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ProrosiTION 5. If a paracompact space X has a feathering in a locally compact
and locally connected space Y, then compactness and connectness is transferred into X
onto small layers.

ProrositioN 6. If a paracompact space X has a feathering in a paracompact
p-space Y e clck, then the property H¥(Z; G) = 0 is a property transferred onto small
layers.

Proof. The space X has feathering # = {P,: n = 1,2,..} in BY. Define
relations B, on extgy¥%: (P’, P)e b, iff P’]XiP]X, clyyP'>P AP, and for each
u' € P’ there exists a u € P, u’' cu, such that the induced homomorphism H*(u n Y; G)
— H*W' nY; G) is trivial. Let B = {b: k<n, m<co}. The uniformity %% is
2 % -uniformity. We shall verify that for each #-pseudouniformity # c %% we have
H4[x]y; @) = 0, k<n, x € X. Notice that for each & -pseudouniformity # a family
{st(x, P): Peexty) is a base of neighbourhoods of [x], = [¥lexiy %, x € X.
Hence a family {st(x,P|Y): Peextyy%} is also a neighbourhood base of [x],.
Now, from the definition of the relations &% it follows that for each neighbourhood
uePeextyy¥ of [x], there exists a neighbourhood v’ € P’ e extyy ¥, (P, P) e bk,
such that #'mnYcunY and the induced homomorphism H%unY; G)
— H*u' 0 Y; G)istrivial. By Theorem 6.6.2 from [7] it follows that B*([x]y; G) = 0.
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The category of abelian Hopf algebras
by

Andrzej Skowronski (Torufi)

Abstract. By abelian Hopf algebra we mean a commutative, cocommutative, connected,
graded Hopf algebra over a field. In this paper we investigate the category J€ of all abelian Hopf
algebras and the full subcategory £ of J€ consisting of all primitively generated Hopf algebras.
In particular we give a complete description of injective objects in categories £ and J€ and we
prove that gl. dimL =1 and gl.dimJC = 2.

Introduction. Let K be an arbitrary field. A graded Hopf K-algebra which is
commutative, cocommutative and connected will be called an abelian Hopf algebra
(see [10], [18]). Denote by # the category of all abelian Hopf algebras. Recall
that J# is a locally noetherian Grothendieck category and an object H in 3 is noe-
therian if and only if H is finitely generated as a K-algebra (see [7], [10]). The tensor
product ® over X is the coproduct in #. Let p be the characteristic of K. If p = 0
then gl.dims# =0 (see [10]). Assume p>2. In [10] Schoeller showed that
H = A" xH#* where # is the full subcategory of # consisting of all Hopf
algebras generated by elements of odd degrees and #°* consists all Hopf algebras
which are zero in odd degrees. Furthermore, gl.dim#~ = 0 and # is a product
of countably many < categories each of which is equivalent to the full subcategory
#y of #* consisting of all Hopf algebras generated by elements of degrees 2p°
where i =0,1,2, ...

Let H be an object in # and 4 the comultiplication of H. An element x of H
will be called primitive if 4(x) = x®1+1®x. From Theorem 6.3 in [7] it follows
that each subobject of a primitively generated abelian Hopf algebra is also primitively
generated. Denote by % (resp. &7, £ %, #,) the full subcategory of 3# (resp. #~,
H*, o) consisting of all primitively generated Hopf algebras. Then . is a locally
noetherian Grothendieck category, & = %~ x %™ and £ is aproduct of countably
many categories each of which is equivalent to the category %,.

Let #"-GrMod denote the category of graded K-modules and let

P: # — K-GrMod

be the functor which assigns to each H from s, the graded K-module P(H) of all
primitive elements of H. Moreover, let

Q: #,;— K-GrMod
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be the functor which assigns to each H from 4, the quotient graded K-module
I(H)/I(H)* where I(H) is the ideal @ H, (see [7]).
n=1

From now on K is an arbitrary field of characteristic p>0and N = {0, 1,2, ..},
We investigate categories &, and #°, using a representation of some special trees
in these categories.

In Section 1 we investigate the category £, . In particular we give a description
of projective objects in .#; and we show that gl.dim%, = 1. In Section 2 for an
arbitrary field X of characteristic p>0 we introduce the category 7, of m-special
trees with ballast where m is the cardinality of a basis of X over K”. Section 3 contains
definitions of two functors L: 7, — %, and H: 7 ,,— 4 and their basic proper-
. ties. In Section 4 we study the structure of injective objects in categories .% 1
and ;. In particular we prove that the functor H (resp. L) gives a one-one cor-
respondence between some m-special trees G¢", 0<n< oo, defined in Section 2,
and indecomposable injective objects in 3#, (resp. in &,). Moreover, we show that
gl.dim#; = 2. In Section 5 we compute endomorphism rings of indecomposable
injective objects in ;.

Some results presented in the paper were proved in [10] for a perfect field (see
also [18]).

The paper is a part of the author’s doctoral dissertation [16] written at the
Institute of Mathematics, N. Copernicus University under supervision of Professor
Daniel Simson. Some results of the paper were announced in [15].

I wish to thank heartily Professor Daniel Simson for suggesting the field of re-
search, useful discussions and help in the preparation of this paper.

§ 1. The category #;. We recall some notation and definitions. Let R be a com-
mutative ring with identity. An additive category % (not necessarily with coproducts)
is an R-category if Hom,(X, Y) is an R-module for any X, ¥ from € in such a way
that the morphism composition is R-bilinear (see [1], [8]). A functor T: 4 — ¢’
between R-categories is an R-functor if the natural morphism Homg(X, Y)
— Homg(TX, T'Y) given by f— T(f) is 2 homomorphism of R-modules for each
X, Y from %. If % is an R-category and F is a €-module (i.e. a covariant functor
from % to abelian groups [1], [12], [13]), then F(X)isin a natural way an R-module
for each X in . Moreover, if 1 X — ¥is a morphism in %, then F(f)is an R-homo-
morphism. It follows that the category #-Mod of all %-modules is equivalent to the
category of all R-functors from & to R-Mod (see [1], § 1). If % is an R-category,
then there is a unique R-category structure on %-Mod such that the Yoneda em-
bedding is an R-functor ([14], Proposition 3.1).

A Grothendieck category o is perfect if every object in &/ has a projective
cover (see [6], [12], [13]). An object M of & is serial if the family of all subobjects
of M is linearly ordered by inclusing [17]. & is said to be locally serial if it has a family

of serial generators. The Jacobson radical of an additive category % is a two-sided
ideal J(%) defined by
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J(#)(A, B) = { fe Hom,(4, B); 1-gf has a two-sided inverse for every g}

(see [8]). Recall also that the Jacobson radical J(%) of an additive category & is
right T-nilpotent if for any sequence
1 f2
Ay dy > Ay~ ..
with f, € J(€)(4,, A,+,), there exists such m that f, ...f,f; = 0 (see [2], [12].

Now let K be a field of characteristic p 2. For a natural number 7 we denote
by "L the polynomial Hopf algebra K[x] with degx = 2p" and with the comulti-
plication given by 4(x) = x®1+1®x. The full subcategory of ., consisting of all
objects "L will be denoted by 7.

THEOREM 1.1. (1) &3 ~ #°*-Mod and gl.dim %, = I.

(2) &, is a locally serial and perfect K-category.

(3) If (K: K™} is finite then the endomorphism ring of every noetherian object
in P, is a finite dimensional K-algebra.

Proof. (1) In order to prove the equivalence %, ~ #°*-Mod it is sufficient
to show that the objects "L, ne N, form a set of noetherian projective generators
in Z,; (see [9], p. 103).

Fix ne N and let u: H—"L be an epimorphism in .%,. We prove that u splits.
First observe that since H is in %, the natural epimorphism I(H)—/ (HY/I(H)?
= Q(H) of graded K-modules induces the epimorphism P(H)— Q(H) of graded
K-modules. Further, Q("'L),» = Kx and Q("L), = 0 if r # 2p". Then thsre exists
an element y in P(H),,. such that u(y)—x belongs to I("L)>. Since I("L); = 0 for
r<2p", so u(y) = x. We define the morphism s: "L — H by s(x) = y. Consequently
us = id and "L is a projective object in &,. Now, let H belong to &, and let H'
be a proper subobject of H. Then there exists a homogeneous primitive element z
of H which is not contained in H'. Let degz = 2p". Then we have a morphism
g: "L — H given by g(x) = z, where x is a generator of "L, which does not factor
through H’< H. Hence the objects "L, ne N, form a set of generators in %.

We now show the equality gl.dim%, = 1. By Proposition 7.8 in [7] every
subobject of "L is isomorphic to "L for a certain m3>n. Hence every right ideal
in & has the form Hom,(—,"L), and so is projective in #;. Then by Theorems 7.24
and 7.25 in [4] gl. dim %, < 1. To prove that the equality holds it is now sufficient to
observe that the exact sequence

0— (x7) = °L — °L(x") —~ 0
is not splitable. Consequently gl.dim%; = 1 and (1) is proved.

(2) The fact that %, is locally serial follows immediately from Theorem 7.8
in [7]. We now show that %, is perfect. By Theorem 5.4 in [13] it is enough to show
that the endomorphism ring of every object in %~ is left artinian and the Jacobson
radical J(") is right T-nilpotent. But

K for

nzm,
Homy ('L, "L) = {0 for -

n<m
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so it is sufficient to prove the second part of the last statement. For this purpose
consider a sequence

my i: ny oy f; LISy O

where each f, belongs to J(). It is not difficult to check that J(A#)("L, "L) # 0
if and only if n>m. Assume that each f; # 0. Then ny, >n,>n;>... and we get a con-
tradiction. Consequently f,, = O for a suitable m and J(X') is right 7-nilpotent.

Finally we define a X-category structure on #". Let n € N and consider the follow-
ing homomorphism of rings u,: K— End,("L) given by (u,,(a))(x) = a'"x where
"L = K[x] and ae K. Then for each n, me N, nzm, a K-module structure on
Hom, ("L, ™L) is given by the formula

un(@)f = a-f = fu(a)

where fe Hom, ("L, "), a € K. It is easy to check that the morphism composition
in o is K-bilinear. Hence by Proposition 3.1 in [[4] the category &, ~ X °°-Mod
is a K-category.

(3) Let H be a noetherian object in ;. Then there exists an epimorphism

m

® "L — H. Consider the following diagram of K-linear spaces
i=1

0
t

m

0— Homg,(H, H) — Homy (®"L, H)
=1

i

m m
Homg (®™L, ®"L)
=1 j=1
with exact row and column. Moreover, it is easy to observe that the natural isomor-
phism of abelian groups

m m m m

Homg,(®"L, ®"L) ~ @ @ Homy,("L, L)
i=y i=1 i=1 j=1

is K-linear. Hence if (K: K?) is finite, then End("L), ne N, are finite dimensional
K-algebras and End(H) is also a finite dimensional K-algebra. This completes the
proof of the theorem.

CoRroLLARY 1.2. (1) Every projective object P in £ | is isomorphic with a coproduct
of objects "L, ne N, and any two such decompositions of P are isomorphic. ‘

(2) If (K:KP) is finite, then -every noetherian object H in %, is a coproduct of
indecomposable objects and any two such decompositions of H are isomorphic.

Proof. It follows from Corollary 1.4 in [14], Theorem 1.3 on p. 320 in [9],

Lemma 7.4 on p. 369 in [9] and the fact that if the endomorphism ring of an inde-
composable object is artinian then it is local.
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§ 2. m-special trees. Troughout this section we assume that K is a fixed field
of characteristic p>0 and that (K:K?) is a cardinal number m.

Let G = (X, U) be a directed graph with a set of vertices X and a set of edges U
(not necessarily finite). For each x € X, denote by dg (x) (resp. dg(x)) the cardinality
of the set of edges with initial vertex x (resp. final vertex x) (see [3]). We say that
a verlex X is a node (vesp. input, output) iff di (x)=2 (resp. dg(x) = 0, dg(x) = 0).
Denote by W(G), Z(G), I(G) the sets of all nodes, inputs and outputs of G, respectively.
Whenever no confusion arises we shall write simply d~(x), d*(x), W, Z, I instead
of a dg (x), d&(x), W(G), Z(G), I(G). If for x, ) € X there exists a chain from x to y,
then denote by d(x, ») the distance from x to y. A path

U= ((xla X2), wers (Xpmg5 X))
from x; to x, is said to be a branch if the following condition is satisfied: for each
1<k, x;isanode iff /=l or I = k. A graph G = (X, U) is said to be normal
if for every path u = ((xy, x,), ..., (Xg-1, X)) from x; to x, and k>2, (x, x,) ¢ U.
G is antisymmetric if (y, x) ¢ U whenever (x, y)e U (see {3]).

DepmuTION 2.1. An in-special tree is a connected, normal, antisymmetric
graph G = (X, U) without cycles satisfying the following conditions:

(@) d~(x¥)<1 and d*(x)<m for each xe X,

() if we W then d~(w) = 1,

(c) for each x € X there exists a path of finite length from x to a certain ie 1.

Denote by B the family of all sets of elements of K which are linearly inde-
pendent over K”.

DeriNITION 2.2. An m-special tree with a ballast ¢, ¥, < is a sequence
G=(X,U,p,¥, <) where (X, U) is an m-special tree, < is a well order in [
and @: W— %8, : X— N are set mappings satisfying the following conditions:

(a) d*(w) is the cardinality of the set @(w) for each node wekW,

(b) if there exists a path with an initial vertex x and a final vertex y then d(x, »)
=y x)—y (.

Let G = (X, U, ¢,V, <) be a fixed m-special tree with ballast ¢, §, <. For
each ne N we define the set

W,={weW, y(w) =n}.

Further, if W(G) s 0 then by induction on nzn, = min{y (w); we W(G)} we
define for each w e W, the set I, =/ and the element i, € I,, as follows. If we W,
then we put ,
I, = {ieI; there exists a path from w to i}

and let i,, be the minimal element in I,,. For every n>nyand we W, put I, = ur
where ) :

L, = {i,; we nU W, and there exists a branch from w to w'},

k=no
1! = {iI; there exists a branch from w to i},
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and let i, be the minimal element in 7,,. It is clear that d *(w) is the cardinality of the
set I, for each we W.
We shall use the following notation:

QD(W) = {Uw,i; ie]w}ﬂ kw,i = Uw,i/vw,iw

for each we W and ie],.

Moreover, we observe that for each vertex x ¢Ju W there exists a unique
vertex j(x) €l u W such there exists a branch from x to j(x). Then we define
a function ¢: X' — I by

[x, ifxel

| e if xe W,

o(x) = { Jj(x), if x¢Iu W and j(x) is an output such that there exists

| a branch from x to j(x),

if x¢ Ju W and_j(x) is a node such that there exists
a branch from x to j(x).

lien-

DerFmvITION 2.3. A morphism f: G = (X,U,0,¥,<)— G' = (X', U’,¢",¥',<")
of wt-special trees with ballast is a morphism /3 (X, U) — (X, U") of directed graphs
satisfying the following conditions:

@ Y (f () = b0, o'fo(x) = o'f (%), d(x) = d™(f () for xe X,

(B 2w, i Vreyosty = B, j* Primperreny O each we W and i,jel,.

Observe that, if the morphism f in the definition above satisfies condition (a),
then for every we W, ie I, the vertex () is a node in G and o'f (i) & Iy So,
condition (b) is correct.

LeMMA 24. Letf: G = (X, U, ¢, Y, €) > G' = (X, U', 9", ¥, <), g9: G’
=X, UL ¢ ¥, <) = G" = (X", U", ¢",¥", <" be morphisms of m-special
trees with ballast. Then gf: G — G, idg: G — G are morphisms of m-special trees
with ballast.

Proof. The fact that ids is a morphism of m-special trees with ballast follows
from the equalities o(7) = i, i € I(G). We shall prove that gf satisfies conditions (a), (b)
of Definition 2.3.

(@) fxe X, thenyf"gf (x) = Y'f (x) = ¥ (x), " gfo(x) = 6"'go'fo (x) = o’'go'f(%)
= 0"gf(x) and d~(gf(x)) = d™(f(x) = d™(x).

®) Let weW and i,jel,. Then o, Vjwary = Us,j " Drtwner s
Uronets ) Yoo ey = Vg Dgromarsrsr- Since  a"ga’f(j) = o"'gf(j),
a"ga’f(i) = 6" gf(i) we have that b, ;0,7 avarcy = Vi Dyrewyarasty - This finishes
the proof of the lemma.

m-special trees with ballast form a category which will be denoted by 7

me
We now give a method for constructing m-special trees. Let A be a well-ordered
set of cardinality m. Moreover, assume that G = (X, U) is an m-special tree such

that Z(G)  @. It follows from Definition 2.1 that Z(G) contains only one element z.
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For each je 4, let G; = (X}, U)) denote a copy of G = (X, U) and let z; be the
unique clement of Z(G)). We define m-special trees

M(G) = (Xy, Uy), N(G) = (Xy, Uy,

puiting
Xy = (.UA Xifiz; ~ 2z j,me AN U {2y},
je

Uy = (jUAUj) V] {(ZMa WM)}

where U denoted the disjoint union, wy = {z;; je 4},
Xy=XON

and
Uy = U {0,2} 0 {(r+1,r); re N}.

Observe that I(M(G)) = UAJ(G_,.),, WM@) = (U @) © {md, Z(M@)

< e
= {23} and I(N(®)) = I(G), W(N(G)) = W(G), Z(N(G)) = @.

If the set I(G) is well ordered by <g, then we define a well order <,y in
(M (G)) as follows: if ie I(G), ie I(G,) then

iSyi f j<morj=m and i<qi.

For each ne N we define by induction on n standard m-special trees

EH = (},’l’ 7;‘)’ G" = (Xn5 Un)

such that d*(w) = m for we W. If n = 0, then we put

Xy = [0, 1}7 Up = {(15 O)}w E, = N(GO)-
If n>0, we put G, = M(G,—,), E, = N(G). )

Now we define the maximal m-special tree E,, = G, = (X, U,). Let o be the
minimal element of A. For each n e N, we consider the set ¥, = X, U N and define

a function r,: ¥, — Y, by

Pujx, 18 the natural inclusion X, = (X,)o < Yus1»
r0) = z,,, is the unique element in Z(Gy4y), ry(l) = I—1 for Izl

The injections r,: Y,— Y., induce in a natural way morphisms f,: E,— E,.4,
ne N, of m-special trees. The m-special tree G, = (X, U,) is defined as follows:
X, = lim{Y,,r,} and the set U,, induced in a natural way by‘ the sets T, ne N.
Then we have the canonical injections s,: E,— E,, of m-special jcr-ees, such that
Syr1ly = S, for each ne N. Furthermore, we observe that the trivial well order
in I(Gy) = {0} induces well-orders <, in I(E,) = I(G,), 0<n< o, preserved by the
morphisms #,, $,.
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For example, if m = 3 then the trees Gy, Gy, G, have the following form:

aE

Gy

DEFINITION 2.5, A basic ballast of the nt-special trees G,, E,, 0<n< oo, is
such a ballast ¢,, V,, <, that @, (w) is a basis of K over K” for each we W,
Y (i) =0 for ie/ and <, is the order defined above.

For 0<n< oo, we denote by G* (resp. E,") the tree G, (resp. E,) with a basic
ballast @,, Y, <,

§ 3. Relations between m-special trees and abelian Hopf algebras. Let K be a field
of characteristic p>0 and let (K:K%) = mt as above. The main tool used in our
investigation of abelian Hopf algebras are funciors

L:T,—» %, H:T,—#;
defined as follows. If G = (X, U, ¢, ¥, <)e T, then we put
LG) = ®@"ILISG) -
iel

where I is the set of all outputs in G, YL = K[X;] with 4(X)) = X,®1+1®X;
and S(G) is the ideal in ® YL generated in the case Z(G) # & by clements

) iel
(2) X{N(W)_'pm—k
(W)~ w(0)
(b) X3 ,

pYiW) = w(iy) .
X5, , fel,, weW,

w,i

zeZ,

and in the case Z(G) = @ by elements of type (a) only, where o is the minimal ele-
ment of I

¥ 6=XU,0, ¥ <)—G =(X,U,¢,y, <) is a morphism in 7,
then L(f): L(G)— L(G’) is defined by

L(f)(Y,-) — (Y;'j(z))}’w’fm—Wawn
where Y;, Y} denote the images of X, X} by the natural epimorphisms & ¥¥L
. tel(@)
—L(G) and ® YL L(G’) respectively.
Jel(G) .
Lemma 3.1. L: 7, — % is'a covariant functor.
An easy proof is left to the reader.
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Next we define the functor H: 7, — ;. For each reN, let K[XT
K[X,, Xy, ...] the algebra polynomial on variables X,, ne XN, with deg X,
= 2p"*" and with the comultiplication 4 given by

4(Xy) = Xo®@1+10X,,

= m

1o em nem
A(X) = X,,®1+1®X,,+Z——~P 1Xr TR IQXE T —A(X, )]
0

see [5] p. 542 and [10] p. 139).
If G=(X,U,¢,¥, <) is an object in 7, then we put

H(G) = @ K[X}PYT(G)
el

where I is the set of all outputs in G, K[ X = K[X]"P = K[X,,, X, ;,...] and
T(G) is the ideal of ® K[X 199 generated in the case Z(G) # @ by elements

iel
ww) = (i) m (W) = (i) .
(@) Xooi —kXn., . iel,, we W, meN,
w(z) = (o)
b) Xho , z2€Z,meN,

and in the case Z(G) = @ by elements of type (2) only where o is the minimal element
of I.

Iff: =X, U,0,¥,<)—G6 =(X,U’, ¢, ¥, <) is a morphism in 7,
then H(f): H(G) — H(G') is given by :

H(F )Y = (Tpgrp)?" 770710

where Y, Y. ; denote the images of X, X, ; by the natural epimorphisms
® K[XPP'L H(G) and ® K[X]V9PY— H(G') respectively.

ie1(G) Jjel(G" ‘

Lemma 3.2, H: T, — # is a covariant functor.

Proof. To prove that for every G in 7, the graded K-algebra H(G) belongs
to o, notice that A (YA ") = kELA(Y2"*") for eachw e W(G), i€ I, me N.
This follows from the fact that X is a field of characteristic p and that the coefficients
in formulas defining 4(Y,, ;) are integers. An easy proof that the definition of H(f)
is correct and that H(—) is a functor is left to the reader.

Now let G = (X, U, ¢, ¥, <) be an object in 7,,. For each ne N, we define
sets

I ={iel, y(<n}, X,={xeX;yx)<n}.

By induction on m>m, = min{y (i); ie I} we define sets K, by

Kmu = ]mo and Km = [(In(\Im—l) Sp ¢ —1]\[ LF)V ([w\{lw})]
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for m>m,. Observe that the sets K, can be defined also in the following way. In.

every set I,,, m>m,, we define an equivalence relation =, as follows: for i, je I,,,
i=,jiff i =j or there exists a chain connecting i and j such that its vertices
belong to X,,. Further, in each equivalence class with respect to =, we have a well

order induced by the well order < in I(G). Then K, is the set of minimal elements

(in the sense <) of the different equwalence classes in 1.
Observe that I, K, for each we W, , ‘m=my, and, for each me N, deﬁne

a set K, by the formula
;BN U L), i Wy # 8,
&_{

it Wy =0.

weWms1

m 3

We shall need the following technical lemma.

LemMma 3.3. Let G = (X, U, ¢, V, <) be an object in F,,. Then

pm— i)
KY§; ,

PHG), - {ziﬁ )

if r=2p"™ and mzmyg ,
, In the opposite case

where my = min{l,b(i), ieI(G)} and K,, are the sets defined above.
Proof. For each m>m,, we set N, = {(r,i)e NxI; r4+ (i) =
the definition of H(G) it follows that

YKr,i’

m}. From

&) if r=2p" and m=my,
O(H(G)), = {(r,i)eNm
0 , in the opposite case.
Let x be a non-zero primitive homogeneous element of H(G). Since H(G) € 37, ,
we have degx = 2p" for a suitable n>m,. Therefore “there exist elements
., i;e I{(G), me N, such that

= o,y mys
X = [_E] A Y8R o Vimit o Y51 Vi
Jrst]€

m s :
Y, % Geap M = pt and

r=0t=1

where A = {[j,Je N""*x N%; 0<r<m, 1<t<s

=}

without loss of generality one can assume that
(@) 0 # Yint o 1Vin £ 0 if 1<t # u<s, 0<r<m, Ik,
(b) there exists a matrix [J. € 4 with a non-zero row (j,, 1,
Ajr1 # Oy
(c) there exists a matrix [j,,] with a non-zero column (i(',,s,
arjra # 0.
Further we define the following sets:
A = {[j e 4; ap, 5% 0},
B, = {lJ,,] € 4,; there exists such 1<t<s that 0<j, ,<p" ™ ¥},
= AN{Uniis I<u<gs}

«es Jm,s) SUch that

’j r’u,s) such that
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where, for 1<u<s, [J,,], denotes such a matrix that j,,, = p" " ?% and j,, = 0
for (r,t) # (m,w). Clearly B,c=C,. Then the element x has the expression

- e, Lirs]
X = ZD T CATRAE D W TIRY. i

ueDy JrteCx
where

Dx = {“; ISUSS, [jr,!]u GAx}, X[jr’d = H YJ”

rig
O<rsm 1<t<s
Denote by x' the summand of 4(x)e H(G)®H(G) which belongs to
2pn—1

@ H(G),®H(G)ypn—:- Moreover, recall that

-1

»
1 ' _
Y.-,,—Z‘p‘(i) b G D ot R AN

k=1

(*) 4 ( Yr.i) = Yr,i® 1+ 1®

r=1, iel, where ,; =0 if r = 0,1 and .y, is a polynomial of

Yor®L, o, ¥rop ®1, 1@ Yoy oor, 1@ Yy g i 122

Now we show that B, = . Assume to the contrary that B, # @ and consider
the following function v: B;— N given by the formula

0([pgD) = max{jn,; 1<1<s}

where [/, € B,. Then v(B,) is a finite subset of N. Let [],] be such an element
of B, that v([j, )} = Jm,, is maximal in the set v(B,). From the deﬁmtlon_ of B,
it follows that 0< < p"“"’"‘” ‘) Hence the element x" has the form

- - J| 0,tp+ L J s
X = aij,, % m ity " ® Y{)D iy v D Eul 11 ::u YO 1::“ D €Aty +/»
where f contains no monomials of the form

dVine @ YL .. Yirdin Yot Vi, deK.
Then we get a contradiction since x is a primitive element and agj; 4 # 0.
Now, in order to prove the lemma it is sufficient to show that m = 0. Suppose
m>0. Then by (b) and the equality B, = @ it follows that [j,], € Az for a suitable
1<uy<s. Furthermore, by the definition of H(G) it follows that if
0% YU s YR £ 0 for 1<t # r<s, €K,

m,i.
then
R0 0 for 1K1 # 1<,

ulh-

05 YR 2y,

2 — Fundamenta Mathematicae T. CVII/3
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1<k, K<p—1, I'e K. Moreover the equality B, = & and the formulas (x) imply

- that the natural polynomial expression of the element 4( ¥ X”"']) contains
) UneTeCx

no monomials of the form

kpn-m=¥ (i) (p kypr—m- “’(‘t’
er 1,0z ® =1, cek.

Then it follows that the element x’ has the form
p—t
vl
, D\ ykpr=m=wd, ) Kypr=m-wiiu)
X = 0[,‘,,.].,.,(“ E ; (A) Yl @ y e 1’,‘; VUi >+g )
k=1
where g contains no monomials of the form

e Y #liu) o o~ Kyph=m=wl )

= Ly i 12ty I<k<p-1, g eX.
This is a contradiction because ay;, 4, # 0 and x is primitive. The lemma is proved.
Denote by E: %y ©— 3, the natural embedding functor and consider a natural

transformation of functors u#: EL — H given by

u(G)(Yy) = Yo,
where Ge 7, ieI(G).

COROLLARY 3.4. Let P: #— A -GrMod be the functor defined in the introduc-
tion. Then the natural transformation Pu: PEL — PH is an equivalence.

Proof. Easy.

LemMa 3.5. Let G = (X, U, 0, ¥, )&
homogeneous element of L(G) of degree 2p",

T and let x be a non-zero primitive
n<my = min{Y (7); ieI(G)}. Then

) x= Y a4y
ieK,
o)) # 0 if either Z(G) = @ or Z(G) = {z} and n<i/(z)—1.

Proof Statement (1) follows from Lemma 3.3 and Corollary 3.4. Suppose
0#x# Y @, YF"*" satisfies the assumption of the statement (2). Then we have the

ieKn
equalities
P _ pypti-wd) P N1 i) P ok 1= p(i)
=Y &Yt = Y (Y afy? Y+ Y abY?
ieKn weWni1 iely iek}
o L W) pypiti=wii)
= ¥ b, Yl + X Y] )
weWns1 ieKh
where b; E k,af for we W,,,. Observe that
iel w.

P+ L= w(iw) prt 1= wli) | '
{Y =M’EW-1+1!U{Y H EKn}

is the set of vectors from L(G),+1 linearly independent over K. If we assume that
x7 =0, then b;, =0 for we W,y and af = 0 whenever ie K'. Since for each
W& W, the elements k,,;, ie Iw, of K are linearly independent over K¥, we have
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a; =0 for iel,, we W,,,. Therefore x = 0, which contradicts our assumption
and finishes the proof of the lemma.

Recall that an object M in a Grothendieck category of is coirreducible if each
two non-zero subobject of M have a non-zero intersection [4], [9].

PROPOSITION 3.6. For each object G in T, the abelian Hopf algebras L(G)
and H(G) are coirreducible.

Proof. G belongs to 7,. By Corollary 3.4 the subobject of H (G) generated
by its all primitive elements is jsomorphic with L(G). Hence it is sufficient to show
that L(G) is coirreducible. For this purpose it is sufficient to show that for each two
non-zero homogeneous primitive elements x, y of L(G) the intersection (x)  (3) is
non-zero, where (x) and () denote the abelian Hopf algebras generated as K-algebra,
by x and y, respectively. Since L(G)e %,, so degx = 2p" and degy = 2p™ for
a suitable n, me N. We can assume that m = n. For if m ##n and m<n, then
deg 3% " =2p" and ¥""" 3 0 by Lemma 3.5(2). Let

x=Yaqrrt, oy = 3 By,
igd JjeB
where A = {{€K,; a,# 0}, B= {jeK,; b; #0}. If W(G) =
= Iy for a certain /e K. Suppose W(G) # @. In the case

9, then clearly

nzng = max{te N; W, # @}

the set K, has only one element and then by Lemma 3.5(1) the elements x and y
are linearly dependent. Let n<n,. Since the sets 4 and B are finite, then for some
s2zn and a node w e W, there exist paths from w to ¢ and from w to j for each i € A,
je B, Hence we obtain

05 x" "= c¥BT*™  and 0%y = YR

for a certain ¢, de K. Consequently (x) n () is non-zero and the proposition is
proved.

§ 4. Injective objects in #; and #’,. Let K be a fixed field of characteristic
p=2 and let B be a fixed p-basis of X over K” (see [19]). If K is non-perfect then

denote by J the subset of a free group @ Z consisting of all elementsa = (1) € @ Z
be® be®

whose components «, satisfy the condition 0o, <p—1. If K is perfect then we
admit B = {1} and J = {0}]. Put B*= Hb”’ for every aeJ. Then the set

{B*; weJ} forms a  basis of K over K” (see [11]). Let m be the cardinality of J.

For each 0<n< oo, let Gﬁ" and E,‘,”" denote the standard m-special trees with
basic ballast defined in Section 2, where &, is given by §,(w) = {B%; aeJ}. Put

"= HGY), "T=HEM, "R=L(GM, "F=LEM.
We say that an object H from #, is reflexive if H,, is a finite-dimensional
K-module for each m e N. Let #,., denote the full subcategory of #; consisting

2%
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of all reflexive algebras and let *: #.— # ¢ be the dualizing functor (see [7]
and [10]).
Recall also that S = "L/(x"), n e N is a complete list of non-isomorphic simple

objects in ;.

The main result of this section is the following.

THEOREM 4.1. (1) ™I is the injective envelope of "S in A, for each ne N.

(2) For each ne N, I is the injective envelope of "L in #’,.

(3) Every injective indecomposable object in # | is isomorphic with a certain "I,
0gn<oo.

@) gl.dims# = gl.dimat; = 2.

For a perfect field the theorem was proved *by Schoeller in [10].

Before proving the theorem we need some definitions and technical lemmas.

Denote by u, and v,, ne N, the natural epimorphisms

& K[X]P =T

ieI(En)

® K[X1° =1
i2I(Gn)

and

respectively. As in Section 3, by Y, stand for the images of X,; by u, and v,.
Further, for each z € N, let "C be subobject of °T = K[X]%° generated, as a K-al-
gebra, by elements X3, X%, ... and "D the subobject of "/ generated by elements
Y8, Y1, ... Observe that the canonical injections #,: E,~ B, and 5,0 E—~E,,
ne N, of m-special trees, defined in Section 2, induce the injections H(z,): "T—-"*'T
and H(s,): "T—"T = ®[ in #,. Therefore, for each 0<m<w, ne N, "C is a sub-
object of ™7 Suppose m>1 and, for each ne N, n<m< 0, denote by w? the unique
node of trees G‘,‘:," and E“’" satisfying: (x) U, (w0 = n and (ii) there exists a path from

w? to the minimal element o of ](G“"") and I(E,‘f,"‘) We put

"Q = ® (I} for neN,
islwg+l\{a}
W=0and "U= @ (""'I) for n>0,
ielwg

where (")} - "IIfm = 1, then we admit"Q = 0 = "Uforallne Nu;ld "y o=
~for n>0.

LemMMA 4.2. For each ne N, there exist in oy the following exact sequences:

(a) 0__)uD_q)n]_n_")nU__)0’
® 0—"C—"TS w0,
(C) 0—>”T—-)"+1Tl"‘*"Q—->O.

Proof. The case m=1 is obvious because "T'=""'T = K[X]*® and
= "T/(Xc, 0> X7o, ...). Now assume m>1. Let n be a fixed natural number.
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First we show that there exist sequences of types (a) and (b). If n = 0, then ©y = 0
and py = 0. Suppose n>0. From the definition of G, we have the equalities

I .= {i“" 1 Wi-1 € W(Gn)n—l}’
1G,) = U I(G,. 1) :

W(Gn) = ( U W(Gn 1, l)) U {W }

xelw"

where W(Gy)y = I(G,), G,—y,; = G,_; for iels and U is the disjoint wunion.
Consider the following diagram in o, with exact rows

0—K(G)— ® K[X]“’ ) SN
ieI(Gn)
1
0= ® K(Gy-1) = ® ® K[X]Q’j U0

el 12108 jeI(Gnor.i)

where v, = QU145 Uy_y,; = U,y and K(G,) = keru,, K(Gy1) = keru,_y ;.
We will show that there exists a morphism m,: "I — "U in #, such that m,u, = v,.
First we observe that K(G,)=T(G,) and K(G,-,,)=T(G,-; ;). From the equalities
above every generator of the ideal T(G,) of the form X2~ —k5 XIi, w # wo,
iel,, me N, belongs to T(G,-,, ;) for a suitable j & I,3. Consequently it is contained
in kerv,. Furthermore, observe that if 7eI,o then i =i, _, for a certain w,_,
€ W(G,)y~1. Then, for each me N,
Xlrr,::::")) = Uy—y LY. 1( Mydy l)akvp;’:,iw”_lun-l,O(XrI:D) =0
and clearly v,(X50") = u,_5(X2s") = 0. Hence v,(T(G,)) =0 and there exists
am,: "I — "Usuch that z,u, = v,. We shall prove that =, is the cokernel of "D <— "],
Let g: "I— H be a morphism in #; satisfying g("D) = 0. Then gu,(T(G,)) = 0
and gu, (X5 ..) =0 for meN, w,_;eW(G,),~,. Hence, for each iel,,
9u(T(Gp—y, ,)) = 0 and there exists a unique morphism g': "U— H in #, such
that ¢'v, = gu,. Since m,u, = v, and u, is an epimorphism, we have g'm, = g.
Furthermore, g’ is unique with this property since 7, is an epimorphism. This finishes
the proof (a).

In order to prove (b) observe that we have the exact sequence

PeOR) A
vn(Xm,iw N ]Vw,.,lwn -1

m
0" C e T 0

such that p,("C) = "D. Consider the following commutative diagram in #,:

0—"C et Sy

l

0—"D <"1 57— 0

w
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in which the bottom sequence is exact and g, = m,p,. We prove that 1, is the cokernel
of "C ©— "T". First observe that y, is an epimorphism. Let f: "T — H’ be a morphism
in #,; and let f(*C) = 0. Since "**C <—"C, there exists a unique morphism
f': "I — H' such that f = f'p,. Further, we have f'("D) = 0 because p,("C) = "D.
Therefore, there exists a morphism f*': "U — H’ such that f"'z, = f’. Consequently,
Sty = f"'Tupy =f'p, =1 and (b) is proved.

(c) We recall that I(E,) = I(G,), W(E,) = W(G,), re N, and

](En+1)= U I(En,i)’ W(Eey) = U W(Eu,i)

felwl, felwd,

where E,; = E, for ielp . Now consider the following diagram in 3¢,
n+

0 0 0
| [ |
| |
K(E) K(Ey+1) ® X(G,)
ielwg, \lo}
[ ! [
. b ' ;
0— & KX ® KX — ® X[X1*—0
J&I(En,0) ielwd,, jel(En,) felwd, o} jel(Eny)
| on i Un+1 i v
¥ .
L = nt+ 1T (HI)I — nQ
| E l
y Voo
0 0 0

with exact columns and an exact middle row, where v, = ®u,;, 4,; = 1, and
K(E,) = kerv,, K(E,+1) = kerv,, 1, K(G, 1) = keru, forie Ly \{o}. Letn, = v,m,.
We shall prove that n,(K(E,.)) = 0. Since K(E,+)=T(E,,), so it is sufficient
to show that #,, is zero on each generator of T(E,. ). If w 5= wl,, and i, ¢ I(E, o),
then the generator y of T(F,,,) of the form X577” — ki X2, jel,, belongs
to a certain T(G,,), i€ 1,9 \{o} and 1,(y) = 0. From the definition of 7, we conclude
that .

I ypeon m W) T i wiw)
T Xig ~ky 1 Xty ) = T Xomg )“kfv.jW;(ng,iw) =0

fw

if i, € I(E,), jeI,, me N. Moreover,

ﬂ:.(Xyﬁ',‘iw"“‘kpvo" o X = ”n,zw"(Xﬁ','twn) =0

Wre17'w,

for w, € W(E,; s Wa # WS. Cohsequently (T (Bt 1 ) = 0 and there exists a unique
morphism 7,: 1T —"Q in o, such that n, =9, v,4,.
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Now we prove that 1, is the cokernel of "7" <—s **1T" Observe that #, is an epi-

morphismand 4,("T) = 0. Let h: "*'T — H"' be a morphism in #, andlet h("T) = 0.
Denote by &, the inclusion

K[X]o'j c ® K[X]o,j

ieln9, \f0} JeI(En,) JeX(Ens1)
and put &' = hv, . &,. Fixie 1,2, \{o}. From the definition of v,,, and the equality
A("T) = 0 we obtain

h'(X;ﬁ':i) = hUnH(X,ﬁ'.‘i) = h( 5:H.ivn+ L(Xrlv’-,,'o))

=kb, i (XT) =0, meN.
Furthermore, if w e W(E, ) = W(G, 1), je I, m € N, then h'(X2’}" — kI XEY = 0,
Hence h'(. . u®\{ }K(G,.,i)) =0 and there exists such a morphism £”: "Q — H"
elwh N0
that A"y, = k'. Consequently A, 0,4, = K'Vim), = b'n), = Mo,y &gy = b, 4y and
h"'ty = h, because v, is an epimorphism, The proof of the lemma is now complete.
Let j: "*'L = K[X,,.4]>"L = K[X,], me N, be the monomorphism in #,
given by j(X,.1) = X
Lemma 4.3. Let m, ne N and m<n. The monomorphism j,, induces epimorphisms
(@) ¢, Hom("L, "T) - Hom("*1L,"T),
(b) ©,: Hom("L,"I) — Hom("*L, "]).
Proof. (a) Let f: "L —"T and g: ™*'L —"T be two morphisms in ;. Since
"L and ™**L are in %, we know that f and g are uniquely determined by elements
f(X,) and g(X,,+1), respectively, which must be primitive. From Lemma 3.5 (1)
we get ¢

f(Xm) = Z alan: ’

ieKm

IXasr) = % bYTS

JeKms1

where a;, b; e K. Suppose mt = 1. Then K, = I = {0} for each me N and f(X,,)
=t X80, 9(Xs1) = by X6 . Hence if by e K and ay is a p'th root of by, then
we have (f)(Xme1) = F(u(Xms1)) = F(XD) = (F (X)) = a§ X85 = bo X5
= g(X,+1) and {,(f) = g. Consequently, {,, is an epimorphism. Suppose now that
m>1. It is easy to observe that .

Km = {iwm; W € WM} = U Iwm ?

WimeWm

U 1Wm+1

Ky = {le-t-l; Wit1 € W;n+1} =
. Win+t €EWmat
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(see Section 2). Then in the above notation we have

L ) Kurr) = S (X 2) = f (XD) = (X
= (Y a¥gy = 3 4V =

ieKm ieKm

= ¥ (X

Wm+1€Wme1 $€ly

(% avg")

Wt 1 €Wmay P61y

P pm+1
LN (AN

Recall that for each w1 € Wy theset {ky,,.,,i; 1€ I,...} is a basis of K over K.
Thus for each b;, €K there exist elements a;€ X, i€l,,,,, such that

b;me = Z

iely, o1

»
A Roppyssis Wint1 € Wi

Consequently, if we put

fX) = 3, aYt,
ieKm
then {,(f) = g and {, is an epimorphism. Condition (a) is proved.
Tn order to prove (b) consider the commutative diagram of abelian groups

[
Hom("L, "T") — Hom("*!L,"T)

Hom("L,"R) — Hom("*'L,"R)

induced by the canonical epimorplism "T—"R. Since "L and m+if, are projective
objects in &, (Theorem 1.1), and "T" and "R belong to & we know that the vertical
maps are epimorphisms. Moreover, since the subobject of "7 generated by all primi-
tive elements is isomorphic with "R, then Hom("L,"I) = Hom("L,"R) and
Hom("+1L,"I) = Hom("*!L,"R). Hence (b) follows. This finishes the proof
of the lemma.

Proof of statement (1)in the theorem. First we prove that "], ne N, are
injective objects in #4. For this aim, by 1.6(a) in [10], it is sufficient to show that
Ext!("S,"I) = 0 = Bxt'("L,"]) for m, n e N. We apply the induction on 0<n<co.
If n = 0, then applying the arguments from p. 140 in [10], one can show that there
exists an isomorphism f: (°L)*—°T and hence °] is an injective object in ;. Now
assume that »>0 and the induction hipothesis holds for 0<k<n—1. Denote by
g: °L—"L and h: °7—"D the isomorphisms of Hopf algebras (of degrees p")
given by g(X,) = X, and h(Y,o) = Y%, reN. Then the composite map
f' = hf(g*): ("L)*—"D is of zero degree and it is a map in #, . Let m be a fixed
natural number. By Lemma 4.2(a) we have an exact sequence

0— (L*="T 3T =0
which induces the exact sequence

Ext!("L, ("L)*) — Ext!("L, "I) — Ext'("L,"U) .
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By Lemma 2.2 in [10], Ext'("L, ("L)*) = 0. Moreover, we know that #, is a locally
noetherian Grothendieck category, and so, by Proposition 6.51 in [4] and by the
inductive assumption "U is an injective object in #,, as the coproduct of copies
of "I Consequently Ext'("L,"U) = 0 and Ext}("L,"I) = 0 for' me N. Further
the exact sequence

0—mHiL Kmpymg_s g
induces the exact sequence
Om
0 — Hom("S, "I} — Hom("L, "I) — Hom (" *L, "I) ~ Ext'("S, ") — 0

since we have proved that Ext!'("L, ") = 0. But, by Lemma 4.3 @,, is an epimor-
phism, and so Ext!(™S,"I) = 0. Thus "I is injective. Finally, by Proposition 3.6,
the object "I is coirreducible for each ne N, and so the natural monomorphism
i,: "S —"I given by i,(Y,) = Y&, where ¥, denotes a generator of ™S, is essential.
Statement (1) of the theorem is proved.

Before proving statements (2) and (4) of the theorem we need one additional
technical lemma. Put

r
T'Q="UR(®"A), r,neN, rzn,
k=n a

PO = "U®(ké "0), neN.

Furttier, let 4,,: ™Q— ""'"Q be the inclusions ""Q < ""Q@"1Q = "T1MQ,
r,neN, rzn. Then ©"Q =1lim{™"Q, 4,,} for each ne N.
. =

rzn

LemMA 4.4, For each ne N, there exists an exact sequence
0—="C—=2I—-""0—0.

Proof. Let n be a fixed natural number. Since I = {J) 'T, it is sufficient to

r>n

show that there exist commutative diagrams

4

0 —"C Cr T o — 110 50

L

0—"Cmo> "™ — s P"Q 0

with exact rows, where ""1"Q ="U and A,,-, is the inclusion "U—"U®"Q.
We apply induction on r>n. Let r = n. Observe that there exists a commutative
diagram in #, ’
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0 0 K

Lok

0—"C e "T—2 g 0

b

0—"Cenr 1T, 4 0

with exact rows and columns, where ,,, 7, , = 1, are the morphisms from Lemma 4.Z,
(4, 0) = Coker("C<— "*'T), (K, f) = kery, (B, ) = Cokery. Then, by the Snake
Lemma (9], p. 230) we conclude that K = 0 and "Q ~ B. Thus we get the exact
sequence

0—-"U—>A4—-"0—0

which splits because "U is injective in 4. Consequently, in the diagram above we
can replace 4 by ""Q, y by 4, , and « by such a morphism =, , , that the diagram (n)
is commutative and has exact rows. Now assume that m>n and that we have com-
mutative diagrams (r) for n<r<m. Then there exists a commutative diagram

0 0 K’

ool g

0—1C s mp 0, metig

|7 I

0o7Cen mrip YL 40
l |1],.,. lal
¥
0 mQ B’
0 0

with exact rows and columns, and (4', ') = Coker("C < ™*1T)), (K', §') = kery’,
(B, a") = Cokery'. As above, one can prove that there exists a diagram of the
form (m) This finishes the proof of the lemma.

Proof of statement (2) of the theorem. Let m be a fixed natural number.
Since *°Q is injective, by Lemma 4.4 we have the exact sequence

Ext'("L, °C) — BExt'("L, *I) > 0.
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Further, as on pp. 143 and 144 in [10] one can show that Ext'("L, °C) = 0 and there-
fore Bxt'("L, I) = 0 for me N. We now consider the exact sequence

8
0 — Hom("S, *I) — Hom("L, *I) — Hom ("*'L, ) — Ext!("S, ©I)
— Ext("L, *I) — ...

induced by the exact sequence
m
0—mHIL Hm »"mS 0.
Since ™L is a noetherian object, we have

Hom ("L, *I) = Hom("L, U Ty = () Hom("L, 'T).

r>m

By Lemma 4.3(a), {, are epimorphisms and therefore @, is also an epimorphism.
Thus Ext*("S, I) = 0 and by 1.6(2) in [10] we know that *J is an injective object
in #,. Finally, since ®I = H(G%") is coirreducible, the natural monomorphisms
B.: "L— *I, ne N, given by B,(X,) = Xi, are essential. Statement (2) is proved,

Proof of statement (3). Let Q be an indecomposable injective object in #; .
Then by Proposition 6.36 in [4], Q is coirreducible. Since each homogeneous element
of minimal degree =2 in Q is primitive, Q contains a subobject F which is iso-
morphic either with "L or with "S for a certain n e N. Hence there exists a commuta-
tive diagram

r——e
s
v
Wi

with m = co provided F = "L and m = n whenever F ~ "S, in which ¢ and v are
essential monomorphisms. Therefore u is an isomorphism because ™I is indecompos-
able. Then statement (3) is proved.

Proof of statement (4). To prove (4) it is sufficient to show that

Exti(—,"L) = 0 = BExt(-,"S) for i>3,neN

(see 1.6(c) in [10] (p. 136)). Fix ne N and denote by y,: "C— "**C the morphism
given by the formula

0 for r=20,
Ta(X70) = X7 for r>0.

The fact that y, is in #; follows from [5], p. 544, 545. Now we observe that there
exist commutative diagrams in Hy
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O 0 ”HI
' Ll
Vool

@) 4\/

0—"C ¢ w]f_: °°"Q—>0

P

n+1C 0 0

l
¢
0

with exact rows and columns, where ("H, t,) = Cokerf,, ("H', 8,) = kery,. By the
Snake Lemma we conclude that "H =~ "**C. Then, considering the long exact
sequences of Ext’s induced by the upper row and the right column of the diagram (n)
and using the fact that *J and *"Q are injective, we obtain equivalences of functors

Exti(~,"L) = Bxt'"!(—, "H), Bxti(—,"H) = Exti(—,"*1C).

Moreover, the long exact sequence of Ext’s induced by the bottom row of (n+1)
yields Ext{(—, "*1C) = 0 for i>2. Hence Ext{(—,"L) = 0 for i>3. Furthermore,
for each ne N, the exact sequence

0->"+1L—>"L—)"S—>0
induces the exact sequence
Ext!(—,"*L) — Ext{(—, "L) — Exti(—, "S) — Ext'*{(~, "*1L),

and we conclude that Ext'(—,”S) =10 for all i>3. Consequently gl. dim s
= gl.dim 2, <2. The fact that the equality holds can be proved by using the same
type of arguments as in the proof of Theorem 3.3 on p. 145 in [10]. The proof of
Theorem 4.1 is complete.

We have the following characterization of indecomposable injective objects
in &,. )

COROLLARY 4.5. (1) For each n e N, "R is the injective envelope of 'S in &£, and
“R is the injective envelope of "L.

(2) Every indecomposable injective object in £, is isomorphic with a certain "R,
0gn<oo.

Proof. Observe that the subobject of "J generated by of all primitive elements
is isomorphic with "R, 0<n< 0. Moreover, if g: L— H is a morphism in #,
and L belongs to %, then the image of g also belongs to ;. Then the corollary
follows from the fact that Q' is an indecomposable injective object in &, iff Q" is
a maximal subobject from %, of an indecomposable injective object Q in # -
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COROLLARY 4.6. (1) Every injective object Q in #, is a coproduct of objects
isomorphic with the objects "I, 0<n< oo, and any two such decompositions of Q are
isomorphic.

(2) Every injective object L in &, is a coproduct of objects isomorphic with the
objects "R, 0<n< o0, and any two such decompositions of L are isomorphic.

Proof. It is an immediate consequence of Theorem 4.1 and of Theorem 8.11
on p. 377 in [9].

Remark 4.7. From the proof of Theorem 4.1 we conclude that if ¢,, ¥,, <,
is a basic ballast of the mt-special tree G,, 0<n< oo, then H(G?") (resp. L(G?))
is the injective envelope in #; (resp. in &) of object "S or "L, respectively. Then
"I~ H(GI and "R ~ L(GE), 0<n< .

§ 5. Endomorphism rings. In this section we give a description of endomorphism
rings of all "R, 0<n<co. In Section 1 we showed that &, is a K-category.
For each ne N, denote by K™ the K-algebra structure on K given by the

Frobenius map ": K — K. Moreover, put K = im{K™, ¢,} where ¢, = -?; K™
T p am n n
nz0

— KW 1t is easy to observe that K® is a field.
The main result of this section is the following.
THEOREM 5.1. For each 0<n< o, the K-algebras End("R) and K™ are iso-
morphic.
Before proving the theorem we will prove two technical lemmas.
LeMMA 5.2. Let n be a natural number. Then -
(V) If f: "F—"F is a morphism in %, , then f(Y§) = a¥% for a certain ae K.
(2) For each a € K, there exists a unique morphism f,: "F—"F in % such that

T8y = a¥y

Proof. If either m = 1 or n = 0, then the proof is obvious. Suppose m>1
and n>0. Let ¢,w) = {k,; iel,} for each we W(E). Let f: "F—"F be
a morphism in %,. Tt is uniquely determined by elements f(Y;), ie I(E,). Let

YY) =Y a;Y;, iel.
Jjel
Further, for 2<r<n and w, € W, denote by #, the unique node of W,_; such

that iy, = i, For r =1, w e W, we put Wy =i, .-
Now by induction on 1<r<n we will prove that

(%) Z ay’i_l,rmks,,i,r_, = aw,SrkWr,iw,_1
trmt@Wpey
n’__‘sls‘r
Py P
(**) f( Yiw”) - Z Dyrysre Yi‘r N
sreWr
for each w,, s,e W,, i,._,el,, where W, =1,
4 .
Qs = Z awr,fr-xer,!c,__l .
trm16Wr—y
1 €15,
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Let r = 1. Then for each wy e Wy, iel,,, we have

FOD =f@ = Tah¥i= 3 (3 ¥ = § (% ik )V
Jj s1€Wy jels, eWy Jels,
f(kwx, ;w, = w;,zf( 1w1 = w,,x( Z (Z a’wnl é‘hJ) lu)
eWy jels

The equalities (*) and (+*) for r = 1 follow from the fact that Y%, s, € Wy, are
linearly independent ovér X and that W, = i, for each wy € Wy. Now, suppose
that (+) and (#x) hold for each m, 1<m<r, r<n. Then for cach w, e W,, i, , €l,,

we have
-1 r=1yp

PO Y =fOEY = (Y g YT
tr—1€Wr—~1

»

= z aﬂ 1, Y'):’ = Z ( z (la- —1?,-—1}’{;,-—1)
e {EWpey PrUIPE IS W g Wy Y

it _191;

”

P Y24
- 1,:,-1/C5f”"r— x) Yi’r ’
SreWr tr—1€Wr-y

ur 151,
) =k, S(YD) =
=k, (2 (X

sreWr tr- 1€Wr—1
B, €ls.

I

f(kwr,iM Wr,lwr 1f( Ypr)

kSr,igr_ 1) Yl”s:,) .

'
Wrstr =1

Hence we get (¥) and (=) for r, because the elements Y,”:, s, € W,, are linearly inde-

pendent over K. Then the equalities (*) and (+#) are proved.

" From the definition of the tree E, it follows that W, = {w,} and W, =
k>n+1. Therefore, for each w,_, € W,_,, the element i,, _, belongs to 7,,,.
for r = n, the equalities () and (++) have the form

J for
Hence,

P -
B st Konsic, | = Dot o Wam1 € Wiy
th-1€Wn-1
—_— -
SYE) = ay,, X5
where @y, .= 3 @& Ky,  , since iy, =0. Thus statement (1) is
thet1&Wnoy o= "
proved.

(2) Let a be an element of X and put a,_,, = a. Then, using the fact that
{k,,;; je I} is a basis of K over K”, we conclude that there exist elements Oy, € K,
Wy, 8, € W,, 1<r<n, satisfying the equalities () and (). Moreover, it is easy to
observe that for a fixed w, e W, the set {s,e W,; a,,,, # 0} is finite. We definc
fa: "F—"F putting f(¥;) = }: a;;Y;, i€ I The correctness of f, follows from (x)

and (+*). Furthermore, f, (Yo) = qY¥ since a
of the lemma.
COROLLARY 5.3. Let n be a natural number. Then

(D) If g: "R—"R is a morphism in &,, then g(¥L') = aYE" for a certain
ae K.

= g. This completes the proof

WiyWn

icm®
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(2) For é’ﬂf/I ae K, there exists a unique morphism g,: "R ~"R in Z, such that
g¥8) = a¥.

Proof. First we observe that the natural sequence

0o (YIS R g

is exact. Moreover, /(E,) = I(G,) and W(E,) = W(G,). Hence for each f "F—"F
there exists a unique morphism g: "R — "R such that v,f = gv, and similarly for
each ¢': "R — "R there exists a unique morphism f*: "F— "F such that v,f' = g'v,.
Then the corollary is a consequence of Lemma 5.2.

LemMMA 5.4. Let n be a natural number. Then

(1) If h: °L—"F is a morphism in &, then h(YE) = a¥E" for a suitable a e K.

(2) For each a e K, there exists a unique morphism h,: "F—"F in % such that
B(YY) = aY '

The proof is similar to proof of Lemma 5.2 and it is left to the reader.

Proof of the theorem, Let » be a fixed natural number. By Corollary 5.3
we have a bijection

®,: End("R) — K™

which assigns to each g e End("R) an element ae K such that g(YZ") = 4YZ",
We will show that w, is an isomorphism of K-algebras. Let £, g€ End("R). If
FYE) = aY¥, g(¥5) = b¥y', then
(J+9)(¥8) = -(f®NAYE) = f(YE)+g(¥]) = (a+D) YY",
(f-9)(¥8) = FYF) = ab¥y'.
Consequently, ,(f+9) = 0,(f)+0u(g), 0,(f*9) = w,(f) »,(9) and cleatly ,(id)
= Ige. This proves that o, is an isomorphism of fields. We will show that it is also
K-linear. Recall that ¥, ~ #°°-Mod and this equivalence is given by the cor-
respondence H — Homg (—, H) = hy, He %, . Moreover, the K-algebra structure
on Homg, ("R, "R) is obt’uned from the K-algebra structure on Hom s nog(ugs Fng)
(see Theorem 1.1). Furthermore, by Proposition 3.1 in [14] and Theorem 1.1 we
have
(@ hp ("D W) = hula-1,,)) = fula-1,,)
for each fe End("R), ue Hom("L,"R), me N, ac K. For every i € I(G,), denote
by a; the morphism from °L to "R given by o(X) = ¥;, where X is a generator
of °L. Then the K-algebra structure on End ("R) is defined as follows: if fe End("R),
iel(G,), ae K, then

(a-f)(Y) = (e hpCLY) (A X)) = fa(a-1o)(X) = fu(aX) = af (T)).
Hence, if f(Y§') = b¥§", then we have
@) = (@) (X)) = (@f (Yo" = a"f(¥E) =

(f) and @, is an isomorphism of K-algebras.

S
a’b¥y .

Consequently, w,(a:f) = a" o,
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We now show that the K-algebras End(*R) and K(‘”i are isomorphic. This is
obvious for m = 1 because ®R = °L. Suppose m>1. Similarly as above, one can
prove that the K-algebras End("F) and K", neN, are isomorphic. Further, we
observe that the morphisms 1,: E,— E,., and s, E,—E, = G, neN, of
m-special trees, defined in Section 2, induce monomorphisms L(t): "F—"*1F
and L(s,): "F — ®R. Moreover, we recall that for each ne N the set Z(E,) of all
inputs of E, is empty. Hence from Lemma 3.5(2) ‘the algebras "F and “R

= lim{"F, s,}, 7€ N, contain no nilpotents. On the other hand, it is easy to observe
nz0

that for n=m each element of "F/™F and “R/"F is nilpotent. Then for each ne N
Hom("F/°F,"F) = 0 = Hom(”R/"F®, R) .
From Lemma 5.2 and Lemma 5.4 the exact sequence
0—OF—"F—-"F°F—0
induces the following isomorphisms of K-linear spaces
v,: Hom("F,”F) — Hom(°F,"F), neN.

Further, from Corollary 4.5(2) the functor Hom(—, “R) is exact. Then the exact

sequences 4
0—"F— “R— “R'F—0

induce the following isomorphisms of K-linear spaces
h,: Hom(®R, *R) — Hom("F, ®R) .

It is easy to check that the following diagram of K-linear spaces

K™ ~ Hom('F,"F) ——————> Hom(°F, "F)

Cn

K(n-l-l) ~ HOlll("+1F, n+1F) ‘Y::;HOm(QF, n+1F)

commutes for each ne N. Hence and from the fact that °F is a noetherian object
in %, we obtain the following sequence of K-linear isomorphisms:

b
Hom(®R, “R)— Hom(°F, ®R) = Hom(°F, lim"F)
nZ0

~ limHom(°F, "F) ~ limK™ = K,
=0 nz0
In order to prove the theorem it is sufficient to show that the K-linear isomorphism
0,: End(®R) — K is a ring homomorphism. For this purpose we observe that,
if fe Hom(*R, ®R) and f (°F)=™F, then for n>m there exists such an element
9, € Hom('F, "F)cHom("F, ®R) that 7,(g.) = ho(f) = Ao, and g, = h,(f).
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Hence, if fe Hom("R,®R) and f(°F)c"F, then f("F)c"F for nzm. Let
f,9€End(R) and f(°F)="F, g(°F)<™F. For n>m we have

ho(af) = ph(ar)) = 1) B ) -
Then o, is an isomorphism of K-algebras and the theorem is proved.

In another paper in this series indecomposable projective objects in #, and their
endomorphism rings will be described under the assumption that (K:K?) is finite.
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