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Some combinatorial properties of ultrafilters
by

Jussi Ketonen (Honolulu, Hawai)

Abstract. Three unrelated combinatorial results are proved: (1) A result relating non-regular
ultrafilters to weakly normal ultrafilters; (2) A partitioning property for indecomposable ultra-
filters over singular cardinals and (3) A large cardinal-type result for inaccessible cardinals carrying
indecomposable ultrafilters. '

0. Introduction. Our notation and terminology follows that of the more recent
set-theoretic literature. In particular o, f, 9, ... are variables for ordinals while
%, A, i, ... are reserved for cardinals. The notation |x| refers to the cardinality of the
set x and so on. An ultrafilter over a cardinal is always assumed to be uniform.

0.1. DEFINITION. An ultrafilter D over » is (4, y)-regular if J<u and there
is a set S=D of power u such that

TsS and Ii<|T|—-NT=0.

D is p-regular if it is (w, y)-regular. D is regular if it is x-regular.

This concept is due to Keisler. It measures the “width” of an ultrafilter. It is
diametrically opposite to the notion of completeness of ultrafilters. It is a well-
known fact that the existence of suitably complete ultrafilters implies the existence
of normal ultrafilters. In the case of simply non-regular ultrafilters we have to replace
the condition of normality by a weaker one:

0.2. DEFINITION. An ultrafilter D over » is weakly normal if every pressing
down function is bounded by a constant <, i.e. if f: % — % s.t. f<id(mod D), then
there is a £<x s.t. f<E(mod D).

Kanamori [3] was the first to show that suitably non-regular ultrafilters have
weakly normal ultrafilters below them in the Rudin-Keisler order.

0.3. DeErNITION. Given two ultrafilters D, U over x say D<gg U if there is
a function f: % — x s.t. f4(U) = D; i.e. for all xcx:

xeD o fTYx)e U

Givenf, g: x — x say f<zg g (mod D) if there is a function ¢: % — % 8.t.f = pog
5 — Fundamenta Mathematicae T. CVII/3
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226 J. Ketonen
(mod D). This is called the Rudin-Keisler ordering on functions from % to % (mod D).
There is anothier ordering on this set of functions:

Set f<g (modD) if {o| f(@)<g(@}e D. We will refer to this ordering as
the standard ordering on functions from x to (mod D).

0.4. TusoreM (Kanamori [3]). Suppose D is an ultrafilter over a regular cardinal %
with no weakly normal ultrafilters below it in the Rudin-Keisler order. Then

@) If x = ©*, then D is (v,t")-regular.

(b) (Ketonen independently) D is A-regular for all A<x.

Ketonen [5] used this to obtain the existence of o* from a suitably non-regular
ultrafilter. The motivation of this paper is to obtain combinatorial properties which
hopefully can then be applies to obtain large cardinality results.

0.5. DEFINITION. An ultrafilter D over x is a closed point if it extends the
closed unbounded filter. A function f: % — % is a closed function (mod D) if fx(D)
is a closed point.

0.6. DEFINITION. Given two ultrafilters D, U over x, their product ultrafilter
is the set

|Xewxx {«| {B] (x,B)e X}eUteD}.

For more on products and closed points, see Ketonen [4].

The following concept is the strongest form of non-regularity we will use in this
paper. .

0.7. DERITION. An ultrafilter D over x is g- indecomposable if for any function
fr #— A (A<>) there is a set C such that f~YC)e D and |C| = ¢. D is inde-
composable if it is w-indecomposable.

For more on indecomposable ultrafilters, see Prikry [6] and Silver [71.

0.8. TreoreM (Silver [7]). Suppose » is a strong limit cardinal and D an inde-
composable ultrafilter over x. Then there is a function @: % — w such that for all
functions f on x with range of power <s we have f<gpx®-

Thus, this ¢ induces a “maximal” partitioning of x into w pieces (mod D).

We shall also investigate indecomposable ultrafilters over singular cardinals.
This is of interest since f.ex. in the constructible universe the first cardinal where
uniform ultrafilters may fail to be regular is the singular cardinal w,, (Jensen [2]).
It is known (Prikry [6]) that if there are any non-regular ultrafilters over w, in L,
they must be A-indecomposable for some A<w,,.

1. Non-regular ultrafilters. The main result of this section is the following:

1.1. THEOREM. Suppose D is an ultrafilter over a regular cardinal % with no
weakly normal ultrafilters below D in the Rudin-Keisler order. Then Dx D is regular.

Given an ultrafilter D, let I'(D) stand for the set of all D-equivalence classes
of closed functions, i.e. .

I'(D) = {[¢]l @«(D) is a closed point} .

icm°®
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1.2. TueoreM. If' D is a non-regular ultrafilter over a regular carinal x, then
every non-maximal element of I'(D) has a successor in I'(D) in the standard ordering
(mod D).

Thus, the set I"(D) has some well-foundedness properties. This result confirms

again the analogy between non-regular ultrafilters and countably complete ultra-
filters.

‘We shall now commence on the proofs of Theorems 1.1 and 1.2. From now on,
assume that D is a non-regular ultrafilter over a regular cardinal x.

1.3. DervTION. For Csx closed unbounded, let k€ be the function
ko = sup(Cn w).

The following lemma is a reformulation of a result of Kanamori [3]. He used
it to prove that any non-regular ultrafilter has closed points below it in the Rudin—
Keisler order.

1.4. LemMA. If f: % — » is unbounded (mod D), then there is a closed unbounded
Co=x s.t. for all closed unbounded C<Cy:
kSf = K°f(mod D) .

Proof. If not, then there is a decreasing sequence of closed unbounded sets
{Cyl E<x} s.t. for all E<ux:

X; = {o] K"/ @<k @} e D

But then {X,| é<s}, would form a regularizing family for D. W

Observe that in this case k°fis a closed function. For partial functions f, g : %~
define

f<g < Vaedomfn domg: f(0)<g (@),
S<xxg © Vo, f: g(@ = g(f) and aedomf— fedomfand (&) =f(B),
f<g < f<ggyg and VYo evdomfm domg: f(oc)’<g(oc),
f<g + Yauedomfn domg: f(ex)<g().

Kanamori [3] has independently proved a version of the following result.

1.6. LEMMA. If there are no weakly normal ultrafilters below D in the Rudin—
Keisler order, then there are unbounded (mod D) partial functions h,: x — % (<),
ordinals ry<x (w<x) s.t. for all a<p:

domh, e D
and if
X = {8] h()=r},
then
hyl X<h,| X .

Here f|X means the function f restricted to the set X.

5%
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Proof. By assumption, for every unbounded (mod D) function A: % — % there
isa g=<hs.t. g is unbounded. Construct by induction the partial functions A,: % — x,
ordinals, r,<x (x<2) satisfying the statements of this lemma..

Successor stage: For any o, let r,.; =r,, h,.;<h, an unbounded partial
function. . o

Limit stage: Suppose A is a limit <x and we are given #,, r, for <2 satisfying
the statements of the lemma. Let .

= sup{r,] a<i}

and .
' B, = h){8] h(&)=F}.
Then Eﬁ<ﬁu for a<f<i. Given any n<u, let

r(n) = max{F, suph, n+1}
<2

by = FA{O1RL)Z ()} -
First Case. For every 7 there is a '>7 s.t.
U {ha Gl 2<A}e D.
Then we can pick a strictly increasing sequence {n, &<x} s.t. for all é<x
X, = {/1;,;(/1",,',:17“1)[ a<id}eD.

But then {X,| &<x} is a regularizing family for D: If &, < ¢, <... and 0 € X;, for all
i<, then there are a;<} s.t.

) ha,ﬂgi(o) € h;:ﬂe:ﬂ{+ 1 (i<o).

In particular, for all i<w:

f e domh, e, *

Therefore )
h (@) =r(ne) .

By (), for any i>0, there is a fj<u,, s.t.

hm—1(0) = lin(—x(ﬁ)<"<’1§,) .

Therefore, h,(6)>F,,_,(6). Since the ki, form a <-decreasing sequence, we obtain
strictly decreasing sequence a; >a,>..., a contradiction.
Since we are assuming that D is non-regular, we must therefore have:
Second Case. There is a 7 s.t. for all n>#,:

U (e (hano)] #<2} ¢ D
Set r; = r(no) and
) R, = haye (@<A).
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L]
Hence, for every n<ux:

() U R Bml a<i}¢D.
Define an equivalence relation ~ on x via:

N~ < Ja<ld: ?l:,(ﬂ) = il:,(ﬂ') .
Define:

() = min{Bn)] a<i}.

Then o=, for all x< and ¢ is unbounded (mod D): If not, by the regularity of »
one can find <x ~-equivalence classes whose union is in D; a contradiction with (#%).
Hence, we can choose a A;<p. M

Proof of Theorem 1.1. Let D be a non-regular ultrafilter over a regular
cardinal » with no weakly normal ultrafilters below D in the Rudin-Keisler order.
To show that U = D x D is regular we will apply the proof of Lemma 1.6. First
of all, note that the definitions of <, < and <y really do not depend on the
indexing set of the ultrafilter. For example, we will define for two functions
QP HxXx—

<Y (modU) « {i] p(N<Y(N}eU.

Thus, when we apply our previous results we can continue with our usual notation.
By way of contradiction, assume that U is non-regular.

Let f denote the projection % x % — x to the first coordinate and g denote the
projection x x % ~ x to the second coordinate. Then f and g are unbounded (mod U)
and for all /i:

n<g — h bounded or f<h(modU).

By the method of proof of Lemma 1.6 we can then get partial functions &,
(o< ) satisfying all the statements of the lemma and the additional property

h(8)>f ()

(iedomh,, a<wx).
Then for all a<x

X, = {i| h(i) defined and f(i)>r}eU.
{X,| a<sx} is then a regularizing family: If /e X, n Xp, then A (i)>r, so
h(D)>he()  (x<f)

Hence, by the well-foundedness of ordinals, every infinite intersection of the X,’s
is empty. M

To prove Theorem 1.2, we shall need an improved version of Lemma 1.4:

LemMa 1.7. Suppose g, f, (a<A<x) are partial closed functions defined a.e.
(mod D) s.t. for all a<f<i:

g<fy and f,>fs.
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For any closed umbounded C, define a partial function K by:

K¢ = min{£%,| k¥%,>g},
ie. N )
() = min{k% ()| ye domf, n domg and K%,(3)>g ")} -

Then there is a closed unbounded set Cy s.t. for all closed unbounded C< Cy: h® = KC°
a.e. (mod.D) and K is a closed function (mod D).

Proof. It is easy to see that for any such C,, A% is a closed function. If a C,
of the type described does not exist, we can find a decreasing sequence {Cyl <o}
of closcd unbounded subsets of » s.t. for all é<x

X, = {of hc“‘(oc) = h%@) and ae domA®+ A domh®}e D.
" For a closed unbounded set C, define a partial function € by setting:
t5(y) = least o<lds.t. K5h(y) = K@) .

" Note that the functions 4° have the following important property:
If C<Ecx are closed unbounded and A°(p) # K%(y), then either:

HEy)<n®y)  or  o)<tFy).

Moreover, for any CSE:
<",

We can now prove that {X,| €<} is a regularizing family for D: If not, some
infinite intersection is non-empty. For the sake of notational convenience, assume
that there is a f<x s.t.

e N{X| i<w}.

First of all, for all i<j<cw: Since C;< Cy; t% (6)= t+4(0) = 10). If 1°4(0) = t/(0),
then. £€4(@) = #°+(9) and therefore AS(B)<hS*1(8)<h®(6).
Therefore, for all i<j<w: Either

K@) >h0) or  190)>1°Kp).

But this is clearly impossible by Ramsey’s theorem. B
Proof of Theorem 1.2. By way of contradiction, assume that D is non-regular
" and that [g] is a non-maximal element of I'(D) with no successor in I'(D) in the
standard ordering (mod D).
Construct inductively a decreasing sequence of closed unbounded sets C,=x
(<>) and partial closed functions A, (x<x) s.t.

domh,e D, h,>g,
o rangeh, & C, (a<x)
and for a<fi<x:

hy<h, on {8 h(8)eC}.
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Successor stage: Pick A,y s.t. g <hyy,<h, and the range of A, is €C, where
Cor1 = G,

Limit stage. Suppose we are given {},] a<2} and {C,| a<A} satlsfymg the
above statements and A< is a limit ordinal. Let C = N {C,] a<a} and

By=h) B7NC) (a<?).

Applying Lemma 1.7 to the h, we get a closed function % and a closed unbounded
set C=C s.t. g<h and

RSB if  KRB)>g(8) (5<x).
Now let C; be the set of limit points of C and select a closed (partial) function 4, s.t.

g<h,<h
and
range(h))=C; .

Given the sequences (/] a<x), (C,| a<x) let E be the diagonal intersection
of C,’s:
E={« YB<a: aeCs}.
Let
N, = hJh; {(E).

Then the functions N, (¢<x) are partial closed functions s.t.
domN,e D, N,>g (x<x)
and for a<f<x:

Ny<N, on {8 h(0)=p}={s| g(6)>h} ndomN,.

We can now go on to produce a regularizing family for D as in the proof of
Theorem 1.1. M

OreN PrOBLEM. Does the existence of a non-regular ultrafilter lmply the
existence of weakly normal ultrafilters?

2. Indecomposable ultrafilters over singular cardinals. In this section, we shall
derive some partitioning properties for indecomposable ultrafilters over singular
cardinals of cofinality w. These results have natural generaliza'tions,to'singular
cardinals of other cofinalities and ultrafilters which are indecomposable from some
point on. However, for the sake of convenience we shall stay with case cofinality w.

From now on, assume that D is an indecomposable ultrafilter over a strong
limit cardinal 1. By the result of Silver (Theorem 0.8) we have a “maximal” function
o A— .

Let U be the ultraﬁ[ter ©x(D) and F the filter generated by the' sets

e~ (S) (SeU).
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2.1. PROPOSITION. If y<l and {X,| a<v) is a sequence of subsets of A, then
there is an X e D and sets S,So (x<?y) such that

XA X=0TS)n X @<).
Proof. Define a new function y by setting
b)) ={d re X} G<d.
We can find an Xe D so that

Y<pxp oOn X
ie,
a,feXno@ =) — Y@ =¥ — Vo<y: aeX; < feX,. &

2.2. COROLLARY. If y<A and {X,| a<y) is a sequence of subsets of D, then
there is an Xe D and sets G, € F (x<y) such that

XnGsX,.

From now on, assume that cof(1) = w and {4;| i<} is a fixed cofinal sequence
of cardinals in A.
2.3. PROPOSITION. If X, € D for o<, then there is an X € D such that for any
a<A there is a G,€ F with
XnG,cX,.

Proof. .By Corollary 2.2, for any i<w there is an X;e D and sets GLe F
(x<2;) such that

X;nGicXx, (a<l).

Applying Corollary 2.2 to the X, we find an X € D such that for any i<w there is
a G,e F with

XnGnGeX, (a<lh, i<o). W

24. PROPOSITION. If By<A and F: [A1*— B,, then there is a set Xe D,
countable set S<f,, and an unbounded function t: w— w (mod U) such that for
a, fe X

e@<1(p(B)~ F({e, B}) € S.

Proof. First of all, there is a set ¥'e D such that for any a<A there is a G, & F
and a countable set S,<f, with

F/(YnG)eS, (u<d),

where

FB) = F({o, B}).
By indecomposability, there is a set Z= Y, Z e D and sets G € F (i<w), countable
Sy such that for aeZ )

F(Y 0 Gpp)sS.
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We can without -a loss of generality assume that
G 20,26G;2..., and
We have obtained: For «, feZ:
BeGowy — F({n, B}) € S.

NG, =0.

Now, let
u(y) = max{k| ye Gy} .

We know that u = to¢ for some t: w—w on a set Xe D, XcZ. Then for
o, fe X

p@<t(pB)— F({x, p})eS. W

2.5. PROPOSITION. There is a fixed unbounded function t: @ — o (mod U) s.%.
Sor any F: [JP— g, 0<X there is a set Xe D and a countable set Sco st

@<t(p(®)— F({a, B} e S.

Proof. First of all, by m-:egularity of U, we can assume that g is fixed. If no
such ¢ exists, then for every ¢ we would have a “counterexample” F,: [4]*— ¢. Let
F = (FJt: w— w unbounded (mod D)). Then F is a partitioning of [A]* into <A
pieces and clearly contradicts Proposition 2.4. B

A simple iteration of the above arguments and another w-regularity argument
then yield the main result of this section:

2.6, THEOREM. There is a fixed unbounded function p: o — w s.t. for any
n<w, partitioning F of [A]" into <A pieces there is aset X € D and a countable set S
s.t. for all oy, ...,a,€ X:

Vi<n: plo@))<e@isg) — F({oy, ...

Note that this does not per se say anything “new” about A: It is well known
that given such an F one can always find a set X< A of card 1 with a property of the
kind stated above.

Assuming GCH, it is an easy matter to extend this result to pressing down
partitionings on the weakly normal indecomposable ultrafilters of Prikry [6].

,q})es.

OPEN QUESTION. Are there any indecomposable ultrafilters over w, in L?

3. Indecomposable ultrafilters over inaccessible cardinals. Throughout this section
we shall assume that D is a fixed weakly normal indecomposable ultrafilter over
a strongly inaccessible cardinal ». Let ¢: % — w stand for the maximal function
of Theorem 0.8 and U = ¢,(D). Our main result is then the following:

3.1. THeorReM. If x is weakly compact, then x is ‘Ramsey. In fact, given any
%-field SSPx of subsets of % of cardinality », there are »-complete ultrafilters U, =S
s.t. D is the U-sum of the U/s: For X €S,

XeD « {i| XeUj}eU.
We shall start out with a lemma:
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3.2. LEMMA. If % is weakly.compact, then for every sequence X,Sa (a<x),
there are sets

Tiex  (i<w) st {o| X,=T,mneleD.

Thus, in particular, % is ineffable in the sense of Jensen [2].
Proof. Let f (o) = X, n ¢ (¢, E<x). We can find gy, X;€ D s.t.

(E<x).

f§=g‘§0([) on X;

Hence, for £<n<x

Céjn = {i[ gr:(l) = gy’(l) N 5} € U-
By weak compactness, there is a set 4 =% of power x and a set C e U s.t. for E<,
E,ned i

Cey=CeU.
For ie C, let
Ty =U{g )l Sedp. B
We can now proceed in a manner entirely analogous to Silver [7]. Consider
the model
N=0xV,& = {[f1l [range(f)I<w}.

Let »* = [x], and define an “ultrafilter” M over »* as follows:

[XIpeM & {a] ae X(@)}eD.

Following Silver {7}, we can now prove:
3.3. LEMMA. If x is weakly compact, then M is an “N-ultrafilter”: For all
a,b,c,d,feN
(D) ae M — NEacx* and |a| = »*.
(AD NEbuc=x* — beM or ce M.
(M) NEbne=0—b¢Mor c¢ M.
(AV) If NEaex*, f a function on a and Vb: Nkbea — f(b)e M, then:

N{F@) beafenm.

(V) If NES a function on x* and {x| f(x)<x}¥e M, then A y: Nk y<u*
and if Nk a = f~Yy), then ac M.
(VD) If Nk fis a function on x*, then 3-ce N s.t. for all d:

NEdec o NEd<u* and f(dye M.

Proof. For example (VI). Following Silver [7], it suffices to show that there is
a canonical isomorphism '

H: (II3V) A P(x*) = M, P(a) .
But this is clearly given by Lemma 3.2. W
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3.4. THEOREM. Assume D is an indecomposable ultrafilter over a weakly compact
cardinal . Then:

(2) If S=P(%) is any x-field of subsets of % of power x, then there are x-complete
ultrafilters U, 5 s.t.

XeDnS o {i| XeU}eU.
(b) If F: [x1°°— 4, A<x, then there is a set Xe D such that

[F"[X]*<w.
(¢) x is Ramsey.

Proof. (a) Applying property (VI) of Lemma 3.3 to [S n D] we get an equiv-
alence class [(U;| i<w)], s.t. for all X:

XeDnS & {il XeU}eU.

Furthermore, the U; are clearly »-complete a.e. (mod U). (b), (c) follow directly
from the methods of Ketonen [5]. M '

OPEN QUESTION. Is x measurable in the above situation?
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