, then Theorem 5.1 follows from Theorems

3.6and 4.2. ‘
Suppose f is a shape domination. Take morphisms

he (X, x) = (%,5)  and  Ay: (Y, ) — (X, %)

such that F(h,) = f and F(hih,) = ly (see Theorem 4.2), By Theorem 3.6, Ak,
is an isomorphism. Let

g = (hah)"'hy .

Then gh, = liy,, and F(g) = F(h,) = f which completes the proof.

Theorems 4.2 and 4.3 imply that the vanishing of lim*(pro-r,) is an unpointed
shape invariant. We do not know if it is 2 hereditary shape invariant. We also do ot
know the answer to the following

QUESTION 4. Suppose ShX>Sh ¥ and lim*pro-r,(X, x) = lim'pro-n,(¥,y) = .
Does Sh(X, x)=Sh(Y, ») hold?

Notice that the positive answer to Question 3 would imply the positive answer
to Question 4 (see the proof of Theorem 5.1).

As an application of our results we get a group-theoretical one.

THEOREM 5.2. Let F be a tower of finitely generated free groups. Then Hm'F =
iff F satisfies the Mittag-Leffler condition,

Proof, Take a pointed curve (X,x) with pro-my(X,x) = F. Then by
Theorems 4.1 and 4.2, (X, x) is pointed movable or has the shape of some solenoid.
If (X, x) is pointed movable, then F satisfies M-L.

Suppose (X, x) has the shape of some solenoid. Then F is xsomorphm to a tower
of countable Abelian groups. Hence by the result of B. L Gray [13], F satxsﬁes M-L
which completes the proof.

Theorem 3.5 indicates that continua whose first pro-homotopy group is iso-
morphic to a normal pro-group are of some interest. This is confirmed by the
following
5+
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THEOREM 5.3. Let X be a 1-movable contimwm. If pro-m,(X, x) is isomorphic
to a normal pro-group for some x € X, then X is pointed 1-movable.

Proof. Using Lemma 2.5 of [8] we infer that pro-m;(X, x) is isomorphic to
a normal tower of groups.

Let (X, x) = lim((X,, x,), '), where X, are finite CW compl ‘

3 ) y eXes,

assume that there exist: ’ : " Wo may

1. a tower G = (G,, ¢*"!) of groups such that img™ is a

nor

of G, for mzn, o mal subgronp

2. homomorphisms

hn: 7!1(X,,, xn) - Gn a“d gn: Gu S ”l.(Xno xn)
with gnhn-(-i = nl(p:+ 1) and hngn = Q;:+ls

3. homomorphisms 5% *: 7,(X, [
P (X 15 Xy 1) = 73 (X, X,) Tor m=n+-1 such th
m(P)sp* and 7, (pi*Y) are conjugate. o ~ ™
+
Let £, = h,sh igu0s: Gopp— G, for mzn+3.
Then

mentl _ om nty
Gnlm = Ay PuSiy Guir = hnnl(p’r:l)s::|+1gn-l~1
is conjugate to

. 1 gkl 1wk
By s (P D Gne1 = 4 Mooy Gy = ‘I:M‘I:H =gy,

Since imgy*? is a normal subgroup of G,, then -

H ne2

imgy*2cimg™,

Consequently G satisfies M-L. So does pro-n,(X, x) and X is pointed 1-movable.
o pi?ntgg I;k:a e(liuﬂ;?r ha§ pro'ved that. if a shape morphimﬁ [ (X, xy— (1, )

X usdorff continua ullduc.es isomorphisms of all pro-homotopy groups
and is an ur?pomted shape domination, then f is an unpointed shape equivalence
provided Y is movable. In view of Theorem 3.1 this can be strengthen as follows

THE :
continuaowR/fM 5;-_ Let f: (X, %) = (¥, y) be a shape morphism of pointed Hausdorff
oo sha’ ere Yis movable.. Iff: X~ Yis ashape domination, then f: (X, x)— (¥, )
o ipe egﬁuvalence provided of induces isomorphisms of all homotopy pro-groups.
e author is gratef ; i i i
the paper grateful to M. Strok for valuable discussions on the subject of

;
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