The structure $\mathfrak{C}_5^n(\mathfrak{R}\ R^+) = (R^n, L_{\mathfrak{R}}, D_{\mathfrak{R}}, B_5)$ does not satisfy A4, while it is a mo of $\mathscr{E}^n \cup \{A1, A2, A3, A5'\}$. Indeed, it suffices to verify A5'. If $\{abcd\} \neq K$ then is obviously satisfied. Let $a, b, c, d \in K$. Then $a = c_1(x), b = e_1(y), c = e_1$ $d = e_1(y)$ for some $x, y, z, v \in R$. Assume

$$B^{Kf}(abd) \wedge B^{Kf}(bcd) \wedge bc \equiv ad;$$

then $B_{\Re R^+}(f(a)f(b)f(d)) \wedge B_{\Re R^+}(f(b)f(c)f(d)) \wedge ||b-c|| = ||a-d||$, thus $[f_0(x) \le f_0(y) \le f_0(z) \le f_0(y) \vee f_0(z) \ge f_0(y) \ge f_0(z) \ge f_0(y)] \wedge |y-z| = |x-y|$.

In turn

$$|y-z| = |x-v| \implies x+z = y+v \lor x+y = z+v$$

$$|\Rightarrow f_0(x) + f_0(z) = f_0(y) + f_0(v) \lor f_0(x) + f_0(y) = f_0(z) + f_0(v),$$

whence $f_0(z) = f_0(v)$ and therefore c = d.

Thus A4 ∉ Cn(A1, A2, A3, A5') and so A4 cannot be replaced by A5'.

It is not difficult to check that A4 becomes dependent in the presence of WP. In conclusion

$$\mathscr{OE}^n = \operatorname{Cn}(\mathscr{E}^n \cup \{A1, A2, A3, WP\}),$$

and so the weak Pasch axiom is the only plane axiom of ordered Euclidean geometry, concerning the betweenness relation.

References

- [1] W. Szmielew, The order and the semi-order of n-dimensional Euclidean space in the axiomatic and model-theoretic aspects, Grundlagen der Geometrie und algebraische Methoden, Potsdamer Forschungen — Reiche B, Heft 3, Potsdam 1974, pp. 69-79.
- [2] Autorreferat, Zentralblatt für Mathematik, Band 291 (1975), #50003.
- [3] Od geometrii afinicznej do euklidesowej (From affine to Euclidean geometry), PWN, Warszawa 1980.

Accepté par la Rédaction le 29, 10, 1977

Pointed and unpointed shape and pro-homotopy

by

Jerzy Dydak (Warszawa)

Abstract. In the paper we consider whether every unpointed shape morphism can be realized as a pointed shape morphism and whether every pointed shape morphism being an unpointed shape equivalence is also a pointed shape equivalence.

1. Introduction. The main pointed shape invariants, i.e., pointed 1-movability, pointed movability, being pointed FANR are at the same time invariants of the unpointed shape theory (see [10] and [12]). However it is not known whether they are hereditary shape invariants. On the way to attack this problem arise the following questions:

QUESTION 1. Let (X, x) and (Y, y) be pointed continua and let $f: X \to Y$ be a shape morphism. Does there exist a morphism $g: (X, x) \to (Y, y)$ such that the induced morphism $g': X \to Y$ is equal to f?

QUESTION 2. Let (X, x) and (Y, y) be pointed continua and let $f: (X, x) \to (Y, y)$ be a shape morphism such that the induced morphism $f': X \to Y$ is an isomorphism. Is f an isomorphism?

The analogous questions may be considered in pro-homotopy.

In this paper we consider the above questions. We show that in general the answers to Question 1 and Question 2 (in pro-homotopy) are negative. However they can be positively answered in some special cases.

Specially interesting is Question 2 because the negative answer to it would give a weak proper homotopy equivalence not being a proper homotopy equivalence which existence has been asked by T. A. Chapman and L. C. Siebenmann [7].

2. Notations and terminology. By $H(H_0)$ we denoted the homotopy category of (pointed) connected CW complexes.

For any category C we denote by pro-C its pro-category (see [1] and [19]) and by tow(C) we denote a full subcategory of pro-C whose objects are towers i. e. inverse sequences in C (see [11]).

By F: pro- $H_0 \rightarrow$ pro-H we denote the forgetful functor obtained by suppressing base points.

Each covariant functor $G: C \to D$ induces in a natural way a functor pro- $G: pro-C \to pro-D$.

Any pro-group consisting of Abelian (free) groups will be called an Abelian (free) pro-group.

A pro-group (G_a, p_a^b, A) is said to be *normal* provided for any $a \in A$ there exists $b \ge a$ such that for each $c \ge b$ the group $\operatorname{im} p_a^c$ is a normal subgroup of $\operatorname{im} p_a^b$.

T. Watanabe [26] has originally introduced normal inverse sequences as towers (G_n, p_n^{n+1}) of groups such that for any n there exists $k \ge n$ such that $\text{im } p_n^m$ is a normal subgroup of G_n for each $m \ge k$.

LEMMA 2.1. Any normal tower (G_n, p_n^{n+1}) of groups is isomorphic to a tower (H_n, q_n^{n+1}) such that $\operatorname{im} q_n^k$ is a normal subgroup of H_n for each $k \ge n$.

Proof. We may assume that $\operatorname{im} p_n^k$ is a normal subgroup of $\operatorname{im} p_n^{n+1}$ for $k \ge n+1$. Take $H_n = \operatorname{im} p_n^{n+1}$ and let $q_n^{n+1} \colon H_{n+1} \to H_n$ be defined by p_n^{n+1} . It is easily seen that (H_n, q_n^{n+1}) satisfies the required conditions.

The idea of considering normal towers of groups comes out from the work of B. I. Gray [13].

The first derived functor $\underline{\lim}^1$: tow(Gr) \rightarrow Ens₀ from towers of groups to the category of pointed sets is defined as follows (see [5], p. 251):

Let $G = (G_n, p_n^{n+1})$. If $x = (x_i), g = (g_i) \in \prod_{i=1}^{\infty} G_i$, then let $y = g \cdot x$ be defined by

$$y_i = g_i x_i \cdot p_i^{i+1} (g_{i+1}^{-1})$$
.

 $\lim_{i\to 1} G$ is the set of equivalence classes of $\prod_{i=1}^{\infty} G_i$ under the equivalence relation " \sim " given by

$$x \sim y$$
 iff $y = g \cdot x$ for some g .

Then $\underline{\lim}^1 G$ is a pointed one-point set (written $\underline{\lim}^1 G = *$) iff for each $y = (y_i)$ there exists $g = (g_i)$ such that for each i

$$y_i = g_i \cdot p_i^{i+1}(g_{i+1}^{-1})$$
.

By $K(\cdot, 1)$: $Gr \to H_0$ we denote the *Eilenberg-MacLane functor*, i.e., K(G, 1) is a CW complex of type (G, 1) (see [24], pp. 427-428).

If $f, g: X \to Y$ are two maps and α is a path joining $f(x_0)$ and $g(x_0)$, then f is α -homotopic to g provided there is a homotopy $H: X \times I \to Y$ joining f and g such that $\alpha(t) = H(x_0, t)$ for each $t \in I$ (see [24], p. 379).

Two maps $f, g: (X, x_0) \to (Y, y_0)$ are said to be freely homotopic provided $f, g: X \to Y$ are homotopic.

The tower of groups (G_n, p_n^{n+1}) satisfies the Mittag-Leffler condition provided for each n there exists $k \ge n$ such that $\operatorname{im} p_n^k = \operatorname{im} p_n^m$ for each $m \ge k$ (see [2]). It is well-known that a tower of groups G satisfying M-L is isomorphic to a tower whose bonding maps are onto and $\underline{\lim}^1 G = *$ (see [5], p. 252-253).

3. Morphisms of pro- H_0 inducing isomorphisms of pro-H. This section is devoted to Question 2 in pro-homotopy. First of all we construct a group A and homomorphisms $h, g: A \to A$ which yield an example of a morphism f of pro- H_0 such that F(f) is an isomorphism of pro-H and f is not an isomorphism of pro- H_0 .

Let A be the group generated by an infinite countable set $(x_i)_{i=1}^{\infty}$ of generators with relations

$$x_{2+k}^{-1} x_{i+k} x_{2+k} = x_{1+k}^{-1} x_{i+k} x_{1+k}$$

for all $k \ge 0$ and $i \ge 3$, i.e.,

$$A = \{x_1, ..., x_n, ...: x_i^{-1} x_m x_i = x_{m-1}^{-1} x_m x_{m-1} \text{ for } i < m\}.$$

Let

$$A_m = \{x_m, \dots; x_l^{-1} x_p x_l = x_{p-1}^{-1} x_p x_{p-1} \text{ for } m \le i < p\}.$$

Let B_m be the subgroup of A_m generated by all x_i , $i \ge m+1$. Then φ_m : $B_m \to A_m$ defined by $\varphi_m(x) = x_m^{-1} x x_m$ is a monomorphism and A_m is obtained from A_{m+1} by adjoining a new generator x_m and relations

$$x_m^{-1}xx_m = \varphi_{m+1}(x) \quad \text{for} \quad x \in B_{m+1} .$$

Thus A_m is an HNN extension of A_{m+1} (see [14] and [23]). In particular we may consider A_{m+1} to be a subgroup B_m of A_m (see [14]).

Let $g,h: A \rightarrow A$ be homomorphisms defined by

$$g(x_i) = x_{i+1}$$
 and $h(x_i) = x_1^{-1} x_{i+1} x_1$ for each $i \ge 1$.

Then

$$ah(x_i) = a(x_1^{-1}x_{i+1}x_1) = x_2^{-1}x_{i+2}x_2$$

and

$$hg(x_i) = h(x_{i+1}) = x_1^{-1} x_{i+2} x_1$$

for each $i \ge 1$. Thus gh = hg and h and g are conjugate.

Let us show that $x_k \notin \text{im } h$ for each $k \ge 3$.

Suppose on the contrary that

$$x_k = x_1^{-1} x x_1 \quad \text{where} \quad x \in A_2.$$

By using the abelization of $A_1 = A$ we get $x \in A_2 - A_{k+1}$. Take a number n such that $x \in A_n - A_{n+1}$.

Then $2 \le n \le k$ and consequently x can be expressed in terms of $x_1, l \ge n$. Therefore

$$x_1^{-1}xx_1 = x_{n-1}^{-1}xx_{n-1}$$
 and $x_k^{-1}x_{n-1}^{-1}xx_{n-1} = 1$

in A_{n-1} . But $x \notin A_{n+1} = B_n$ and by Britton's Lemma (see [6] and [23])

$$x_k^{-1} x_{n-1}^{-1} x x_{n-1} \neq 1$$
.

This contradiction shows that $x_k \notin \text{im } h$ for each $k \ge 3$.

Let $G_n = A$, $p_n^{n+1} = g$ and $h_n = h$ for each n. Then the diagram

$$G_{n+1} \xrightarrow{p_n^{n+1}} G_{n+1}$$

$$\downarrow p_n^{n+1}$$

$$\downarrow p_n^{n+1}$$

$$\downarrow p_n^{n+1}$$

$$\downarrow p_n^{n+1}$$

is commutative and consequently h_n generate a morphism $h: (G_n, p_n^{n+1}) \to (G_n, p_n^{n+1})$ of pro-Gr.

Since $\operatorname{im} g^k$ is not contained in $\operatorname{im} h$ for each k (because $x_{k+1} \in \operatorname{im} g^k$), then h is not an epimorphism of pro-Gr (see [20] and [22] for a description of epimorphisms of pro-Gr).

By applying the Eilenberg-MacLane functor we get a morphism

$$f: (K(G_n, 1), K(p_n^{n+1}, 1)) \rightarrow (K(G_n, 1), K(p_n^{n+1}, 1))$$

of pro- H_0 not being an isomorphism. However the diagram

$$K(A, 1) \xrightarrow{K(g, 1)} K(A, 1)$$

$$K(A, 1) \xrightarrow{K(g, 1)} K(A, 1)$$

$$K(A, 1) \xrightarrow{K(h, 1)} K(A, 1)$$

is commutative in H (because h and g are conjugate). Consequently F(f) is an isomorphism of pro-H (see [22]). Moreover F(f) is the identity morphism.

Thus, in general, the answer to Question 2 in pro-homotopy is negative.

Now we pass to consider additional assumptions under which the answer to Question 2 is positive.

Theorem 3.1. Let $f: X \to Y$ be a morphism of $\operatorname{pro-H_0}$ such that F(f) is an isomorphism. Then f is an isomorphism of $\operatorname{pro-H_0}$ iff $\operatorname{pro-\pi_1} f$ is an epimorphism.

Proof. Necessity is obvious. So we prove sufficiency. It is enough to consider the case where f is a special morphism (see [19]), i.e.,

$$X = ((X_a, x_a), [p_a^b], A), Y = ((Y_a, y_a), [q_a^b], A)$$

and f is generated by a family of maps

$$f_a: (X_a, x_a) \rightarrow (Y_a, y_a)$$

with

$$f_a p_a^b \simeq q_a^b f_a \text{ rel. } x_b \text{ for } b \geqslant a$$
.

Since F(f) is an isomorphism of pro-H, then for each $a \in A$ there exist $b \geqslant a$ and a map $g: (Y_b, y_b) \to (X_a, x_a)$ such that gf_b and p_a^b are freely homotopic. So let α be a loop at x_a such that p_a^b is α -homotopic to gf_b .

Take a map h: $(Y_h, y_h) \rightarrow (X_u, x_u)$ being α -homotopic to g (see [24], pp. 379–380). Then hf_h is α -homotopic to gf_h and consequently

$$p_a^b \simeq h f_b$$
 rel. x_b .

Thus we get

3.2. For each $a \in A$ there exist $b \ge a$ and a map

$$h: (Y_b, y_b) \to (X_a, x_a)$$
 with $p_a^b \simeq h f_b$ rel. x_b .

Observe that we have not used that $\text{pro-}\pi_1 f$ is an epimorphism of pro-Gr. Now, for each $a \in A$, there exist $c \ge b \ge a$ and a map

$$g: (Y_c, y_c) \rightarrow (X_b, x_b)$$

such that

$$\operatorname{im} \pi_1 q_a^b \subset \operatorname{im} \pi_1 f_a$$
 and $f_b g \simeq q_b^c$ freely.

So let α be a loop at x_h such that

 $f_b g$ is α -homotopic to q_b^c .

Take a loop β at x_a such that

$$f_a \cdot \beta \simeq q_a^b \cdot \alpha$$
.

Let h: $(Y_c, y_c) \rightarrow (X_a, x_a)$ be a map such that

 $p_a^b g$ is β -homotopic to h.

Then

 $f_a p_a^b g$ is $(f_a \cdot \beta)$ -homotopic to $f_a h$, $q_a^b f_b g$ is $(q_a^b \cdot \alpha)$ -homotopic to q_a^c and $f_a p_a^b q \simeq q_a^b f_b q$ rel. v_a .

Hence

$$f_a h \simeq q_a^c$$
 rel. y_c .

Thus we get

3.3. For each $b\in A$ there exist $c\geqslant b$ and a map $g:(Y_c,y_c)\to (X_b,x_b)$ with $f_bg\simeq q_b^c$ rel. y_c .

Take data as in 3.2 and 3.3. Let

$$r = hf_h g: (Y_a, y_a) \rightarrow (X_a, x_a)$$
.

Then

$$f_a r = f_a (h f_b) g \simeq f_a p_a^b g \simeq q_a^b f_b g \simeq q_a^b q_b^c \simeq q_a^c$$

and

$$rf_c = h(f_b g) f_c \simeq h q_b^c f_c \simeq h f_b p_b^c \simeq p_a^b p_b^c \simeq p_a^c$$

all homotopies preserving base points.

By Morita's characterization of an isomorphisms of pro-categories (see [22], Theorem 1.1) f is an isomorphism of pro- H_0 which completes the proof.

In order to apply Theorem 3.1 we need the following

LEMMA 3.4. Let $r: (G_a, p_a^b, A) \to (H_a, q_a^b, A) = H$ be a special morphism of pro-Gr generated by homomorphisms $r_a: G_a \to H_a$. Suppose that for each $a \in A$ there exist $b \geqslant a$ and a homomorphism $s: H_b \to G_a$ such that $(r_a s, q_a^b)$ and (sr_b, p_a^b) are pairs of conjugate homomorphisms. If either

- 1. H is a normal pro-group or
- 2. H is a free pro-group,

then r is an isomorphisms of pro-Gr.

Proof. 1. Suppose H is a normal pro-group and $a\in A$. Take $c\geqslant b\geqslant a$ and a homomorphism $s\colon H_c\to G_b$ such that

 (r_bs,q_b^a) and (sr_c,p_b^a) are pairs of conjugate homomorphisms and $\operatorname{im} q_a^a$ is a normal subgroup of $\operatorname{im} q_a^b$.

So let $y \in H_b$ and $z \in G_b$ be elements such that

$$r_b s(x) = y^{-1} q_b^c(x) y$$
 for each $x \in H_c$

and

$$sr_c(x) = z^{-1}p_b^c(x)z$$
 for each $x \in G_c$.

Hence $\ker r_c = \ker p_b^c$ and r is a monomorphism of pro-Gr (see [20] and [22]). Now

$$r_a p_a^b s(x) = q_a^b r_b s(x) = q_a^b (y)^{-1} q_a^c(x) q_a^b(y)$$
 for each $x \in H_c$

and since $\operatorname{im} q_a^c$ is a normal subgroup of $\operatorname{im} q_a^b$, then

$$\operatorname{im} q_a^c \subset \operatorname{im} r_a$$
.

Therefore r is an epimorphism of pro-Gr and this implies that r is an isomorphism of pro-Gr (see [20] and [22]).

2. Suppose H is a free pro-group. If for any $a \in A$ there exists $b \ge a$ such that $\operatorname{im} q_a^b$ is Abelian, then H is a normal pro-group and the result follows from the first part of the proof. So assume there exists $a_0 \in A$ such that $\operatorname{im} q_a^b$ is not Abelian for any $b \ge a \ge a_0$.

Take $a\geqslant a_0$. Then there exist $b\geqslant a$, homomorphism s: $H_b\to G_a$ and elements $y\in G_a,\ z\in H_a$ such that

$$r_a s(x) = z^{-1} q_a^b(x) z$$
 for each $x \in H_b$

and

$$sr_b(x) = y^{-1}p_a^b(x)y$$
 for each $x \in G_b$.

Let $t: H_b \to G_a$ be defined by

$$t(x) = y^{-1}s(x)y$$
 for $x \in H_h$.

Then

$$tr_b(x) = p_a^b(x)$$
 for each $x \in G_b$

and

$$r_a t(x) = u^{-1} q_a^b(x) u$$
 for each $x \in H_b$,

where $u = z \cdot r_a(y^{-1})$.

We are going to show that u = 1.

Suppose, on the contrary, that $u \neq 1$. Then

$$u^{-1}q_a^b r_b(x) u = r_a t r_b(x) = r_a p_a^b(x) = q_a^b r_b(x)$$
 for $x \in G_b$.

Take two elements $v, w \in \operatorname{im}(q_a^b r_b)$. Then

$$u^{-1}vu = v$$
 and $u^{-1}wu = w$.

Consequently $\{u, v\} = \{v_1\}$ and $\{u, w\} = \{v_2\}$, i.e., the subgroup of H_a generated by u and v is an infinite cyclic group generated by v_1 , and the subgroup of H_a generated by u and w is an infinite cyclic group generated by v_2 (see [18], p. 95). Since u is a power of both v_1 and v_2 , then the group $\{v_1, v_2\}$ is also an infinite cyclic group. Hence wv = vw and $\operatorname{im}(q_a^b r_b)$ is Abelian.

Take $c \ge b$ and a homomorphism $s' \colon H_c \to G_b$ such that $r_b s'$ and q_b^c are conjugate. Then $q_a^b r_b s'$ and q_a^c are conjugate and consequently im q_a^c is isomorphic to a subgroup of $\operatorname{im}(q_a^c r_b)$. Thus $\operatorname{im} q_a^c$ is Abelian, a contradiction.

Consequently u = 1 and r is an isomorphism of pro-Gr.

THEOREM 3.5. Let $f: X \to Y$ be a morphism of $\operatorname{pro-H_0}$ such that F(f) is an isomorphism of $\operatorname{pro-H_0}$. If $\operatorname{pro-\pi_1} Y$ is isomorphic to a normal (free) progroup, then f is an isomorphism of $\operatorname{pro-H_0}$.

Proof. Let $g: \operatorname{pro-} \pi_1 Y \to G$ be an isomorphism of pro-Gr, where G is a normal (free) pro-group. Let

$$h = g \cdot (\operatorname{pro-}\pi_1 f) .$$

By 2.2 of [19] there exist isomorphisms

$$i: G_1 \to \operatorname{pro-} \pi_1 X$$
 and $j: G_1 \to G_2$

of pro-Gr such that r = fhi is a special morphism and G_2 is a normal (free) progroup. Since F(f) is an isomorphism of pro-H, then it is easily seen that r satisfies the condition of Lemma 3.4. Consequently r is an isomorphism of pro-Gr. Hence $\text{pro-}\pi_1 f$ is an isomorphism of pro-Gr and by Theorem 3.1, f is an isomorphism of $\text{pro-}H_0$.

As an immediate consequence of Theorem 3.5 we get the following

THEOREM 3.6. Let $f: (X, x) \rightarrow (Y, y)$ be a pointed shape morphism inducing an unpointed shape equivalence. If Y is a pointed 1-movable continuum or a curve, then f is a pointed shape equivalence.

4. Realizing morphisms of pro-H as coming from pro- H_0 . K. Borsuk [4] has given an example of a curve X such that $Sh(X, a) \neq Sh(X, b)$ for some points $a, b \in X$. Consequently, by Theorem 3.6, there is no shape morphism $f: (X, a) \rightarrow (X, b)$ equal to 1_X when suppressing base points. Moreover the following holds

THEOREM 4.1. Let X be a curve and $x \in X$. Then (X, x) possesses property

(*) for each shape morphism $f: Y \to X$ and for any $y \in Y$ there exists $g: (Y, y) \to (X, x)$ equal to f when suppressing base points

iff X is pointed movable or has the shape of some solenoid.

Proof. Sufficiency. Observe that (X, x) possesses Property (*) iff (Z, z) does, where Sh(X, x) = Sh(Z, z). If X has the shape of some solenoid S, then by the result from [15] and Theorem 3.6, Sh(X, x) = Sh(S, a). It is shown by J. Keesling [15] that (S, a) possesses Property (*).

For X being pointed 1-movable the result follows from Theorem 4.2.

Necessity. Let $(X, x) = \underline{\lim}((X_n, x_n), p_n^{n+1})$, where X_n are 1-dimensional connected polyhedra. If for each n there exists $m \ge n$ such that $\lim \pi_1(p_n^m)$ is Abelian group, then it is an infinite cyclic group. Consequently p_n^m can be factored through a circle and X has the shape of some solenoid.

So it suffices to consider the case where $\operatorname{im} \pi_1(\rho_n^m)$ is not Abelian for each $m \ge n$.

Take an arbitrary point $y = (y_n)_{n=1}^{\infty} \in X$. By Property (*) there exists a shape morphism

$$f: (X, y) \rightarrow (X, x)$$

equal to 1_X when suppressing base points. Hence there exist an increasing function $a\colon N \to N$ and maps

$$f_n: (X_{a(n)}, y_{a(n)}) \rightarrow (x_n, x_n)$$

freely homotopic to $p_n^{a(n)}$ such that

$$p_n^{n+1} f_{n+1} \simeq f_n p_{a(n)}^{a(n+1)}$$
 rel. $y_{a(n+1)}$.

So let f_n be α_n -homotopic to $p_n^{a(n)}$ for some path α_n joining x_n and y_n . Then

$$p_n^{n+1}f_{n+1}$$
 is $(p_n^{n+1}\alpha_{n+1})$ -homotopic to $p_n^{n(n+1)}$

and

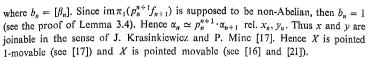
 $f_n p_{\alpha(n)}^{\alpha(n+1)}$ is α_n -homotopic to $p_{\alpha}^{\alpha(n+1)}$

Hence

 $f_n p_{a(n)}^{a(n+1)}$ is β_n -homotopic to $p_n^{n+1} f_{n+1}$.

where $\beta_n = \alpha_n * p_n^{n+1}(\alpha_{n+1}^{-1})$. Hence

$$\pi_1(p_n^{n+1}f_{n+1})(c) = \pi_1(f_np_{a(n)}^{a(n+1)})(c) = b_n^{-1}\pi_1(p_n^{n+1}f_{n+1})(c)b_n,$$



Thus the proof of Theorem 4.1 is concluded.

Thus, in general, the answer to Question I is negative. However Question 1 can be positively answered in the following special case.

THEOREM 4.2. Let (X, x) be an object of $tow(H_0)$ such that $\lim_{x \to \infty} ^1 pro-\pi_1(X, x) = *$. Then for any object (Y, y) of $tow(H_0)$ and for any morphism $f: Y \to X$ of tow(H) there exists a morphism $g: (Y, y) \to (X, x)$ of $tow(H_0)$ with F(g) = f.

Proof. We may assume

$$(X, X) = ((X_n, X_n), [p_n^{n+1}]), \quad (Y, y) = ((Y_n, y_n), [q_n^{n+1}])$$

and f is generated by maps

$$f_n: (Y_n, y_n) \to (X_n, x_n)$$

such that

$$p_n^{n+1}f_{n+1}$$
 is α_n -homotopic to $f_nq_n^{n+1}$

for some loop α_n at x_n . Since $\lim_{n \to \infty} \operatorname{pro-}\pi_1(X, x) = *$, then there exist loops β_n at x with

$$\alpha_n^{-1} \simeq \beta_n * (p_n^{n+1} \beta_{n+1})^{-1} \text{ rel. } x_n$$

Take $g_n: (Y_n, y_n) \to (X_n, x_n)$ such that

$$f_n$$
 is β_n -homotopic to g_n .

Then

$$p_n^{n+1}g_{n+1}$$
 is $(p_n^{n+1}\beta_{n+1})^{-1}$ -homotopic to $p_n^{n+1}f_{n+1}$,
• $p_n^{n+1}f_{n+1}$ is α_n -homotopic to $f_nq_n^{n+1}$ and $g_nq_n^{n+1}$ is β_n^{-1} -homotopic to $f_nq_n^{n+1}$.

Hence

$$p_n^{n+1}g_{n+1}$$
 is $((p_n^{n+1}\beta_{n+1})^{-1}*\alpha_n*\beta_n)$ -homotopic to $g_nq_n^{n+1}$,

i.e.,
$$p_n^{n+1}q_{n+1} \simeq q_n q_n^{n+1} \text{ rel. } x_n$$
.

It is easy to see that the morphism g generated by g_n satisfies the required conditions. The author does not know the answer to the following special case of Question 2.

QUESTION 3. Let $f: X \to Y$ be a morphism of $tow(H_0)$ such that F(f) is an isomorphism of tow(H) and $\lim_{n \to \infty} t = *$. Is f an isomorphism of $tow(H_0)$?

However we can prove the following.

5 — Fundamenta Mathematicae T. CVII/1

THEOREM 4.3. Let $f: X \to Y$ be a morphism of $tow(H_0)$ such that F(f) is an isomorphism of tow(H) and $\lim_{n \to \infty} 1 \operatorname{pro-} \pi_1 Y = *$. Then there exists an isomorphism $g: X \to Y \text{ of } tow(H_0) \text{ with } F(g) = F(f).$

Proof. Assume

$$X = ((X_n, x_n), [p_n^{n+1}]), \qquad Y = ((Y_n, y_n), [q_n^{n+1}])$$

and f is generated by maps

$$f_n: (X_n, x_n) \to (Y_n, y_n)$$
 with $f_n p_n^{n+1} \simeq q_n^{n+1} f_{n+1}$ rel. x_{n+1}

for each n. Since F(f) is an isomorphism of pro-H, then we may assume that there exist maps

$$h_n: (Y_{n+1}, y_{n+1}) \to (X_n, x_n)$$

and loops α_n at y_n such that

 $f_n h_n$ is α_n -homotopic to a_n^{n+1}

and

66

$$p_n^{n+1} \simeq h_n f_{n+1}$$
 rel. x_{n+1} (see 3.2).

Take loops β_n at ν_n such that

$$\alpha_n \simeq \beta_n * (q_n^{n+1} \beta_{n+1})^{-1} \text{ rel. } y_n$$
.

Let $t_n: (Y_n, y_n) \to (Y_n, y_n)$ and $u_n: (Y_{n+1}, y_{n+1}) \to (Y_n, y_n)$ be maps such that $id_{Y_{n}}$ is β_{n} -homotopic to t_{n}

and

 u_n is β_n -homotopic to a_n^{n+1} .

Let $g_n = t_n f_n$. Then

$$q_n^{n+1}g_{n+1} = q_n^{n+1}t_{n+1}f_{n+1}$$
 is $(q_n^{n+1} \cdot \beta_{n+1})^{-1}$ -homotopic to $q_n^{n+1}f_{n+1}$
 $g_np_n^{n+1} \simeq g_nh_nf_{n+1} = t_nf_nh_nf_{n+1}$ is β_n^{-1} -homotopic to $f_nh_nf_{n+1}$, $(f_nh_nf_{n+1}$ is α_n -homotopic to $q_n^{n+1}f_{n+1}$.

Consequently

$$g_n p_n^{n+1} \simeq q_n^{n+1} g_{n+1} \text{ rel. } x_{n+1}$$
.

Thus g_n generate a morphism $g: X \to Y$ of pro- H_0 with F(g) = F(f). Let $r_n = h_n u_{n+1}$: $(Y_{n+2}, y_{n+2}) \to (X_n, x_n)$. Then

$$f_n r_n = f_n h_n u_{n+1}$$
 is α_n -homotopic to $q_n^{n+1} u_{n+1}$, $q_n^{n+1} u_{n+1}$ is $(q_n^{n+1} \beta_{n+1})$ -homotopic to q_n^{n+2} .

Hence

$$g_n r_n = t_n f_n r_n$$
 is $(\beta_n^{-1} * \alpha_n * (q_n^{n+1} \beta_{n+1}))$ -homotopic to q_n^{n+2} .

Consequently

$$g_n r_n \simeq q_n^{n+2}$$
 rel. y_{n+2} .

This implies that pro- $\pi_1 g$ is an epimorphism of pro-Gr and by Theorem 3.1. a is an isomorphism of pro- H_0 which completes the proof.

5. Concluding remarks. The following result strengthens those obtained in [10].

THEOREM 5.1. Let $f: X \to Y$ be a shape equivalence (shape domination) and $x \in X$, $y \in Y$. If Y is pointed 1-movable (X and Y are pointed 1-movable), then there exists a pointed shape equivalence (domination)

$$g: (X, x) \rightarrow (Y, y)$$

equal to f when suppressing base points.

Proof. If f is a shape equivalence, then Theorem 5.1 follows from Theorems 3.6 and 4.2.

Suppose f is a shape domination. Take morphisms

$$h_1: (X, x) \rightarrow (Y, y)$$
 and $h_2: (Y, y) \rightarrow (X, x)$

such that $F(h_1) = f$ and $F(h_1 h_2) = 1_Y$ (see Theorem 4.2). By Theorem 3.6, $h_1 h_2$ is an isomorphism. Let

$$g = (h_1 h_2)^{-1} h_1.$$

Then $gh_2 = 1_{(Y,y)}$ and $F(g) = F(h_1) = f$ which completes the proof.

Theorems 4.2 and 4.3 imply that the vanishing of $\underline{\lim}^{1}(\text{pro-}\pi_{1})$ is an unpointed shape invariant. We do not know if it is a hereditary shape invariant. We also do not know the answer to the following

QUESTION 4. Suppose Sh $X \geqslant$ Sh Y and $\underline{\lim}^1 \operatorname{pro-} \pi_1(X, x) = \underline{\lim}^1 \operatorname{pro-} \pi_1(Y, y) = *$. Does $Sh(X, x) \ge Sh(Y, y)$ hold?

Notice that the positive answer to Question 3 would imply the positive answer to Question 4 (see the proof of Theorem 5.1).

As an application of our results we get a group-theoretical one.

THEOREM 5.2. Let F be a tower of finitely generated free groups. Then $\underline{\lim}^1 F = *$ iff F satisfies the Mittag-Leffler condition.

Proof. Take a pointed curve (X, x) with pro- $\pi_1(X, x) = F$. Then by Theorems 4.1 and 4.2, (X, x) is pointed movable or has the shape of some solenoid. If (X, x) is pointed movable, then F satisfies M-L.

Suppose (X, x) has the shape of some solenoid. Then F is isomorphic to a tower of countable Abelian groups. Hence by the result of B. I. Gray [13], F satisfies M-L which completes the proof.

Theorem 3.5 indicates that continua whose first pro-homotopy group is isomorphic to a normal pro-group are of some interest. This is confirmed by the following

THEOREM 5.3. Let X be a 1-movable continuum. If $pro-\pi_1(X, x)$ is isomorphic to a normal pro-group for some $x \in X$, then X is pointed 1-movable.

Proof. Using Lemma 2.5 of [8] we infer that $pro-\pi_1(X, x)$ is isomorphic to a normal tower of groups.

Let $(X, x) = \underline{\lim}((X_n, x_n), p_n^{n+1})$, where X_n are finite CW complexes. We may assume that there exist:

- 1. a tower $G = (G_n, q_n^{n+1})$ of groups such that $\operatorname{im} q_n^m$ is a normal subgroup of G_n for $m \ge n$,
 - 2. homomorphisms

$$h_n: \pi_1(X_n, x_n) \to G_n$$
 and $g_n: G_{n+1} \to \pi_1(X_n, x_n)$

with $g_n h_{n+1} = \pi_1(p_n^{n+1})$ and $h_n g_n = q_n^{n+1}$,

3. homomorphisms s_m^{n+1} : $\pi_1(X_{n+1}, X_{n+1}) \to \pi_1(X_m, X_m)$ for $m \ge n+1$ such that $\pi_1(p_n^m)s_m^{n+1}$ and $\pi_1(p_n^{n+1})$ are conjugate.

Let
$$t_m^{n+1} = h_m s_m^{n+1} g_{n+1} : G_{n+2} \to G_m$$
 for $m \ge n+3$.

Then

$$q_n^m t_m^{n+1} = q_n^m h_m s_m^{n+1} g_{n+1} = h_n \pi_1(p_n^m) s_m^{n+1} g_{n+1}$$

is conjugate to

$$h_n \cdot \pi_1(p_n^{n+1}) g_{n+1} = q_n^{n+1} h_{n+1} g_{n+1} = q_n^{n+1} q_{n+1}^{n+2} = q_n^{n+2}$$

Since $\operatorname{im} q_n^{n+2}$ is a normal subgroup of G_n , then

$$\operatorname{im} q_n^{n+2} \subset \operatorname{im} q_n^m$$
.

Consequently G satisfies M-L. So does $\operatorname{pro-}\pi_1(X,x)$ and X is pointed 1-movable. In [9] the author has proved that if a shape morphism $f\colon (X,x)\to (Y,y)$ of pointed Hausdorff continua induces isomorphisms of all pro-homotopy groups and is an unpointed shape domination, then f is an unpointed shape equivalence provided Y is movable. In view of Theorem 3.1 this can be strengthen as follows

THEOREM 5.4. Let $f: (X, x) \to (Y, y)$ be a shape morphism of pointed Hausdorff continua, where Y is movable. If $f: X \to Y$ is a shape domination, then $f: (X, x) \to (Y, y)$ is a shape equivalence provided of induces isomorphisms of all homotopy pro-groups.

The author is grateful to M. Strok for valuable discussions on the subject of the paper.

References

- 1 M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Math. 100, Springer 1969.
- M. Atiyah, Characters and cohomology of finite groups, Publs. Math. Inst. Ht. Etud. Scient. 9.
 K. Borsuk, Theory of Shape, Warszawa 1975.
- Some remarks concerning the shape of pointed compacta, Fund. Math. 67 (1970), pp. 221–240.

- [5] A. Bousfield and D. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 302, Springer 1972.
- [6] J. L. Britton, The word problem, Ann. of Math. 77 (2) (1963), pp. 16-32.
- [7] T. A. Chapman and L. C. Siebenmann, Finding a boundary for a Hilbert cube manifolds, to appear.
- [8] J. Dydak, The Whitehead and the Smale theorems in shape theory, Dissertationes Math. 1979, pp. 55.
- [9] Some remarks concerning the Whitehead theorem in shape theory, Bull. Acad. Polon. Sci. 23 (1975), pp. 437-445.
- [10] A simple proof that pointed FANR-spaces are regular fundamental retracts of ANR's, Bull. Acad. Polon. Sci. 25 (1977), pp. 55-62.
- [11] D. A. Edwards and H. M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math. 542, Springer 1976.
- [12] R. Geoghegan, Elementary proofs of stability theorems in pro-homotopy and shape, Gen. Top. Appl. 8 (1978), pp. 265-281.
- [13] B. I. Gray, Spaces of the same n-types, for all n, Topology 5 (1966) pp. 241-243.
- [14] G. Higman, B. H. Neumann and H. Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), pp. 247-254.
- [15] J. Keesling, Continuous functions induced by shape morphisms, Proc. Amer. Math. Soc. 41 (1973), pp. 315-320.
- [16] J. Krasinkiewicz, Continuous images of continua and 1-movability, Fund. Math. 98 (1978), pp. 141-164.
- [17] -- and P. Mine, Generalized paths and pointed 1-movability, Fund. Math. 104 (1979), pp. 141-153.
- [18] W. Magnus, A. Karras and D. Solitar, Combinatorial Group Theory, New York 1966.
- [19] S. Mardešić, On the Whiteheal theorem in shape theory I, Fund. Math. 91 (1976), pp. 51-64.
- 20] On the Whitehead theorem in shape theory II, Fund. Math. 91 (1976), pp. 93-103.
- [21] D. R. McMillan, One-dimensional shape properties and three-manifolds, Studies in topology, Academic Press 1975, pp. 367-381.
- [22] K. Morita, The Hurewicz and the Whitehead theorems in shape theory, Sc. Rep. of the Kyoiku Daigaku 12 (1974), pp. 246-258.
- [23] P. E. Schupp, Some reflections on HNN extensions, Proc. Second Internat Conf. Theory of Groups, Canberra 1973, Lecture Notes in Math. 372, pp. 611-632, Springer 1974.
- [24] E. Spanier, Algebraic topology, McGraw-Hill, New York 1966.
- [25] A. Trybulec, On shapes of movable curves, Bull. Acad. Polon. Sci. 21 (1973), pp. 727-733.
- [26] T. Watanabe, On Čech homology and a stability theorem in shape theory, preprint.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Accepté par la Rédaction le 31. 8. 1977