

Concerning the order and the semi-order of *n*-dimensional Euclidean space *

by

Wanda Szmielew (Warszawa)

In the Proceedings of International Colloquium held in Potsdam in 1973, a paper of Wanda Szmielew appeared (see [1]). The author announced the results and promised the proofs to be published in another paper. Wanda Szmielew died a year ago. The present paper is a complement of [1], based on the author's notes.

Maria Moszyńska

Abstract. The n-dimensional Euclidean geometry is understood as the elementary theory of the equidistance and betweenness relations in the n-dimensional Cartesian vector space over a formally real and Pythagorean field. The following two questions are answered: which properties of the semi-betweenness have to be postulated to obtain the semi-ordered Euclidean geometry, and then, what sentences have to be added to obtain the ordered Euclidean geometry.

August 1977

1. We start by recalling the terminology and notation (see [1]). Let **F** be the class of all formally real and Pythagorean commutative fields

$$\mathfrak{F} = (F, 0, 1, +, \cdot).$$

Given a field $\mathfrak{F} \in \mathbf{F}$, the set $P \subseteq F$ is a semi-positive cone of \mathfrak{F} iff

$$P \cup -P = F$$
,

$$(ii) P \cap -P = \{0\},$$

(iii)
$$P+P\subseteq P$$
.

If moreover

(i)

(iv)
$$P \cdot P \subseteq P$$
,

^{*} Edited by Maria Moszyńska.

then P is a positive cone of \mathfrak{F} . Then

$$(v) 1 \in P.$$

A normal semi-positive cone P besides (i)-(iii) satisfies the condition (v) as well. Let

$$\mathbf{SOF} = \{(\mathfrak{F}P) : \mathfrak{F} \in \mathbf{F} \text{ and } P \text{ is a normal semi-positive cone of } \mathfrak{F}\},$$

OF =
$$\{\mathfrak{F}P\}$$
: $\mathfrak{F} \in \mathbf{F}$ and P is a positive cone of $\mathfrak{F}\}$.

We refer to the couple $(\Re P) \in \mathbf{SOF}$ as a semi-ordered (formally real and Pythagorean) field and to the $(\Re P) \in \mathbf{OF}$ as an ordered (formally real and Pythagorean) field.

Given a semi-ordered field $(\mathfrak{F}P) \in \mathbf{SOF}$, we define a semi-norm $|| \ || \ (|| \ ||_P)$ in the n-dimensional Cartesian vector space $\mathfrak{B}^n_{\mathcal{C}}(\mathfrak{F})$, $(n \ge 2)$:

$$||a|| \in P$$
 and $||a||^2 = a \cdot a$.

In this way we get the *n*-dimensional Cartesian semi-metric vector space $\mathfrak{D}^n_{\mathcal{C}}(\mathfrak{F}P)$. In terms of $\mathfrak{D}^n_{\mathcal{C}}(\mathfrak{F})$ we define in the usual way the collinearity and the equidistance relations, $L_{\mathfrak{F}}$ and $D_{\mathfrak{F}}$. In terms of $\mathfrak{D}^n_{\mathcal{C}}(\mathfrak{F}P)$ we define the semi-betweenness relation:

$$B_{\mathfrak{FP}}(abc) \Leftrightarrow ||a-b|| + ||b-c|| = ||a-c||.$$

Thus any field $\mathfrak{F} \in \mathbf{F}$ generates the n-dimensional Euclidean space over \mathfrak{F} ,

$$\mathfrak{E}^n(\mathfrak{F})=(F^n,L_{\mathfrak{F}},D_{\mathfrak{F}}),$$

and any semi-ordered field $(\mathfrak{F}P) \in \mathbf{SOF}$ generates the *n*-dimensional semi-ordered Euclidean space over $(\mathfrak{F}P)$,

$$\mathfrak{E}^n(\mathfrak{F}P)=(F^n,L_{\mathfrak{F}},D_{\mathfrak{F}},B_{\mathfrak{F}P}).$$

If, in particular, $(\mathfrak{F}P) \in \mathbf{OF}$, then $\mathfrak{E}^n(\mathfrak{F}P)$ is the *n*-dimensional ordered Euclidean space over $(\mathfrak{F}P)$. Let

$$\begin{split} \mathbf{E}^n &= \left\{ \mathfrak{S}^n(\mathfrak{F}) \colon \mathfrak{F} \in \mathbf{F} \right\}, \\ \mathbf{SOE}^n &= \left\{ \mathfrak{S}^n(\mathfrak{F}P) \colon (\mathfrak{F}P) \in \mathbf{SOF} \right\}, \\ \mathbf{OE}^n &= \left\{ \mathfrak{S}^n(\mathfrak{F}P) \colon (\mathfrak{F}P) \in \mathbf{OF} \right\} \end{split}$$

and let \mathscr{E}^n , \mathscr{SOE}^n and \mathscr{OE}^n be elementary theories of the classes \mathbf{E}^n , \mathbf{SOE}^n and \mathbf{OE}^n respectively. We refer to the theory \mathscr{E}^n as the (n-dimensional) Euclidean geometry, and to the theories \mathscr{SOE}^n and \mathscr{OE}^n as to (n-dimensional) respectively semi-ordered and ordered Euclidean geometries.

2. Consider the following four sentences (1):

A1.
$$B(abc) \Rightarrow B(cba)$$
,

A2.
$$B(abd) \wedge B(bcd) \Rightarrow B(abc)$$

A3. $L(abc) \Leftrightarrow B(abc) \vee B(bca) \vee B(cab)$.

A4.
$$abc \equiv ab'c' \wedge B(abc) \Rightarrow B(ab'c')$$
 (2),

and the weak Pasch axiom:

WP.
$$B(pbc) \wedge B(aqb) \Rightarrow \exists r(L(pqr) \wedge L(arc))$$
.

Let

$$\mathscr{X} = \{A1, A2, A3, A4\}$$
 and $\mathscr{Y} = \{WP\}$.

We are going to prove the following two theorems:

Theorem 1. **SOE**ⁿ coincides (up to isomorphism) with the class of models $\mathfrak{M}(\mathscr{E}^n \cup \mathscr{X})$.

THEOREM 2. **OE**ⁿ coincides (up to isomorphism) with the class $\mathfrak{M}(\mathscr{GOE}^n \cup \mathscr{Y})$. Let us notice first that the following seven sentences are derivable from $\mathscr{E}^n \cup \{A1, A2, A3\}$ (3).

T1. B(aaa) (from A3 and \mathcal{E}^n),

T2. B(aab) (from A1, A3, and T1),

T3. $B(aba) \Rightarrow a = b$

suppose $B(aba) \land a \neq b$; by \mathscr{E}^n , $a \neq b \Rightarrow \exists c \sim L(abc)$; by T2, A2, A1, A3, $B(aba) \Rightarrow B(caa) \land B(aba) \Rightarrow B(cab) \Rightarrow L(abc)$,

T4.
$$B(abc) \wedge B(acb) \Rightarrow b = c$$
 (by A1, A2, and T3),

T5.
$$B(apb) \wedge B(arb) \Rightarrow B(apr) \vee B(arp)$$
 (by \mathscr{E}^n and A3),

T6.
$$B(abp) \wedge B(abr) \wedge a \neq b \Rightarrow B(apr) \vee B(arp)$$
 (by \mathscr{E}^n , A3, and T4),

T7.
$$B(abc) \wedge B(bcd) \wedge b \neq c \Rightarrow B(abd)$$
 (by \mathscr{E}^n and A1-A3).

In turn, using A1-A3 and T4-T7, we can easily prove we lemmas concerning halflines of an arbitrary line K. The halfline from a through b ($a \neq b$), is defined as usually:

$$\mathbf{HL}(ab) = \{p \colon B(apb) \lor B(abp)\}.$$

L1. Let $a, b \in K$, $a \neq b$, A = HL(ab). Then

$$(1) p, r \in A \land B(pqr) \Rightarrow q \in A$$

and

(2)
$$q \in A - \{a\} \land B(aqr) \Rightarrow r \in A.$$

L2. Let $a, b, c \in K$, $a \neq b \neq c$, B(abc), $A = \mathbf{HL}(ba)$, $C = \mathbf{HL}(bc)$. Then

$$(1) A \cup C = K, A \cap C = \{b\},$$

(2)
$$p, r \in K - \{b\} \land B(pbr) \Rightarrow [p \in A \Leftrightarrow r \in C],$$

⁽²⁾ Throughout the whole paper we omit the universal quantifiers which should be placed in front of a formula to bind all the free variables occurring in it.

^(*) We use the formula $pq \equiv p'q'$ instead of D(pqp'q') and the abbreviation $pqr \equiv p'q'r'$ for the conjunction $pq \equiv p'q' \wedge pr \equiv p'r' \wedge qr \equiv q'r'$.

⁽a) We use two different symbols: the implication symbol \Rightarrow and the inference symbol $|\Rightarrow$.

^{4 -} Fundamenta Mathematicae T. CVII/1

and

$$(3) p \in A \land r \in C \Rightarrow B(pbr).$$

Among the consequences of $\mathscr{E}^n \cup \{A1-A4\}$ (till now we have not used A4) let us distinguish the following two:

A5.
$$B(abc) \wedge ab \equiv ac \Rightarrow b = c$$

and (stronger)

A5'.
$$B(abd) \wedge B(bcd) \wedge bc \equiv ad \Rightarrow c = d$$

(comp. [1] and [2]). By &n, A1, A4, A1, A2, and T3

$$B(abc) \wedge ab \equiv ac \implies B(abc) \wedge abc \equiv acb \implies B(cba) \wedge B(acb)$$

$$\Rightarrow B(cbc) \Rightarrow b = c$$
.

Thus $A5 \in Cn(\mathscr{E}^n \cup \{A1-A4\})$.

It is easy to see that on the base of $\mathscr{E}^n \cup \{A1-A4\}$ A5 is equivalent to the statement

T8. $B(b \ b \oplus c \ c)$,

which says that the midpoint $b \oplus c$ of the segment bc lies between its ends.

Let us show that on the base of $\mathscr{E}^n \cup \{A1, A2, A3, A5\}$ A5' is equivalent to the following linear case of A4:

T9.
$$B(abc) \Rightarrow B(a \sigma_a(b) \sigma_a(c)),$$

where σ_a is the symmetry with respect to a. Assume first A5'. Let B(abc) and suppose that $\sim B(a \ \sigma_a(b) \ \sigma_a(c))$. Then, by $\mathscr{E}^n \cup \{A1-A3\}$ and A5, $B(\sigma_a(b) \ \sigma_a(c) \ a)$, and thus, taking in A5' $\sigma_a(b)$, $\sigma_a(c)$, b, c for a, b, c, d, we get b=c, which implies $B(a \ \sigma_a(b) \ \sigma_a(c))$. Assume now T9 and let $B(abd) \land B(acd) \land bc \equiv ad$; since $bc \mid \mid ad$, we get $a \oplus b = c \oplus d \lor a \oplus c = b \oplus d$. If $a \oplus b = c \oplus d$, then a = b = c = d; if $a \oplus c = b \oplus d = p$, then $c = \sigma_p(a) \land d = \sigma_p(b) \land B(pba)$, whence, by T9, B(pdc), which together with B(pcd) implies c = d. Thus (T9 \Leftrightarrow A5') \in Cn($\mathscr{E}^n \cup \{A1, A2, A3, A5\}$).

As a result, A5 and A5', as well as T8 and T9, are derivable from $\mathscr{E}^n \cup \{A1-A4\}$. In turn, the outer invariance law T9 is equivalent to the following invariance law:

T10. $a, b, c, p \in K \land B(abc) \Rightarrow B(\sigma_p(a) \sigma_p(b) \sigma_p(c))$

(see [3], Th. 7.6.2), and thus implies the inner invariance law:

T11. $B(abc) \Rightarrow B(\sigma_b(a) b\sigma_b(c))$.

Let us prove

T12.
$$a, b, c, a', b', c' \in K \land abc \equiv a'b'c' \land B(abc) \Rightarrow B(a'b'c')$$
.

Indeed, let $p=b\oplus b'$; then $a'b'c'\equiv abc\equiv \sigma_p(a)b'\sigma_p(c)$, and thus (since either $\sigma_p(a)=\sigma_b(a')$ and $\sigma_p(c)=\sigma_b(c')$ or $\sigma_p(a)=a'$ and $\sigma_p(c)=c'$), applying T10 and T11, we get

$$B(abc) \Rightarrow B(\sigma_p(a)b'\sigma_p(c)) \Rightarrow B(\sigma_{b'}(a')b'\sigma_{b'}(c')) \Rightarrow B(a'b'c')$$
.

The statement T12 may be generalized to

T13.
$$abc \equiv a'b'c' \wedge B(abc) \Rightarrow B(a'b'c')$$
.

In fact, let $a \neq a'$ and let K be the line through a and a'; there are $b_1, c_1, b_2, c_2 \in K$ such that $abc \equiv ab_1 c_1 \wedge a'b'c' \equiv a'b_2 c_2$. Applying in turn A4, T12, A4, we get

$$B(abc) \Rightarrow B(ab_1c_1) \Rightarrow B(a'b_2c_2) \Rightarrow B(a'b'c')$$
.

By T13, T6, A2 and A5, we obtain

T14.
$$ab \equiv a'b' \wedge bc \equiv b'c' \wedge B(abc) \wedge B(a'b'c') \Rightarrow ac \equiv a'c'$$
.

Indeed, take abc and let $ab \equiv a'b'$. If a = b then a' = b'. Let $a \neq b$; then $a' \neq b'$ and there is a point c'' such that $abc \equiv a'b'c''$. Assume $B(abc) \wedge bc \equiv b'c' \wedge B(a'b'c')$. By T13

$$B(abc) \Rightarrow B(a'b'c'')$$
,

by T6

$$B(a'b'c') \wedge B(a'b'c'') \wedge a' \neq b' \implies B(b'c'c'') \vee B(b'c''c').$$

By A5

$$\big(B(b'c'c'')\vee B(b'c''c')\big)\wedge b'c''\equiv bc\equiv b'c'\ |\Rightarrow\ c'=c''\ .$$

Thus $ac \equiv a'c'$.

The last two statements may be expressed together as T15. $ab \equiv a'b' \wedge bc \equiv b'c' \wedge B(abc) \Rightarrow [B(a'b'c') \Leftrightarrow ac \equiv a'c']$.

3. Let us prove now

Theorem 1. $SOE^n = \mathfrak{M}(\mathscr{E}^n \cup \mathscr{X}).$

Proof. ⊆: Let

$$\mathfrak{E}^n(\mathfrak{F}P) = (F^n, L_{\mathfrak{R}}, D_{\mathfrak{R}}, B_{\mathfrak{R}P}) \in \mathsf{SOE}^n$$

Then $(\mathfrak{F}P) \in \mathbf{SOF}$ and thus the reduct $(F'', L_{\mathfrak{F}}, D_{\mathfrak{F}})$ is a model of \mathscr{E}'' . Hence it suffices to verify A1-A4. By the remarks in [1] pp. 72_8-73^8 , it follows that the semi-betweenness relation $B_{\mathfrak{F}P}$ restricted to an arbitrary line K of the space $\mathfrak{E}^n(\mathfrak{F}P)$ coincides with the betweenness relation restricted to K. Thus $B_{\mathfrak{F}P}$ satisfies the axioms A1-A3. Since every congruence preserves the relation $B_{\mathfrak{F}P}$ (see [1], p. 73^{9-21}), the axiom A4 is satisfied as well.

 \supseteq : Let $\mathfrak{S} = (S, L, D, B)$ be a model of $\mathscr{E}^n \cup \mathscr{X}$. We are going to find $(\mathfrak{F}P) \in \mathbf{SOF}$ such that $\mathfrak{S} \simeq \mathfrak{E}^n(\mathfrak{F}P)$. Take a reduct $\mathfrak{S}_0 = (S, L, D)$ of \mathfrak{S} . Since \mathbf{E}^n is an elementary class (see [1], p. 73₁), $\mathfrak{M}(\mathscr{E}^n) = \mathbf{E}^n$ and thus, for some $\mathfrak{F} \in \mathbf{F}$,

$$\mathfrak{S}_0 \simeq \mathfrak{E}''(\mathfrak{F})$$
,

i.e.
$$\mathfrak{S}_0 = (S, L, D) \simeq (F^n, L_{\mathfrak{R}}, D_{\mathfrak{R}}) = \mathfrak{E}^n(\mathfrak{F})$$
. Let

$$\Phi: \mathfrak{E}^n(\mathfrak{F}) \to \mathfrak{S}_0 \quad \text{and} \quad \Psi: \mathfrak{S}_0 \to \mathfrak{E}^n(\mathfrak{F})$$

53

be mutually inverse isomorphisms. It now suffices to extend Ψ over the whole \mathfrak{S} . Thus we construct a semi-positive cone P of \mathfrak{F} such that $\Psi(B) = B_{\mathfrak{F}P}$.

For every $x \in F$, let $e(x) = (x, 0, ..., 0) \in F^n$. Then

$$e(x) + e(y) = e(x+y)$$
 and $-e(x) = e(-x)$.

The set $K = \Phi e(F)$ is a line in S. Since

$$e(0) = e(x) \oplus_{\pi} e(-x)$$

we get

$$\Phi e(0) = \Phi e(x) \oplus \Phi e(-x)$$

(because \oplus is definable in terms of \mathfrak{S}_0). Thus, by T8,

$$B(\Phi e(x)\Phi e(0)\Phi e(-x))$$
 for every $x \in F$;

in particular $B(\Phi e(1) \Phi e(0) \Phi e(-1))$.

Define two halflines

$$A = \mathbf{HL}(\Phi e(0)\Phi e(1))$$
 and $C = \mathbf{HL}(\Phi e(0)\Phi e(-1))$.

By L2

$$A \cup C = K$$
, $A \cap C = \{\Phi e(0)\}$

and

$$\Phi e(-x) \in A \Leftrightarrow \Phi e(x) \in C$$
.

Let $P = \{x: \Phi e(x) \in A\}$, i.e. $P = e^{-1}\Psi(A)$. Then

$$-P=e^{-1}\Psi(C)\,,$$

and therefore

$$P \cup -P = F$$
, $P \cap -P = \{0\}$,

i.e. (FP) satisfies (i) and (ii). In turn, by T8,

$$B\left(\Phi e(x)\Phi e\left(\frac{x+y}{2}\right)\Phi e(y)\right)$$
 and $B\left(\Phi e(0)\Phi e\left(\frac{x+y}{2}\right)\Phi e(x+y)\right)$,

whence

$$x, y \in P \implies \Phi e(x), \Phi e(y) \in A \implies \Phi e\left(\frac{x+y}{2}\right) \in A$$

$$|\Rightarrow \Phi e(x+y) \in A \lor \Phi e\left(\frac{x+y}{2}\right) = \Phi e(0)$$

$$|\Rightarrow x+y \in P \lor y = -x \implies x+y \in P,$$

i.e. (§P) satisfies (iii). Evidently $1 \in P$, i.e. (v) is satisfied as well. It remains to show that $\Psi(B) = B_{\mathbb{F}P}$ (just now A4 is needed). Take $p, q, r \in F^n$ and let $a = \Phi(p)$, $b = \Phi(q)$, $c = \Phi(r)$. Let

(1)
$$||p-q|| = x$$
 and $||q-r|| = z$;

then (2)

$$B_{xp}(pqr) \Leftrightarrow ||p-r|| = x+z$$
.

Since

$$||e(x)-e(0)|| = x, \quad ||e(0)-e(-z)|| = z,$$

and

$$||e(x)-e(-z)|| = x+z,$$

by (1) and (2) we get

(1')
$$e(x)e(0) \equiv pq \wedge e(0)e(-z) \equiv qr$$

and

(2')
$$B_{\mathfrak{R}P}(pqr) \Leftrightarrow e(x)e(-z) \underset{\mathfrak{R}}{\equiv} pr.$$

The conditions (1') and (2') imply

(1")
$$\Phi e(x)\Phi e(0) \equiv ab \wedge \Phi e(0)\Phi e(-z) \equiv bc$$

and

$$(2'') B_{\mathfrak{F}P}(pqr) \Leftrightarrow \Phi e(x) \Phi e(-z) \equiv ac.$$

By (1), $x, z, x+z \in P$, whence

$$\Phi e(x), \Phi e(z) \in A, \quad \Phi e(-z) \in C$$

and therefore, by L2, $B(\Phi e(x) \Phi e(0) \Phi e(-z))$. Thus, applying T15, by (1") and (2") we get

$$B_{\pi P}(pqr) \Leftrightarrow B(abc)$$
,

which completes the proof.

Theorem 2. $\mathbf{OE}'' = \mathfrak{M}(\mathscr{SOE}'' \cup \{WP\}).$

Proof. \subseteq : If $(\mathfrak{F}P) \in \mathbf{OF}$ then $\mathfrak{E}^n(\mathfrak{F}P) \in \mathbf{OE}^n \subseteq \mathbf{SOE}^n$ and $\mathfrak{E}^n(\mathfrak{F}P)$ satisfies WP. \supseteq : Let \mathfrak{E} be a model of $\mathscr{SOE}^n \cup \{WP\}$. We are going to find $(\mathfrak{F}P) \in \mathbf{OF}$ such that $\mathfrak{E} \simeq \mathfrak{E}^n(\mathfrak{F}P)$. By Theorem 1, \mathbf{SOE}^n is an elementary class, thus

$$\mathsf{SOE}^n = \mathfrak{M}(\mathscr{SOE}^n) \; .$$

Since $\mathfrak{S} \in \mathfrak{M}(\mathscr{SO}^n \cup \{WP\}) \subseteq \mathfrak{M}(\mathscr{SO}^n)$, hence $\mathfrak{S} \simeq \mathfrak{S}^n(\mathfrak{F}P)$ for some $(\mathfrak{F}P) \in \mathbf{SOF}$. So, it suffices to show that the semi-positive cone P is closed under the multiplication:

(iv)
$$P \cdot P \subseteq P$$
.

For any $x \in F$, let

$$e_1(x) = (x, 0, ..., 0) \in F^n$$
, $e_2(x) = (0, x, 0, ..., 0) \in F^n$.

Suppose that

$$x, y \in P$$
 and $x \cdot y \notin P$.

Then

$$B_{\mathfrak{R}P}(e_1(x)e_1(0)e_1(x\cdot y))$$

and

$$B_{\mathfrak{F}P}(e_2(0)e_2(1)e_2(y)) \vee B_{\mathfrak{F}P}(e_2(0)e_2(y)e_2(1))$$

(see Fig. 1). By WP, there is a point $p \in F^n$ such that

$$L_{\mathfrak{F}}(e_1(x \cdot y) p e_2(y)) \wedge L_{\mathfrak{F}}(e_1(x) e_2(1) p)$$

Fig. 1

Thus p is of the form

$$p = (z_1, z_2, 0, ..., 0)$$

where

$$z_1 + x \cdot z_2 = x$$
 and $(z_1 + x \cdot z_2) \cdot y = x \cdot y^2$.

Hence $x \cdot y = x \cdot y^2$, i.e. $x \cdot y \cdot (1-y) = 0$. Since $x \cdot y \neq 0$, we get y = 1 and thus $x \cdot y = x \in P$ in contrary to the assumption.

As corollaries of Theorems 1 and 2, we get

THEOREM 1'. $\mathcal{SOE}^n = \operatorname{Cn}(\mathcal{E}^n \cup \mathcal{X})$.

THEOREM 2'. $\mathcal{OE}^n = \operatorname{Cn}(\mathcal{SOE}^n \cup \mathcal{Y})$

4. We pass to independence models. As was stated in [1] p. 76, each of the axioms A1-A4 is independent of the remaining three together with the whole theory \mathcal{E}^n . If, moreover, A3 is replaced by the conjunction of

A3.1.
$$B(abc) \Rightarrow L(abc)$$

and

A3.2.
$$L(abc) \Rightarrow B(abc) \lor B(bca) \lor B(cab)$$

then each of the five sentences A1, A2, A3.1, A3.2, A4 is independent of the remaining four together with the whole \mathscr{E}^n . The independence models are of the form

$$\mathfrak{E}_{i}^{n}(\mathfrak{F}P)=(F^{n},L_{\mathfrak{F}},D_{\mathfrak{F}},B_{i}) \quad \text{for} \quad i=1,2,4$$

$$\mathfrak{E}_{3j}^n(\mathfrak{F}P)=(F^n,L_{\mathfrak{F}},D_{\mathfrak{F}},B_{3j})\quad\text{ for }\quad j=1,2$$

for some $(\mathfrak{F}P) \in \mathsf{SOF}$. Thus, we have to define relations B_1 , B_2 , B_4 , B_{31} , and B_{32} , such that B_1 (B_3) satisfies all the axioms except Ai (A3.j). Let

$$B_1 = B_{\nabla P} - \{(aab): a \neq b\}, \quad B_{31} = (F^n)^3,$$

 $B_2 = L_{\nabla P}, \quad B_{32} = \emptyset.$

It remains to define B_4 . Consider first an arbitrary line K in the space $\mathfrak{E}^n(\mathfrak{F}) = (F^n, L_{\mathbb{F}}, D_{\mathbb{F}})$ and let $f: K \to K$ be a bijection. Let

$$B^{Kf}(abc) \Leftrightarrow \begin{cases} B_{\mathfrak{F}P}(abc) & \text{if} \quad \{abc\} \neq K, \\ B_{\mathfrak{F}P}(f(a)f(b)f(c)) & \text{if} \quad \{abc\} \subset K. \end{cases}$$

It is easy to prove the following

LEMMA. $(F^n, L_{\mathfrak{F}}, D_{\mathfrak{F}}, B^{Kf})$ is a model of $\mathscr{E}^n \cup \{A1, A2, A3\}$.

Let us choose now a bijection f as follows. Fix three points $a, b, c \in F^n$ such that

$$\neq (abc)$$
 and $B_{\mathfrak{F}P}(abc)$,

and let f satisfy the conditions:

$$f(a) = a$$
, $f(b) = c$, $f(c) = b$.

Then $B^{Kf}(abc)$ and $\sim B^{Kf}(ab'c')$ if $b', c' \notin K$. But there exist $b', c' \notin K$ such that $abc \equiv ab'c'$, whence B^{Kf} does not satisfy A4. Thus, by Lemma, setting

$$B_A = B^{Kf},$$

we get a desired relation.

Finally, let us turn to the axiom A5. It was stated in [1] p. 76 that A.4 is independent of $\mathscr{E}^n \cup \{A1, A2, A3, A5\}$. We shall prove even more (comp. [2]): A4 is independent of $\mathscr{E}^n \cup \{A1, A2, A3, A5'\}$. To obtain a suitable model, we choose particular ($\mathfrak{F}P$) and f in $\mathfrak{E}^n_4(\mathfrak{F}P)$. Let $\mathfrak{F}=R$, $P=R^+$; let $e_1(x)=(x,0,...,0)\in R^n$ and $K=e_1(R)$. There is a bijection

$$f_0: R \to R$$

satisfying the conditions:

$$f_0(0) = 0$$
, $f_0(\sqrt{2}) = \sqrt{3}$, $f_0(\sqrt{3}) = \sqrt{2}$

and

$$f_0(x+y) = f_0(x) + f_0(y)$$
.

Let $f: K \to K$ be defined by the formula

$$f(e_1(x)) = e_1(f_0(x)),$$

and let

$$B_5 = B^{Kf}.$$

ich

The structure $\mathfrak{C}_5^n(\mathfrak{R}\ R^+) = (R^n, L_{\mathfrak{R}}, D_{\mathfrak{R}}, B_5)$ does not satisfy A4, while it is a mo of $\mathscr{E}^n \cup \{A1, A2, A3, A5'\}$. Indeed, it suffices to verify A5'. If $\{abcd\} \neq K$ then is obviously satisfied. Let $a, b, c, d \in K$. Then $a = c_1(x), b = e_1(y), c = e_1$ $d = e_1(y)$ for some $x, y, z, v \in R$. Assume

$$B^{Kf}(abd) \wedge B^{Kf}(bcd) \wedge bc \equiv ad;$$

then $B_{\Re R^+}(f(a)f(b)f(d)) \wedge B_{\Re R^+}(f(b)f(c)f(d)) \wedge ||b-c|| = ||a-d||$, thus $[f_0(x) \le f_0(y) \le f_0(z) \le f_0(y) \vee f_0(z) \ge f_0(y) \ge f_0(z) \ge f_0(y)] \wedge |y-z| = |x-y|$.

In turn

$$|y-z| = |x-v| \implies x+z = y+v \lor x+y = z+v$$

$$|\Rightarrow f_0(x) + f_0(z) = f_0(y) + f_0(v) \lor f_0(x) + f_0(y) = f_0(z) + f_0(v),$$

whence $f_0(z) = f_0(v)$ and therefore c = d.

Thus $A4 \notin Cn(A1, A2, A3, A5')$ and so A4 cannot be replaced by A5'.

It is not difficult to check that A4 becomes dependent in the presence of WP. In conclusion

$$\mathscr{OE}^n = \operatorname{Cn}(\mathscr{E}^n \cup \{A1, A2, A3, WP\}),$$

and so the weak Pasch axiom is the only plane axiom of ordered Euclidean geometry, concerning the betweenness relation.

References

- W. Szmielew, The order and the semi-order of n-dimensional Euclidean space in the axiomatic and model-theoretic aspects, Grundlagen der Geometrie und algebraische Methoden, Potsdamer Forschungen — Reiche B, Heft 3, Potsdam 1974, pp. 69-79.
- [2] Autorreferat, Zentralblatt für Mathematik, Band 291 (1975), #50003.
- [3] Od geometrii afinicznej do euklidesowej (From affine to Euclidean geometry), PWN, Warszawa 1980.

Accepté par la Rédaction le 29, 10, 1977

Pointed and unpointed shape and pro-homotopy

by

Jerzy Dydak (Warszawa)

Abstract. In the paper we consider whether every unpointed shape morphism can be realized as a pointed shape morphism and whether every pointed shape morphism being an unpointed shape equivalence is also a pointed shape equivalence.

1. Introduction. The main pointed shape invariants, i.e., pointed 1-movability, pointed movability, being pointed FANR are at the same time invariants of the unpointed shape theory (see [10] and [12]). However it is not known whether they are hereditary shape invariants. On the way to attack this problem arise the following questions:

QUESTION 1. Let (X, x) and (Y, y) be pointed continua and let $f: X \to Y$ be a shape morphism. Does there exist a morphism $g: (X, x) \to (Y, y)$ such that the induced morphism $g': X \to Y$ is equal to f?

QUESTION 2. Let (X, x) and (Y, y) be pointed continua and let $f: (X, x) \to (Y, y)$ be a shape morphism such that the induced morphism $f': X \to Y$ is an isomorphism. Is f an isomorphism?

The analogous questions may be considered in pro-homotopy.

In this paper we consider the above questions. We show that in general the answers to Question 1 and Question 2 (in pro-homotopy) are negative. However they can be positively answered in some special cases.

Specially interesting is Question 2 because the negative answer to it would give a weak proper homotopy equivalence not being a proper homotopy equivalence which existence has been asked by T. A. Chapman and L. C. Siebenmann [7].

2. Notations and terminology. By $H(H_0)$ we denoted the homotopy category of (pointed) connected CW complexes.

For any category C we denote by pro-C its pro-category (see [1] and [19]) and by tow(C) we denote a full subcategory of pro-C whose objects are towers i. e. inverse sequences in C. (see [11]).

By F: pro- $H_0 \rightarrow$ pro-H we denote the forgetful functor obtained by suppressing base points.